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Once such an iterative process for an ordinary life
table has been developed, the life table for a single
cause [what Hoem (1969) calls the partial rate] can
be obtained by inserting the observed age-cause-specific
rate rather than the age-specific rate. For the multiple
decrement table we again use the same computation,
but insert the observed ratio of the given cause to all
causes. Thus with very slight modification the same
argument—indeed the same program—that produces
the ordinary life table produces a table for an individual
cause acting alone, and produces the multiple decrement
table.

The present approach for a single or multiple decre-
ment table that agrees with the data leads immediately
to nuptiality, fertility, school attendance, labor force,
and other tables. More difficult are methods for a
combined table (needed, for example, in the study of
fertility by birth order) and for treating the life table
stochastically.
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Foundations of Survey-Sampling’

Dedicated to the late Professor J. B. S. Haldane who brought
to my attention the following very significant story from the
ancient Indian epic Mahabharat (Nala-Damayanti Akhyan):
The king lost his way in a jungle and was required to spend the
night in a tree. The next day he told some fellow traveller that
the total number of leaves on the tree were “so many’’. On being
challenged as to whether he counted all the leaves he replied;
“No, but I counted leaves on a few branches of the tree and I
know the science of die throwing”, (I can vouch for accurateness
of the reproduction only in the essential respects.)

1. During April 1968, a symposium on Foundations
of Survey-sampling was organized, at my suggestion,
by the University of North Carolina, at Chapel Hill.
Eminent statisticians from all over the world partici-
pated in this symposium. The discussions were exciting,
as well as illuminating. Unfortunately, it was impossible
for the organizers, because of the limitation of space,
to include these discussions in the publication of pro-
ceedings of the symposium which has just come out
(Johnson and Smith, 1969). Hence, I am giving below
some details concerning the ‘central issue’ which high-
lighted the discussions at the symposium. In doing so,
it is natural if I emphasize more my viewpoint; yet I
have presented the other side of the issue as clearly as
possible. This ‘central issue’, T think, can be best under-

*This article was prepared at the invitation of the Editor.

V. P. GODAMBE
University of Waterloo

stood with some historical perspective:

2. Several years ago (1955), I proved a somewhat
puzzling result which was subsequently generalized by
Joshi and myself (1965). A simple illustration of the
puzzling result is as follows: Let a finite population
consist of N individuals which are labelled by integers
i=1, «++, N. Each individual ¢ has a variate value
z, (¢=1, --+, N), associated with it. The variate
values z;, (¢ =1, -+, N), are unknown. Hence to
estimate the population mean, '

Iy = ixi/N, (1)

a sample (denoted by ‘s’), of n individuals is drawn
by ‘simple random sampling without replacement’ and
the variate values z; for the individuals 7 included in
the sample s are observed. Now due to a result of
Halmos (1947) and Watson (1964), the sample mean,

&= 2 ai/n, (2)
(D ics meaning summation over all individuals ¢ in-
cluded in the samples) is the unbiased minimum vari-
ance, (UMV), estimator of the population mean (1):
That this is true if and only if the individual labels 7
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are tgnored, follows from the result referred to at the
beginning of this paragraph. I say ‘ignored’ because the
process of drawing ‘statistically’ a random sample from
a population consisting of a fixed number (finiteness is
irrelevant) of individuals involves use of some random
number tables which essentially implies that all the
individuals of the population are already labelled in a
manner known to the sampler. At a suggestion of the
referee of this paper I elaborate on this point further:
Without going into the details of the meaning of the
word ‘probability’ I can say that with the giwen knowl-
edge, we tend to believe that ‘all events (say N in
in number) that can possibly occur under a certain
phenomenon occur with equal probabilities (= 1/N).
The search for such a ‘phenomenon’ is clearly basic
for the construction of random number tables. Funda-~
mentally, then drawing an individual at random from
a population of N individuals is equivalent to arranging
a one-to-one correspondence of the N events of the
above referred to ‘phenomenon’ and the N individuals
of the population: the individual corresponding to the
event that actually occurs is said to be selected at
random. Thus statistical random sampling! presupposes
a labelling of the individuals in the population. This
knowledge of individual labels, as shown in the above
papers, (1955, 1965), implies a general non-existence
of UMYV estimation. Indeed this general non-existence
of UMV estimation is typically true for what is com-
monly called a ‘survey-population’ since it consists of
a fized number of individuals, and for practically all
modes of randomization such as simple random sam-
pling, stratified sampling, sampling with arbitrary prob-
abilities and the like. Why then was UMYV estimation
emphasized,? especially in relation to the sample mean
(2), in the early literature on survey-sampling, more
specifically, since Neyman’s (1934) paper? The answer
to this question is to be found in the origin and the
development of ‘general statistical theory’.

3. It is generally believed that statistics or statistical
theory originated with the investigations of biological
and sociological phenomena, such as inheritance and
the like, during the last century. Soon the statistical
theory was directed towards studying the relationships
between different factors that influenced those phe-
nomena and toward studying the underlying chance
mechanisms. For instance, the sizes of a dozen observed
human skulls were supposed to have been produced by
some kind of chance mechanism operating in the back-

! Here I must say I find Barnard’s [(1969, p. 708] interpretation
of Martin-Lob, Kolmogoroff-type mathematical definitions of
“randomness” in terms of the permutations of labels, statis-
tically meaningless.

2 There are numerous examples in the survey-sampling litera-
ture of this erroneous and confusing emphasis. Perhaps this
confusion is hest illustrated by an early paper of Hansen and
Hurwitz (1943) where apparently, for the first time, the term
‘best linear unbiased estimate’ has been extensively used in
relation to survey-sampling. A recent illustration of this con-
fusion about the ‘best estimator’ is furnished by Hartley and
Rao (1962, p. 351). Some of these authors may have meant,
actually, something different than what they wrote.
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ground. It was then but a small step to replace the
chance mechanism by a hypothetical population gener-
ated by the independent repetitions of the chance
mechanism. Thus, the dozen observed skulls were sup-
posed to be a random sample from some hypothetical
population. It was for the statistician to make inference
about the properties of this hypothetical population on
the basis of the given random sample with the help of
the tools provided by the classical theory of probability.
A basic assumption made here was that the chance
mechanism uniquely determined the frequency function
of some characteristic under study in the hypothetical
population. For example, in the above referred to hypo-
thetical population of human skulls, the sizes of the
skull might have a frequency funetion which is normal
with a specified mean and variance. Usually, however,
this frequency function was known only partially to
the statistician, and the inference from the given ran-
dom sample about the hypothetical population and the
underlying chance mechanism often meant inference
about this partially known frequency function. One
might, for instance, try to estimate some unknown
parameter of the otherwise (assumed to be) known
frequency function in the hypothetical population. If
the frequency function was known to be normal with
unknown mean and variance, on the basis of the given
random sample, one would try to estimate the mean
and the variance. This, one may say, has over the
years resulted in the development of a mathematical
theory of statistics or briefly statistical theory. Fisher
often stressed in his writings (1956, 1959) the hypo-
thetical nature of the populations dealt with in the
general statistical theory. The earlier authors of statistical
theory like Galton (1889) and Pearson (1920) were
less clear on the subject. But even a cursory glance at
the development of the subject suffices to show that
Fisher’s explicit postulation of the hypothetical popu-
lation was the natural crystalization of what was under-
lying the earlier development of statistical theory.

4. Now in contrast to the hypothetical populations,
which was the concern of the general statistical theory
developed by Galton, Pearson, Fisher, etc., the survey-
populations, as mentioned in paragraph 2, are real in
the sense that they consist of a fixed number of real
individuals. This basic distinction between a hypo-
thetical and survey-population was not clearly under-
stood for a long time. As a result, theorems true for
hypothetical populations were also assumed, implicitly
or explicitly, to be true for survey-populations. Here
we see the answer to the question raised at the end of
paragraph 2. Since for an hypothetical population,
under very general conditions among the linear esti-
mates, sample mean was known, from the days of
Gauss, to be the unbiased minimum variance (UMYV)
estimate for the population mean, the same thing was
believed to be true for a survey-population. For the
convenience of presentation in paragraph 2, I have
referred to Halmos’ (1947) generalization, removing
the restriction of linearity in Gauss’ result. It is easy
to see that for the illustration considered in paragraph



2 if the individual labels ¢ = 1, ---, N are ignored, the
hypothetical population generated by n draws without
replacement has a joint n-variate frequency distribution
such that each variate has a common unknown mar-
ginal distribution, determined by the unknown values
ziy 2 = 1, «++, N, the mean value of this marginal being
the same as (1), the covariance between any two of
the n variates being —1/N. Indeed for this hypothetical
distribution, according to the Halmos (1947)-Watson
(1964) Theorem, the sample mean (2) is the UMV
estimate for (1). This result, however, becomes irrele-
vant or meaningless or false, as said before, if the
individual labels ¢, ¢ = 1, - -+, N are not ignored.

5. With the above background I can describe the
‘central issue’ (referred to in paragraph 1) in the dis-
cussions at the Symposium as follows: If the individual
labels are entirely uninformative about the correspond-
ing variate values, intuitively the sample mean (2) is
the most appropriate point estimate for the population
mean (1), provided simple random sampling without
replacement is adopted. Corresponding to this intuitive
appropriateness the only formal optimality property for
the sample mean is its UM V-ness. Even this UMV-ness
is not available if the individual labels are not ignored.
This indeed is disturbing. If statistical theory could
not explain such crucial statistical intuition as above,
the theory would be seriously inadequate or unrealistic.
One may try to get out of this disturbing situation by
adopting one of the following two approaches;

(I) by extending the statistical theory with a new
model and corresponding formal criteria of optimality
or appropriateness,

(II) by interpreting survey-sampling in such a way
that it would fit within the framework (model) of the
general statistical theory, referred to in paragraph 3.

The ‘central issue’ in the discussions at the Symposium,
I think, could be expressed as: Whether (I) or (II)?
Since (1955), several authors, including myself, con-
tributed to developing and formalizing (I) above. These
contributions are far too many to list here. A reference
to them may be found in my symposium paper (1969).
These contributions, in my opinion, have clearly demon-
strated that the conventional optimality criteria such
as UMYV or ML estimation and the like which arose in
relation to hypothetical populations referred to in para-
graph 3, could be replaced by some other equally
reasonable criteria that are appropriate for survey-
sampling: For instance we may refer to the latest
criterion suggested by Iempthorne (1969, p. 678, 679)
or the criteria previously suggested by Godambe (1955,
1969), Héjek (1959), Hanurav (1965). Even Bayesian
analysis which can be implemented by both the ap-
proaches (I) and (II) above, becomes much more
realistic by approach (I), [Ericson, (1969)], than by
approach (II) for the reasons given in paragraph 7.
Now for the convenience of further discussion I will
use the following notation. A set U of individuals ¢,
U = {¢}, is called a population, 7 =1, 2, -+, N. A
subset s of U, s C U, is called a sample. If z; is the
(real) variate value associated with the individual <,

x' = (&, -~

*y ‘.)31\/), (3)

is called a population vector. If S denotes the totality
of the subsets s of U, -

S = {S};

then without any loss of theoretical generality a sam-
pling design can be defined as a function

P (4)

on S such that for all seS, 1 > p(s) > 0 and Zsp(s)
= 1. Next,

sC U,

(s, x;ides) (5)

will be called the data. It is already known [ Godambe
(1966) ] that the approach (I) above is characterized
by the function ‘Prob. (-|-)’ in (6), to follow, which
defines the probability of obtaining the data (5) given
the sampling design (4) and the population vector (3).

Prob. (s, z;i1es|x',p)

p(s) if z; = z/ for all T es,
= for all x" e Ry, seS, (6)
0 otherwise,

where Ry is the Euclidean N-Space. With the appropri-
ate prior knowledge, Ry in (6) could be replaced by
Ry*, some subset of Ry, [Godambe (1969), p. 407.
For a given sampling design p, in (6) above x’ is the
unknown parameter, R being the parametric space.
Further given p and x’ the function ‘Prob.” in (6) is
defined on the sample space,

A= {(s,r:i0e8): —0 < ;< o,7es:5€¢S8}. (7)

{Thus given the data (5), (6) defines the likelihood
function on the parameter space By or Ry*. This simple
likelihood function was not understood until recently.
For instance, we find Barnard et al. (1962, p. 370)
asserting, (in reply to Durbin’s question), that in the
present situation sample space, parameter space and
kernel function are not defined! In fact, with apologies
to Barnard and Durbin I should say, here the whole
discussion on ‘finite population’ [Barnard et al. (1962),
p. 353, 3707] shows how much the entire subject was
misunderstood. }

6. At the Symposium, as over the past several years,
I, along with several others, upheld the approach (I),
characterized by (6) above. The opposing viewpoint
supporting approach (IT), at the Symposium, was pri-
marily based on two very recent works: One by Royall
(1967-68) and the other by Hartley and Rao (1967-68,
1969). Of these two, I will first explain and comment
on, Royall’s work. It essentially consists of eliminating
labels ‘s’ in (6) above by appropriate summation and
writing the probability of the unlabelled values r:i e s,
denoted by

Prob. ([x:tes] x/, p). (8)

Using (8) and assuming parameter space to be some
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symmetric subset Ry* of Ry in (6), he proves the
sample mean (2) to be the UMV estimate of the
population mean (1), for simple random sampling with-
out replacement, with a fixed n vmber of draws. (Such
sampling I will, from now on, denote by SR-sampling.)
This is quite in line with my observation in paragraph
2 based on the Halmos (1947)-Watson (1964) theorem.
Then following the idea behind maximum likelihood
estimation, (MLE), Royall defines Best Supported
Estimation, (BSE). Though Royall considers sampling
designs p in (4) above where p(s) is determined by the
number of individuals 7 in s (and of course N), I think
without loss of any conceptual generality I can, for
the discussion here, present his BSE method, assuming
SR-sampling. In (8), [refer to (3)7], let (z/, ++-, zx")
contain only M distinct values say,

21y 0y Ryt e, 20 9)

which, including M itself, may or may not be known.
Let further forj = 1, «++, M

N 1 lf 2; = ,’[i”
K; = Z o (z;, '), where ¢(z;, /) =
- 0 otherwise.

(10)

In (10) above, K;, j = 1, +++, M are assumed to be
unknown. Further for the unlabelled values of the
sample, i.e. [z;:7es]in (8),forj =1, «++, M, let

kf = Z¢(zfy 2231'), (11)
where ¢ is the same as in (10). From (10) and (11)
we have in (8), assuming p = SR-sampling,

Prob. ([z::ies] x') = ﬁ(lkfﬁ/(i) (12)

=1

where 7 is the sample-size. In (12) above K;, j = 1,
«++, M are unknown but k;, j = 1, «++, M are known.
Let K; be the value of K, j = 1, -+, M which maxi-
mizes (12) for the given values of k;, 7 =1, -+, M.
Assuming for any j if k; = 0, K, = 0, Royall defines
the BSE for population mean (2) as

M
iy = 2, Kjz/N. (13)
1

An interesting example given by Royall shows how the
BSE (13) can differ considerably from the sample
mean (2).

7. The above theory of Royall is based upon de-
ciding right at the start that individual labels, after a
SR-sample is drawn, are irrelevant concerning the prob-
lem of inference. Indeed it appears to me that Royall
takes for granted that the individual labels in a popu-
lation can at best be of use to draw a SR-sample or to
stratify the population and then from each stratum to
draw a SR-sample or perhaps to stratify the population
after a SR-sample is drawn, and the like. He indeed
gives the obvious extention of the BSE (13) appropriate
for stratification. It is assumed that the stratification
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is sharp enough so that within each stratum, individual
labels provide no further discrimination between the
corresponding z-values in (3). Here I see a source of
confusion. It is one thing to say that within a stratum
individual labels are irrelevant if one wants to discrimi-
nate between the corresponding z-values and the other
a very different thing, to say that the individual labels
are irrelevant when one is concerned with any inference
problem related to the population: The former state-
ment looks intuitive to me but not the latter. Actually
whether a certain aspect of the data is relevant for the
purposes of inference or not will depend upon the tools
of inference available at the time. I do not believe in
the notion of ‘absolute relevance’ or ‘absolute irrele-
vance’. There must always be an interplay between the
concept of relevance (or irrelevance) and statistical
theory. This interplay, I believe, is necessary for the
development of both, on one side the ‘concept of ir-
relevance’ and on the other the ‘statistical theory’.
From a Bayesian viewpoint this interplay results in
computations of priors on wider or richer parametric
spaces, which are required to include the so called
‘irrelevant data’ in the model. An excellent illustration
of this is provided by Empirical Bayes Methods, [H.
Robbins (1956) ]. Here, apparently, utterly unrelated
data are pooled together to improve the inference re-
lated to each. The extensive development of sampling
theory based on the approach (I) to which I referred
in paragraph 5, provides another such illustration. The
general statistical theory which was tied to hypothetical
populations (refer to paragraph 3) was basically in-
capable of providing any inference utilizing the indi-
vidual labels. Here I may emphasize that the idea of
‘labelling’ to draw a random sample is not new. Some
historian may, extending Kempthorne’s (1969, p. 673)
guess of 40 years, trace the origin of the idea even to
4,000 years ago in history! What is essentially new is
the understanding of the formal role of labels in the
inference procedure. [Surely, I agree with Professor
Kempthorne (1969, p. 685) that some aspects or parts
of the ‘sample’ will have to be Zgnored in the process
of inference. But this, as I said before, is due to our
incapacity or the incapacity of the tools of inference at
our disposal at the moment. At some later moment
more sharpened tools might enable us to utilize some
of the Zgnored part of the sample]. In fact it is clear
from Royall’s work that a sampling theory which is
based on the reduced data [x:;:7es] [refer to (8)],
ignoring individual labels, can at best explain stratified
sampling and the like. More sophisticated sampling
destgns, (refer to paragraph 9) will be essentially out-
side the scope of such a theory. It is evident that one
cannot at all formally study the more sophisticated
sampling designs utilized by matured and experienced
practitioners, except through the probability function
(6), based on the approach (I). Actually Royall’s work
does not go any further than stratification. But I will
have the occasion to comment on this in more detail
in paragraph 9. Here I would like to emphasize one
point, lest I may be misunderstood. I do not say that



Royall’s probability function (8) refers to any hypo-
thetical population, mentioned in paragraph 3. How-
ever, the former, (8), has a basic feature in common
with the frequency functions related (refer paragraph 3)
to hypothetical populations and that is the absence of
individual lables.

8. Now I proceed to comment on the work of Hartley
and Rao (1967-68) which also aims at implementing
the approach (II), (refer paragraph 5). In this di-
rection they attempt to prove that many estimators for
the survey-population, in common use, are either UMV
or ML estimators, ignoring the individual labels. They
say:

‘we confine ourselves to the estimators
which do not functionally depend on the A
labels.” (1968, p. 547).

Hartley and Rao’s, (from now on I will denote these
authors by just ‘HR’) work is much less formal than
Royall’'s. Royall, as I have shown in paragraph 7,
formally reduces the data (s, z;:7 ¢ s) in (5) to [z::7es]
and starts with the probability function (8) to obtain
(12) and (13). On the other hand HR, assuming SR-
sampling, start with the distribution (12) and obtain
an estimator which is analogous to (13). Again, inde-
~ pendently HR prove the sample mean (2) is the UMV-
estimator for the population mean (1). This, as we
have seen before, is in line with Royall’s result. Con-
cerning Stratified SR-sampling I must say HR-theory
" is very unclear. For instance they say:

‘in most situations in which labels are at-
tached to the units it is known that they
cannot be informative beyond the design
stage.” (1968, p. 549).

The above statements A and B, reproduced from HR
(1968), do not enable me to obtain the conventional
estimator for the population mean when stratified SR-
sampling is adopted. It would be inconsistent with the
two statements, A and B, quoted above to attach
different weights for two equal z-values drawn from
different strata; while the conventional estimator is
obtained by multiplying each z-value by the corre-
sponding stratum size; and yet HR say:

‘In particular, the customary estimators
are U.M.V. noting that each stratum is
described by its separate set of parameters
N, (1968, p. 550).

Surely the assumption of different sets of parameters
for different strata, (as stated in C above) at the
estimation stage, contradicts HR-statements A and B
above. [This remains true even after an elaborate
treatment of stratification given by HR in (1969).]
A simple way to avoid the contradiction is to say in
addition, to A above that ‘the parameters (using HR-
terminology) of different strata will be estimated sepa-
rately or independently’. It clearly shows that even
though HR claim to have developed a ‘theory’ of esti-
mation, the simplest of the results they present can be

validated only by some sort of ad hoc reasoning. Of
course I do not mean to say that this ad hoc reasoning
is implausible; but it illustrates that HR (1967-68)
work considerably lacks in theoretical (deductive) struc-
ture. This lack of theoretical structure is all the more
seriously felt in the authors’ subsequent paper, [HR,
(1969) 7.

9. To elaborate on the foregoing remarks, I comment
in some detail on the HR (1969) paper. They say:

‘Thus any identifying labels, 7, that may
be attached to the units may or may not
be used for implementation of the sample
design; however labels are not directly used
in the computation of the estimators.” [HR
(1969), p. 1487 [italics mine].

I think, the phrase ‘however labels are not directly
used . .. in D above is of basic importance to HR-work;
and yet nowhere do they formally define the underlying
concept. Neither do they clearly explain what they
mean by ‘directly used’. I get a feeling, from their
subsequent statement:

‘Certain situations where labels of higher

stage units are not informative also exist,

for example identifiable subsets of certain E
lists. Both ‘scale-load’ and ‘label-dependent’
estimators are therefore required.” [HR
(1969, p. 1497 J

that the authors possibly meant to say: at the esti-
mation stage labels should be used only to the extent
they are used at the design stage. This may have some
intuitive meaning, though not necessarily a unique one.
However, unless this meaning is made explicit, HR-
work will not qualify itself to be called a ‘theory’;
whether a right or wrong theory or whether an adequate
or inadequate theory is a different issue. Assuming a
theory, ignoring partially, labels, is developed, still as I
stated in paragraph 6 while commenting on Royall’s
work, this theory can at best explain stratified SR-
sampling and the like. What such a theory, specifically
cannot explain is the following: Using the notation in
paragraph 5, I will say, when a general sophisticated
sampling design p in (4) is employed with appropriate
inclusion probabilities,

i = Zp(3)7

37

i=1,"°,N, (14)

‘s > 7’ meaning ‘all subsets s which include the individual
7’, often the corresponding estimator for the population
mean (1) is given by Horvitz—Thomson estimator,

§ i (15)
Indeed as special cases of (15) we get sample mean (2)
or the conventional estimator in stratified SR-sampling,
[refer HR, (1969), eq. (21)]. These special cases, I
can imagine, could be explained by a possible theory,
which partially ignores labels. However, such a theory,
in principle, cannot explain the general estimator (15).

37



As a matter of fact in a ‘single-stage’ unequal prob-
ability sampling [HR, (1969), section 5], when m
draws are made with replacement, the probability of
selection for the individual 4, at each draw being ¢,
i=1, ---, N, if m; denotes the number of times the
individual 7, ¢ =1, «++, N, is drawn HR obtain the
estimator, [HR (1969), eq. (37) ],

(1/mN) X wami/q; (16)

i€

(notation mine). It is well-known that the estimator
(16) is tnadmaissible while the estimator (15) is always
admissible, [ Godambe and Joshi (1965) ]. In the present
case the estimator (15) is given by

(1/N) 22/ = (1 = g9)™], (17)

Tes

[Godambe (1955)7], which of course is different than
the HR estimator (16). This, I believe, is a sufficient
demonstration, of the serious intrinsic limitations of a
possible theory which ignores partially (at least) the
individual labels. Curiously enough I find HR [ (1969)
p. 162] after obtaining (16) above [or equation (37)
in HR-1969 ], saying:

‘Although only one single method of un-
equal probability sampling is examined in
this section and although the method ex-T F
amined is known not to be particularly
efficient . . .’

They seem to be completely unaware of the fact that
it is not the method of sampling that is inefficient but
what is inefficient is their estimator (16); for, with
suitable values of the selection probabilities ¢;, © = 1,
<+, N the method at least theoretically, will not be
very objectionable. The inefficient estimator (16)
clearly speaks by itself about the general HR-approach.
In conelusion, to avoid misunderstanding, I would like
to say that it is not the main purpose of this article
to defend or advocate any particular estimator, or any
property of optimality, ete.; rather the main purpose
is to emphasize the unbiased (in the genuine sense)
approach-(I), of paragraph 5, which provides a broad
enough logical set-up within which most of the problems
of survey-sampling could be formulated and discussed
without any prejudice, particularly, without the prej-
udice, that ‘such and such individual labels must be
uninformative and therefore must be irrelevant for in-
ference’.

I may conclude by expressing my appreciation for
all efforts that Professors Nicholson, Johnson, Smith
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and others from the University of North Carolina have
made for bringing about this unusually ‘rewarding’
[Barnard (1969), p. 7117] Symposium.
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