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A New Approach to Sampling from Finite Populations. II
Distribution-free Sufficiency

By V. P. GopAMBE?}
The Johns Hopkins University, Baltimore, U.S.A.
[Received June 1965. Revised November 1965]

SUMMARY

The idea that in some situations the prior knowledge about the unknown
parameters could be formulated as a class of prior distributions, which
could be used, not necessarily through Bayes posterior probability, for
subsequent inference, is already present in Godambe (1955). In the present
paper, the concept of distribution-free linear sufficiency or in short linear
sufficiency, originally due to Barnard (1963b) but redefined by the present
author (Part I), is extended by defining distribution-free sufficiency, removing
the restriction of linearity. This extension again is based on the assumption
that in some situations prior knowledge could be formulated as a class of
prior distributions. A certain linear estimator of the population total, which
in Part I was shown to satisfy the redefined criteria of linear sufficiency
uniquely in the class of all linear estimators, is now shown to satisfy this
extended criteria of distribution-free sufficiency in the entire class of
estimators. Further the general relationship between the linear sufficiency
of Part I and the distribution-free sufficiency introduced here is investigated.
Broadly the result is that, if we restrict to linear estimators only,
distribution-free sufficiency is identical with linear sufficiency. Finally,
some remarks are offered by way of comparison between the result obtained
by the author previously (Godambe, 1955) and the result here, about the
utilization of the prior information. The approach of this paper clearly
implies a generalization of Fisherian sufficiency suitable for the situations
when prior knowledge consists of a class of prior distributions. An
alternative generalization when the prior knowledge consists of a group
structure is due to Barnard (1963a).

1. INTRODUCTION
WE use the same notation as in Part I. The population consists of N units denoted
by the integers i=1,...,N. The variate value associated with the unit i is
x;(i=1,...,N). Itis assumed that x; (i=1,...,N) is a real variate and the space of
all possible vectors x = (xy, ..., xy) is the Buclidean space Ry. The population total
is a function 7 on Ry given by

T = 3, )
1

If s denotes a subset of integers i, where i = 1, ..., N and S the totality of such subsets,
then a sampling design p is a function p on S such that > ¢p(s) = 1 and p(s) >0 for
seS. We shall call s a sample. As has been demonstrated several times by the
author (Godambe, 1955, 1960, 1965), all the known survey designs (such as stratifi-
cation, subsampling, p.p.s., etc.) are special cases of the sampling design defined above.

t On leave from the Institute of Science, Bombay.
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Often in survey sampling the problem is to estimate the population total T on the

basis of a sample s and the values x;, ies when the sample s is drawn at random

with probability p(s) specified by the given sampling design p. Now we have
Definition 1.1. Any real function e(s, x), on S'x Ry, depending on

X = (X1 o0 Xgy eees X3)»

only through those x; for which ies is called an estimator.

2. NON-EXISTENCE OF AN UNBIASED ESTIMATE WITH MINIMUM VARIANCE

Given a sampling design p, we say an estimator e(s,x) is unbiased for the popu-
lation total 7'(x) if

Se(s,x)p(s)=T(x) forall xeRy. 2
s

Next, the variance of an unbiased estimator e is given by

Vie,x) = % {e(s, x)—T(X)}* p(9). 3

If now for a given sampling design p, &% denotes the class of all unbiased estimators e,
i.e. each ec satisfies (2), then it has been proved by Godambe and Joshi (1965)
that % does not contain an estimator € for which

Ve, x)<V(e,x) forall ec# and xeRy. )

It is important to note the generality of the above “non-existence of an unbiased
minimum variance estimator”. It is valid for every sampling design admitting more
than one unbiased estimator for the population total 7, and for every interval of Ry.
In view of this result, then restricted to linear estimators only, the author (1955),
proposed a criterion for an estimator to be optimal with respect to a certain type
of prior knowledge. This is discussed further in Section 8. In what follows, an
alternative approach to the utilization of prior knowledge in a more general and
realistic way is suggested.

3. THE CONCEPT OF INDEPENDENCE WITH RESPECT TO SOME KNOWLEDGE

We now suppose that the prior knowledge of the statistician about the vector
x = (X, ..., Xy) is K, where

Assumption 3.1. K: Different co-ordinates of x are in no way mutually related.
That is, the value that any particular co-ordinate takes is in no way dependent (in
the present sense) on the values of the other co-ordinates. In other words whatever
may be the statistician’s knowledge about some co-ordinates of the vector x, it can
impart no knowledge about the remaining co-ordinates of x. Next we have

Assumption 3.2. The prior knowledge K as given by Assumption 3.1 is
equivalent to the class Q of prior distributions & on R, such that for all £€Q, when
Xy, ..., Xy are distributed as ¢, they are probabilistically independent. Further we
introduce the following notion of “independence with respect to the knowledge K”.

Definition 3.1 (see Appendix). Any two real functions f and g on Ry are said
to be independent with respect to K if for all £€Q,

Eg(fg )= Eg(f) Eg(g)’ ©)

E,(.) denoting the expectation when ¢ is the distribution.
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Now from Definition 1.1 it is clear that an estimator e(s,x) for every fixed s
is a function on Ry. Hence we have

Definition 3.2. Any two estimators e; and e, are said to be independent with
respect to K if for all £€Q,

E(e, 65| 5) = Eg(e;|s) Efe,|s) forall seS, (6)

where Ey(. |s) denotes the expectation when s is fixed and the distribution is £.
Definition 3.3. An estimator e and a function g on Ry are said to be independent
with respect to K if for every £€Q,

Ey(eg|s) = Efe|s) E(g) forall seS. @)

Remark 3.1. It will be clear from what follows that, for any given sampling
design p, no estimator need be defined for samples s with probability p(s) = 0.
Hence in Definitions 3.2 and 3.3, for any given sampling design p, (6) and (7) need not
be satisfied for samples s with p(s) = 0.

Remark 3.2. In Definitions 3.1, 3.2 and 3.3, the words “e; and e, (f and g) are
said to be independent with respect to K can be replaced by “e,(f) is said to be
K-independent of ey(g)”. Hereafter “independence” always means ‘“‘independence
with respect to K> as contained in the above definitions.

4. DISTRIBUTION-FREE SUFFICIENCY

We now introduce the notion of distribution-free sufficiency with respect to K or,
more briefly, DF-sufficiency, as follows.

Definition 4.1. An estimator e is said to be DF-sufficient for the population total
T if any other estimator e; which is K-independent of e (Definition 3.2) is also
K-independent of 7" (Definition 3.3).

Remark 4.1. Definition 4.1 can of course be generalized for any function f on
Ry by just replacing T by f. But in this paper we shall restrict ourselves to DF-
sufficiency for T.

Theorem 4.1. An estimator &(s, x) given by

&(s,%) = k(s) T, ®
1€8
is DF-sufficient for the population total T, where k is a function on S, the set of all
possible samples s.

Proof. From Definition 4.1 it follows that & in (8) is DF-sufficient if, for all

other estimators ey,

f G, dE = f ede f e dE ©)
implies
Te,dé = | Td¢ | e, dé  forall seS, E€Q. (10)
Jrate= [re |

In (9) and (10) ¢ stands for é(s,x), e, for e;(s,x) and the integrals are taken over Ry
for a fixed s. Now,

fTeldf = f(z xi) e1d§+f(T——in) e dE. (11)

ies ies
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Further, since by Assumption 3.2, xy, ..., X when distributed as ¢ are probabilistically
independent, in (11) we have from Definition 1.1,

f(T—%xi) e dé = f(T—%xi) d¢ fel dé. (12)
Thus from (11) and (12) we have

fTel d¢ = J‘(zzesxz) e dé+ f(T—%xi) dé¢ fel dé. (13)
Again from (8) and (9) we have in (13)

f(Z xi) e dé= (Z xi) dé fel dé. 14)

ies ies

Thus from (13) and (14) we get

fTe1 d¢ = f(gsxi) d¢ fel dé+ f (T —%xi) dé¢ fel dé
- f Tdt f e dt,

which proves Theorem 4.1. In this connection also note the remark in Section 7.
We repeat the definition of a fixed sample size design from Part I as
Definition 4.2. If n(s) denotes the size of the sample s, i.e. the total number of
units i such that i€s, then p is said to be a fixed sample size design if for all s€S

n(s) # constant—>p(s) = 0. (15)

Theorem 4.2. For a sampling design p of fixed sample size » an unbiased
DF-sufficient estimator e*, for the population total 7, is given by

1
N_lcn—lp(s) 'iesx” (16)
assuming p(s) >0 for all the YC,, samples s.
Theorem 4.2 is an immediate consequence of Theorem 4.1 and equation (2).
In the next section we shall present another approach to DF-sufficiency incor-
porating unbiased estimation more naturally. The advantage of Definition 4.1 is
that it does not require the additional concept of unbiased estimation.

e*(s,x) =

5. ANOTHER APPROACH TO DISTRIBUTION-FREE SUFFICIENCY

In this section we replace Definition 4.1 by the following
Definition 5.1. For a given sampling design p, an estimator e is said to be
DF-sufficient for the population total T if

Se(s,x)p(s)=T(x) forall xeRy an
s

and for every other estimator e; which is K-independent of e (Definition 3.2)
Se(s,x)p(s)=g(x) forall xeRy, (18)
s

where the function g in (18) is K-independent of T (Definition 3.1).
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Remark 5.1. Here we dispense with Definition 3.3, defining the K-independence
of an estimator e and a function g on Ry.

Theorem 5.1. For a sampling design p of fixed sample size » a DF-sufficient
estimator e* for the population total T is given by (16), assuming p(s) >0 for all the
NC, samples s.

Proof. Since for e* in (16) the condition (17) is obviously satisfied, according to
Definition 5.1, e* is DF-sufficient if for all other estimators e;

fe*eldf=fe*d§ feldf forall sesS,£eQ (19
(all integrals being taken on Ry) implies

[r{set0m) e - 12z [ {5 e 000}, (20)

for all £€Q, and (20) can be obtained by multiplying (10) by p(s) and summing it
over all seS. This proves Theorem 5.1 as ““(19) implies (10)” due to Theorem 4.1.

6. A RELATIONSHIP BETWEEN DISTRIBUTION-FREE SUFFICIENCY
AND LINEAR SUFFICIENCY
It is of interest to note that the estimators given by (8) and (16) are the same as
those which were proved to be unbiased and linearly sufficient in Part I.
In the following, we shall prove that if we restrict ourselves to a sub-class Q=Q
of prior distributions in Assumption 3.2, given by

Q=[£€Q: Efx;—E(x))* = o%i= 1,...,N], 1)

then the linear sufficiency of Part I follows as a special case of DF-sufficiency. To do
this, we very briefly recapitulate some notation of Part I. A linear estimator e(s, X)
is a function on S x Ry given by

ey(s,x) = IZV] b(s, 1) x;, (22)
i=1

where b is any real function on Sx U (U is the set of integers 1 to N), subject to the
condition b(s, i) = 0 for all (s, i) such that i¢s. If b(s) denotes the vector

b(s) = {b(s, 1), ..., b(s, ), ..., b(s, N)}, (23)
then (22) can be written as the scalar product of two vectors, viz.
ey(s,x) = b(s) x, (24)
where X = (X, ..., X;, ..., Xy)- Similarly any linear function f on Ry is given by
N
f0 = Sfix; = B, @9)

where = (f}, .--,f3 ---sSa)> J; = 1,..., N) are any real constants.

Theorem 6.1. If in Definitions 3.1, 3.2 and 3.3, Q is replaced by Q given by
(21), the estimators restricted to linear estimators defined by (22) and functions on
Ry, to linear functions defined by (25), then equations (5), (6) and (7) are equivalent
to the following equations (27), (28) and (29) respectively.
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Using the notation in (25), if the two functions f and g in (6) are given by
N N
J&x) = lefixi =fx and g(x)= legz-xi = gx,
then for all £€Q in (21), we have
N
E(fg) = o* leﬂgﬁEg(f ) E(8)- (26)
Thus (5) and (26) together imply the scalar product
N
fg= %fig@- =0. @7
Similarly, we can prove that if in (6) the two estimators e; and e, are given by
N N
e(s,x) = Y bY(s, ) x; = bi(s)x and ey(s,x) = X b%(s, i) x; = b*(s) x,
1 1
for all £€Q), then equation (6) is equivalent to
N
bl(s) b2(s) = X b(s, i) b%(s,i)=0 forall seS. (28)
1
Again for the same reason, if in (7) we have
N N
e(s, X) = Z b(S, l)’ X = b(S)X and g(X) = Zgixi = gX,
1 1
for all £e€Q then equation (7) is equivalent to
N
b(s)g= X b(s,i)g; =0 forall seS, (29)
1

proving Theorem 6.1.

Now we consolidate all the above discussion in this section in

Theorem 6.2. If we restrict ourselves to linear estimators (defined by (22)), linear
functions (defined by (25)) and the class of prior distributions Q given by (21), then
Definitions 4.1 and 5.1 of DF-sufficiency here are identical with Definitions 4.4 and
6.1, respectively, of linear sufficiency in Part I. Similarly, Theorems 4.1 and 5.1 are
here identical with Theorems 4.1 and 6.3, respectively, of Part I.

7. DISTRIBUTION-FREE SUFFICIENCY AND BAYES ESTIMATION

A Bayes estimator e*(s,x) with respect to the prior distribution £ on Ry and
squared error as loss for the population total T is defined by the inequality,

| [gp@ G, x)—T(x)}z] at< [gp@ fefs, x)—T(x)}Z] dt, (30)
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where e is any other estimator. Obviously an estimator e* satisfying (30) is given by

f Td¢

Ry (xyi€s) forall se S, xXe RN’ (31)
Sy

RN (:t;,iES)

where Rp(x;,i€s)< Ry such that for every x e Ry(x;,i€s) the ith co-ordinate has a
specified value, namely x;, ies. It is important to note that the Bayes estimator e*
in (31) does not depend on the sampling design. Now (31) also implies an informative
posterior distribution for T, in contrast to the non-informative likelihood (cf. remark
in Section 3 of Part I). A similar observation in another connection is due to Cornfield
(1965).

Now consider a sub-class Q,<Q (Q as in Assumption 3.2) such that, for some
specified numbers y; (i=1, ..., N) for every £€Q,,

e*(s,x) =

fxidf= y; (@=1,..,N). (32)
It is easy to see that for every £€Q, the Bayes estimator e* in (31) is given by
N
60 = Stk (Zre= ) (33
tes 1 ies

for all se€.S and xeRy.

It is interesting to note that the estimator e* in (33) is DF-sufficient.

Remark. With slight modification of the proof of Theorem 4.1, we can show that
any estimator given by

&(s,x) = ky(s) X x; +ko(s), s€S,xeRy 34
ies

(where k; and k, are constants not depending on X;, ies, but depending on s) is
DF-sufficient. Clearly the estimator e* in (33) is a special case of & in (34).

This again suggests that the approach through DF-sufficiency is possibly more
general than the Bayes approach which depends on a stronger prior knowledge
(characterized by the class of prior distributions Q,) than K in Assumptions 3.1 and
3.2. Actually the estimator e* in (33) has so far never been recommended in practice.
On the other hand, ratio-type and regression estimates which are special cases of (34)
are already in use. However, in a subsequent publication we shall discuss more
fully the Bayes approach to this problem.

8. DISTRIBUTION-FREE SUFFICIENCY AND UNBIASED ESTIMATION WITH MINIMUM
EXPECTED VARIANCE
Now with Assumption 3.2 and Theorem 5.1, following the argument in
Section 9 of Part I, if the statistician happens to know the values y; (i=1,...,N)
of a variate y, which is correlated with x, we recommend the use of a sampling design
p with a fixed sample size », given by

Z Vi
pi)=5— [V Cpy (35
? Vs
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for all samples s containing # units i and the use of the ratio-type estimate e* obtained
by substituting (35) in (16).

With an assumption of a stronger prior knowledge than K in Assumption 3.1, we
can restrict ourselves to a sub-class Q, of the class Q (in Assumption 3.2), of prior
distributions on Ry. If, for any specified numbers y; (i = 1, ..., N) and any constant c,

Q= {EEQ: Eg(x'i) = y'i’Eg(xi—y'i)z = Cy,%, i= 19 ’N} (36)
it was earlier proved and further confirmed (Godambe, 1955, 1965) that for any

sampling design p with fixed sample size (n given), the average of the variance in
(3) given by

E{V(e,x)} = fR V(e,x)d¢ (37)

has a lower bound, not depending upon the sampling design, for the class of all linear
unbiased estimators e and for all £€Q in (36). Further it was shown that this lower
bound is attained for a sampling design p for which

n .
6= 5 (i=1,..,N) (39)
=]
= IR
1
(s2i denoting all samples s which include the unit i) and for the estimator
N
?yi X3
s, x) = —.3 —. 39
As, %) = — E 7 (39

There is an implicit assumption that y; (i = 1, ..., N) are such that the right-hand side
of (38), fori = 1,..., N, lies between 0 and 1. Recently this result has been generalized
by Godambe and Joshi (1965), removing the restriction of linearity.

Thus for a given class of prior distributions Q in (36), (38) and (39) provide an
answer to the problem, left open due to non-existence of an unbiased estimator
satisfying (4), by way of recommending the use of a fixed sample size sampling design
p, satisfying (38) and the estimator (39). Incidentally the estimator & in (39) is the
usual Horvitz-Thompson estimator for the population total 7.

Now it will be clear that our recommendation in the first paragraph of this
section to use the fixed sample size sampling design p given by (35) and the ratio-type
estimator e* given by (16) and (35) together is based on the assumption of a much
weaker (and more realistic) prior knowledge K characterized by the class of prior
distributions Q (Assumption 3.2) which is far broader than Q in (36). Further, the
approach through the concept of distribution-free sufficiency as put forward in
Parts I and II of this paper appears to be more basic and fundamental than the
conventional approach.
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APPENDIX

It has been proved by Joshi (1965, unpublished) that if two real functions f and g on
Ry are “independent with respect to the knowledge K, as in Definition 3.1, then f and g
are necessarily probabilistically independent when x4, ..., xy are distributed as & for all
£e Q, Q being the class defined in Assumption 3.2.

The above result suggests an evident modification of Definitions 3.1, 3.2, 3.3 and
consequently of Definition 4.1, replacing in them the ““uncorrelatedness” by “probabilistic
independence”. This modification helps to clarify further the intuitive relationship
between DF-sufficiency (Section 4) and the conventional sufficiency. This will be discussed
in a separate publication by Joshi.

Joshi’s (1965, unpublished) work also strengthens Theorem 4.1 as: A DF-sufficient
estimator of the population total T must necessarily be of the form

ky(s) 3 x5+ kao(s),

where k, and k, are any functions defined on S.



	Article Contents
	p. 320
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328

	Issue Table of Contents
	Journal of the Royal Statistical Society. Series B (Methodological), Vol. 28, No. 2 (1966), pp. 253-380+i-v
	Front Matter
	Quasi-Stationary Distributions and Time-Reversion in Genetics [pp.  253 - 277]
	A Generalized Least-Squares Approach to Linear Functional Relationships [pp.  278 - 297]
	Locally Unbiased Type M Test [pp.  298 - 309]
	A New Approach to Sampling from Finite Populations. I Sufficiency and Linear Estimation [pp.  310 - 319]
	A New Approach to Sampling from Finite Populations. II Distribution-Free Sufficiency [pp.  320 - 328]
	The Almost Full Dam with Poisson Input [pp.  329 - 335]
	On the Correlation Structure of the Departure Process of the M/E<sub>λ</sub>/1  Queue [pp.  336 - 344]
	Cyclic Incomplete Block Designs [pp.  345 - 360]
	An Extension of the Triangular Association Scheme to Three Associate Classes [pp.  361 - 365]
	On the Evaluation of Probabilities of Convex Polyhedra under Multivariate Normal and t Distributions [pp.  366 - 369]
	Some Asymptotically Efficient Sequential Procedures for Ranking and Slippage Problems [pp.  370 - 380]
	Back Matter [pp.  i - v]



