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A UNIFIED THEORY OF SAMPLING FROM FINITE POPULATIONS

By V. P. GODAMBE
Bureau of Economics and Statistics, Government of Bombay, Bombay

[Received August, 1954]

SUMMARY

THE most general type of linear estimate is defined for a general sampling design.
It is demonstrated that an unbiased linear estimate with least variance does not exist
uniquely for the entire class of linear estimates. A slightly modified criterion for
best estimate, with reference to certain given prior information is proposed. Some
sampling designs have been analysed accordingly.

1. Introduction

Let x be a variate defined over a finite population of N individuals, x, being the value of x
associated with the Ath individual in the population (\ =1, . .. ,N). If it is proposed to
estimate the total

: N
T= X x A
a=1
by making » successive random drawings, we get a very general type of sampling design when we
allow the probabilities of drawing different individuals at any particular draw to depend upon
the out-comes of the earlier draws. Thus let p be a function with arguments (g, s,_;, ) such that

P(q, Sq—-15 7\)

is the probability of drawing the Ath individual (A = 1, . . . , N)atthegthdraw (g=1, ... ,n)
when s,_; is the sequence of individuals that turn up in the first ¢ — 1 draws, s, denoting the
absence of earlier drawings.

Then we call p a sampling design. It is important to note that p is given a priori, i.e. before
any drawing is made.

For instance if » = 2 and p is such that p(1, so, 2) = 0 for all A > N’ and p(2, s;, ») = 0 for
all A < N’ and all s, then p represents a sampling design of stratification, the first N’ individuals
forming one stratum and the remaining ones the other. Obviously almost all the known sampling
designs could be expressed in a similar way.

We denote by s, the sequence of individuals that turn up in #z successive drawings, i.e. a sample,
or by s simply. Once p is given, the probability of s turning up, P; say, is also uniquely determined
for all s. The total number of such s that could turn up logically (though perhaps not practically
because of P, being zero for some s) is N”.

Conversely, however, if P, is given for all s, p may or may not exist. Yet for a theoretical
discussion it would sometimes be convenient to ignore the latter possibility and concentrate on
P for all s. .

For a given sampling design p there usually exists a wide class of linear, unbiased estimates
of T. Only some of these estimates are practically serviceable. In the present paper a new
criterion for the bestness of an estimate is suggested and some sampling designs have been investi-
gated accordingly.

2. The Most General Type of Linear Estimate

Many of the usually employed linear estimates e, based on s, i.e. based on the values of x
associated with the different individuals that turn up in » successive drawings, constituting s,
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can be put into three classes (Horwitz and Thomson, 1952):
@ * es= X Bx,
Aes

where X stands for the summation over all the different individuals in s (these may be, in number,
Aes

< n), B, being defined in advance forall x=1, ... ,N.
(ii) e, = X By Xq

Here x, is the value of x associated with the individual that turns up at the ¢*t draw, B, being
defined in advance forg =1, ... ,n

(iii) e, = B T xp.
Aes

In this case B, is defined in advance for all s.

This classification can be illustrated as follows: When the population is stratified and in each
stratum sampling is carried out with equal probabilities and without replacement the usual
estimate of T,

where s(x) denotes the sample from the «th stratum, N(«x) and n(x) being the sizes of the population
and sample respectively in that stratum, clearly belongs to class (i). As a special case for a simple
random sampling (from an unstratified populatlon) without replacement and with equal proba-
bilities of selection,

also belongs to class (i). Again, if the sampling is carried out with equal probabilities but with
replacement one can form an unbiased estimate of 7 which belongs to this class as

o= 2 -]

It is interesting to note that when sampling is carried out with equal probabilities and with
replacement the usual estimate of 7"

belongs to class (ii) and not to class (i). Yet it is difficult to imagine that any practically important
estimate could belong to class (ii) strictly. Even the estimate just now referred to is a special
case of a more general type of estimate, which, as will be seen later, in its general form does not

belong to class (ii).
To the class (iii) belongs the well known ratio estimate. If y is a correlated variable the corres-

ponding estimate of 7' is
N x xA
e, = = A€s .
) ( yk) Z ya
2Aes

In this case

* The Bsin this case are not known in advance as required by the definition of class (iii), because ;.2 i
) . es

are not listed before sampling. However, the logical possibility of their being known in advance is enough
for the theoretical discussion.
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That the above classification is not exhaustive can be easily demonstrated. Let sampling be
carried out with replacement and the probability of selection for the Ath individual be g, i.e.
fixed for all the successive drawings. Then an.unbiased estimate of T is

n
ey = ;qu—?l Xol@q

This does not belong to either of the classes (i), (ii), or (iii), only as a special case when all @, are
equal it belongs to class (ii), as stated already. The coefficient of x, in e, here is partly determined
a priori inasmuch as the a; are given in advance and partly it is determined by the number of
times the Ath individual is seleéted in n successive drawings, which constitute s. Again, for
sampling without replacement, let » = 2 and the first drawing be made with probability of selection
a, for the A\t individual (\ =1, ... ,N). Suppose the Ath individual is selected at the
first draw, then the second drawing is made from the remaining individuals with the prob-
ability a,’/1 — a; of selection for the A’ individual, for all individuals 3" + A. Then an unbiased
estimate of T is given by (Das, 1951)

N—1" a ’aA’J

1 (x 1 1 —a xy

(eling s )
(4

The coefficient of an individual x-value in e, here is partly determined a priori so far as the a;,

are given in advance, partly by the order in which the individual has been drawn and also by the

individual, if any, that precedes it.
The above discussion suggests that the most general type of linear estimate of 7"may be defined

as
es = X By x, . . . . . . ()
AEs

where (3, is defined in advance for all the logically possible s which in all are N, and for all
r€s. Itis easy to see that estimates in classes (i), (ii) and (iii) are particular cases of this estimate
and the same remark holds for all the known linear estimates.

3. Unbiasedness and Least Variance
It has already been observed that once a sampling design p is given, the probability P, of outcome,

of every logically possible s is uniquely determined. Then in a given p, e; is said to be an unbiased
estimate of T if ’

E (es) =T, >
ie.

e, P,=T

s

for whatever x, X standing for summation over all s. Hence the necessary and sufficient condition

s
for the unbiasedness of e, in (1)jis

SBaP=1 . . . . . . ®
SDOA
forr=1, ... ,N; X standingforsummation over all s which include the Athindividual. Now

SO
let B, denote the class of all § for which the corresponding estimate_§ ¢ (x, B) are unbiased, i.e.
every member of B, satisfies (2). Then one would usually define e, (x, B) as the best linear estimate
of T provided that B € B, and

Variance e (x, B) < Variance e,(x, B)

for all 8 £ B, whatever x may be. That such a B does not exist is, however, intuitively evident.
A formal proof of its non-existence is as follows:
When e, is unbiased its variance is given by

Vie) = X e P, — T2 . . . . . 3)
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Now suppose § exists. Then for a given x and A 5 we have
? ? | 5 '
s Vl(e) — 57— = P, B=
{aﬁsz (e) = va 5, 2, Pa Prp 7= 0
where p, is a Lagrangian Multiplier. It follows that

2 x, {e}5 = v

for all s> A and where P, = 0. Moreover this must hold for all x since B is supposed to give
minimum for all x. That is for any s, and s, A; Pgy, Ps, being + 0

{esl},—s = {esz}fz
for all x. In particular, putting x, = 1 and x," = 0 for all 2" + A we get

Bsr = Ba

Ba=Br=1/ 21P8=1/P(%) N ()}

In addition, from (2)

for all s and 2, P()) being the probability of Ath individual being included in sample at least once.
Hence if B exists it must necessarily be given by (4). Conversely B in (4) is the one minimizing
V(e,) for all x if and only if it satisfies

{esl}/_s = {832};3

for all 55, 532 A; Py, Py, being + 0.  Obviously B in (4) cannot satisfy this condition. Thus
the conclusion that B does not exist.
This result can be illustrated. Let p be given by

P(q, Sq—15 )‘) = p)(

forg=1, ... ,mandA=1, ... ,N,ie. the usual sampling design where sampling is
done with replacement, p;; A =1, ... , N being the probability of selection for the ath in-
dividual at different draws ¢ =1, ... ,n Thusin p the probability of the Ath individual

being selected in a sample at least once is
P)=1—-Q0—py~

Now we have two linear unbiased estimates of 7" viz.

I M=

1
es=;1

Xo/Pq
g=1

and
e's = Z xA/PO\), ie.= 2 x,\/{l -_ (l —p/\)"}.
Aes Aes

Further according to (4) if a linear, unbiased and least variance estimate of T exists uniquely, in
p it should be given by €', i.e.

V(e’,) should be less than V(e,)

for whatever x. This however is not the case* for in particular putting p, = 1/N we have

N_AQ=1YNr - =2/NN A —YNP—(A—2IN)"_,
Ve = g a iy S, T a—a—unE T

and

Vie) = N*{ glxa — T*N}/nN.
A=

* This result is also evident since V(es) = 0and V(e’s) > 0 when pz o« X,
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Now it can be seen that in fact
V(e's) > Vies)

if the coefficient of variation of x in the population is sufficiently small. This proves the non-
existence of a unique linear, unbiased and least variance estimate for whatever x.

4. Markoff Theorem and the Theory of Efficient Estimators

The existing theory of the best (i.e. unbiased and least variance) linear estimates is generally-
based on Markoff’s Theorem on least squares (Neyman, 1934; David, 1938). For instance to-
get the best linear estimate of the population mean X in a simple random sampling design, which.
consists of n drawings with equal probability and without replacement we proceed as follows..
The expectation of the ¢t draw E(x,), equals X, and the variance of x,is o* (= Z (x; — £x3)¥/N,.

2

r=1, ... ,N). Then according to Markoff’s Theorem the best linear estimate of X
is xy for which = (x, — X5)%¢ =1, ... ,nis minimum (Sukhatme, 1954).

q
Evidently the class of linear estimates considered above, while choosing the best estimate is one-

identical with the sub-class (ii) in section (2) of the entire class of linear estimates defined in
equation (1). Incidently the best linear estimate X, obtained above is also the best linear estimate:
in sub-classes (i) and (iii) of section (2) (Horwitz and Thomson, 1952). Similarly in case of stratified
random sampling design the best linear estimate is obtained from a sub-class of linear estimates
(Neyman, 1934). The ratio estimate is also found to be the best linear estimate in a sub-class of”
linear estimates (Cochran, 1953; Sukhatme, 1954). The estimate employed by Horwitz and
Thomson (1952) X x,/P(}) is the only unbiased and hence the best linear estimate of sub-class {i).

Aes

Thus in the earlier theory simple sub-classes of (1) were considered to find the best linear estimate-
and in fact, as shown in section (3), best linear estimate does not exist uniquely for the entire class.
of linear estimates. However in section (5) we will define another criterion of bestness for the-
entire class of linear estimates and in later sections we shall prove that most of the frequently
employed linear estimates are in this sense best estimates. This provides further justification for-
the existing practice.

5. Unbiasedness and Least Expected Variance

Now when for a given sampling design the attempts to secure a unique (i.e. for all x) linear,.
unbiased estimate with least variance fail, the next best thing that we can do is to search for a.
procedure of estimation which when employed repeatedly would secure on the average a least-
variance.

Intuitively some such criterion is quite frequently employed when the statistician expects some:
estimate to be efficient for one population and some other estimate for a different population.
An exact statistical explanation for the above intuitive criterion in many of the situations usually-
arising may be as follows:

On the basis of past experience regarding several factors which influence the value of the
variate under study (x in the present case), or because of the knowledge of the distribution of~
one or more correlated variates, the statistician often may have certain expectations of the values
of x associated with different individuals in the population. The calculations of these expectations
is a matter of statistical skill, in addition their sharpness (Bross, 1954) depends upon the degree-
of relevant knowledge on the part of the statistician.* These expectations are a priori expectations.
in the sense that they exist before any drawing is made for the present sample. Moreover these-
admit simple interpretations in terms of a priori probabilities, the corresponding interpretation in
terms of frequency being mean values (Carnap, 1950).

Let us denote by

e(x), ... ,elxp) . . . . . . 5)

* A similar idea derived from the device of regarding the finite population (conditioned by ancillary-
variable) as a sample from an infinite one occurs in Yates (1950) and Cochran (1939).
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the a priori expectations for differentindividuals A = 1, ... , Nrespectively.* It will be assumed
in the subsequent discussion that these e(x;), ... , &(xy) do not change because of drawing one
or more individuals from the population and observing the values of x associated with them,
for the present sample. This condition would obviously be violated if sampling is done with
replacement, for then if the Ath individual is selected at the first draw and the value of x viz. x,
be noted, at the second and the subsequent draws its a priori expectation is no more &(x;,) but is x;.
Hence we shall confine ourselves henceforth to sampling without replacement. In addition if
e(xy . x)), = e(xy/x)") (x,), denotes the a priori expectation of x, . x,’, e(x,/x;’) being the -
conditional a priori expectation of x, given x,’,(2 =+ ) then e(x,/x,") = (x,) because of the
assumption that e(x;), . . . , &(xy), or more specifically ¢(x,), remain unaffected during the entire
sampling, i.e. we have

e(xy . x)) = elx;y) e(x;) . - . . . (6)
for all A, ¥, A + A’. Let further

v(xy), ... ,u(xy) . . . . . . @)
denote the a priori variances for individuals A =1, ... , N respectively where

v(x;,) = e[x) — e(x)]?

A=1, ... ,N. Putting hereafter ¢ and » in general for a priori expectation and variance respec-
tively while preserving symbols E and V for expectation and variance respectively over all possible
samples s, we have from (3), (5), (6) and (7)

eVle) = Z P;ele) — &(T?)

N N
= X 'U(x]() z Bs}.‘z P+ X e(-x]() E(x](/) z Bs}, Bs},/ P s
=1 sDA A A'=1 AA

N N ’
— T vxy) — [ T e(xP . . . . . . ®)
i=1 a=1

52 A, V' denoting all samples which include A and 't individuals in the population.
Now for a given sampling design p we define e,(x, ) as the best linear estimate of T provided
B ¢ B, where B, as before (Section 3) denotes the class of all B for which eJ(x, ) are unbiased
estimates of T and
eV[es(x’ E)] < eV[ear(x’ B)]

for all § ¢ B,. )

That such B exists is evident from (8); however, if B depends upon v(x,), ... ,v(xy)itis of
little practical use since v(x;), . .. , v(xy) are almost never known to the statistician. It will be
shown later that for many of the sampling designs usually employed in practice B is independent
of v(xy), ... ,¥xp). Infact it will be demonstrated in the subsequent sections that most of
the usually employed estimates satisfy this criterion of bestness.

Hereafter for convenience we put, for a given sampling design p

e,(x, B) = e,[p] simply
eVlex, B)] = <VIp]

and

* For instance let x, be the yield of certain crop in the ath yillage of a population of N villages for which
it is proposed to estimate T = Z x,. Now in case no other information excepting the acreages under the
A
crop, Ay, A =1, ... , Ninthe N villages is available, it would be reasonable to put

€(x,) = const. 4,
A=1 ... ,N



1955] GoODAMBE—A Unified Theory of Sampling from Finite Populations 275

6. A Useful Form of <V[p]
To obtain eV[p] we have to minimize ¥V (e,) in (8) viz.
eV(es) = Z P, ee) — (T
s

for variations of B subject to the condition

SBuP=1 . ... Oy
sDi
fora=1, ... ,N. Then since B = J is the solution,
? '
{m eV(e,,) W1 37— aB Z Bs},P f =0 .. . . '. (10)"
forall Aesand all s, uy, A=1, ... ,N being the Lagrangian multipliers. Hence

el — 3 =

for all A € s and all s having P, + 0. Multiplying (10) by B,; and then adding such equations for
all A € s we have
1 _
2 2 — =
e{(e, )ﬂ} 2 JES IJ-)( st 0
Again multiplying this equation by P, and summing over all s we have
% P, e{(eNp) — % TP, S By =0.
s s Aes
But since from (9)
EP 2 a B = E - Z By Py = 2 i

=V
we get

lI M=

1
TP el =5
Thus

R N
Hpl=3 T T . ... (D

Nl'—‘

7. A Well Known Class of Sampling Designs

It is fairly difficult to solve the equations (9) and (10) above for B in a general case. However
their solutions given below, in particular cases, can be easily verified.
Let D™ denote the class of all the sampling designs p such that if p € D” then in p

(i) the sample size = n;
(ii) sampling is done without replacement;
(iii) the probability of the Ath individual being included in the sample is proportional to:
e(x )(), ie.
P = n e(x))/«(T).
Now # and p satisfying (9) and (10) for all p € D* are

— ") 1
(33,1=T ;(x;)‘ . . . . . . 12y

«(T) ”(X/\)} )

for all A € s and all s and

13y

o= 20 + 50
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for x=1, ... ,N (to verify results (12), (13) use equation (6)). Hence for all p € D" the best
linear estimate of T'is given by

efpep1="Ds X as

n Zes e(x]()

Further from (11) and (13) .
e(T) 'v(x)()
e(x )

eV[pe D"] = —o(T).* . . . . (15)

8. An Optimum Property of Sampling Designs
peDr

In any sampling design p the variance of an unbiased estimate e,,
Viey) = Ze?, . P, — T*
' s

Hence
eV(e,) = = e(e?y) . P, — (T?)
s

=2 Ez(es)Ps +Z v(e,) . Ps - E(Tz)
s s

Further since from (6), for all X + A’

e(xy . x3) = e(x,) e(x,)

we have
N
eWie) = Ze¥e) . P, + I w(x)) T B%P, — <(T?). . . (16)
s A=1 sDA
Now subject to the condition
e P, =T
s
2 e¥e)Py > X(T) . . . . . .an
s
and subject to the condition
> Bar P =1
so A
T B, P, >1/ X P, =1/PO) . . . . . (18)
L=V sDA
A=1, ... ,N. From (16), (17) and (18) it follows that for any sampling design p
N (x/\)
eVipl > Z‘. POy o(T) . . . . (19)
P () as before being the probability of including Ath individual A =1, ... , N, in the sample

drawn with sampling design p.

The inequality (19) can be illustrated. Let n = 1 and p be such that the probability of drawing
ath individual is p, which in this case is also equal to P(3); the only unbiased estimate of 7 then is
x,/P () and hence

N (e Tow(x)
eVipl = ZEI ]\P » €(T)} PO + Z P 6)) o(T)
N V(xy)
> I pey —uD

* (15) can also be obtained from V(T) given by Horwitz and Thomson ((1951) eq. (8) pp. 670). Calculate

eV(T) putting therein P(u;)) = n e(x;)/e(T) and e(x; . x;) = t-:(x,) e(x;). It is interesting that sV(T)
then is independent of P(u;, u;). (Note: 2 P(u,, u)) =n(n — 1).)
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Moreover the lower bound of e¥[p]establishe in equation (19) in in fact attained for all the
sampling designs p € D*. This is evident from equation (15). Or otherwise from equations (9)
and (10) we have in any sampling design p

el ezt — =0
for all Aes and all s having P, + 0 which because of equation (6) is equivalent to
. ba
e(xy) e(edp + v(6)Bay — 2= 0

Multiplying this equation by P, and summing over all s © X and subsequently over all A, A =1,
. , N, we have

Noe(xp N ow(xy) ~ 1N
S A % e(e)sP T AN % BuP—5 X =0
A=1 P()‘) K=Y E(e)ﬂ » A=1 P()‘) s A Bl 2 A=1 Ha
and from equations (9) and (11)
N og(x)) Noow(xy)
= X =4 % 5P X A — (T2
EV[P] 1 P ()\) 521 E(es)ﬁl s + i1 P ()\) E( )

Now for any unbiased estimate e,
N
X X ele)P; = n X ele)P, = ne(T)
=1 s221 K}

and when p € D*, P()\) = ne(x,)/e(T) which gives the necessary result

N «(T) N o(xy)
Hpep=52 5 T

—o(T) . . N 1)}

i.e. the lower bound of e¥[p] in equation (19) is attained for all the sampling designs p ¢ D".
Further it can be seen by minimizing the right-hand side of the inequality (19) for all the
variations of P()), =1, ... , Nsubject to the condition

N
2 P)=mn
A=1

and from equation (20), that in case of all the populations fulfilling the condition

v(x,) o €3(x,) . . . . . . Qn
rA=1, ... ,N,for whatever sampling design p’ consisting of n drawings without replacement
eVipe D) < VIp’l.

This provides a justification for employing sampling designs p € D" in case of populations satisfying
or approximately satisfying the condition (21).
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