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Subjective Bayesian Models in Sampling Finite Populations

By W. A. EricsoN
University of Michigan

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the
RESEARCH METHODS SECTION on Wednesday, March 12th, 1969, Professor
R. L. PLACKETT in the Chair]

SUMMARY

A general and basic model for inference about characteristics of a finite
population of distinguishable elements is presented from a subjectivistic—
Bayesian point of view. A subjectivist analogue to simple random sampling,
based on the notion of exchangeable random variables, is discussed and
the inputs and assumptions underlying the model are shown to involve
nothing more than is required for inference under Bayesian models for
infinite populations. The model is illustrated by a number of particular
examples including one based on the multinomial distribution which
incorporates a prior distribution representing an extreme position of initial
ignorance. Inferences under this particular model are shown to agree
closely in several respects with usual “classical’ results. Finally, an extension
of the results is presented involving the use of concomitant measurements, and
under this Bayesian model several common ratio and regression estimators
are shown to arise as means of posterior distributions.

1. PRELIMINARIES

FoLLOWING several recent writers, Godambe (1955), Héjek (1959), Godambe (1965),
and others, we define a finite population of N distinguishable elements labelled by the
integers 1,2,...,N. We let /" ={1,2,..., N}, the label set, and X=(X;, X,, v Xy
where X; is the unknown value of some characteristic possessed by the ith population
element. The unknown X; can be taken as vector valued, a case of considerable
practical importance, though only the scalar case will be treated here. Inference
concerns the N-dimensional real vector parameter X or, more realistically, some
simple function g(X) of X say. Here we will be mainly concerned with the simple
functions T'=¥¥ X;, u=T/N, and o®=1/NYV(X;—w)? the population total,
mean, and variance.

A sample of size m, s* is defined quite generally to be an ordered sequence of m
of the population elements if,iF, ..., ik (Fen, j=1,...,m, repetitions allowed)
together with the sequence of their associated observed characteristic values
X* = (Xgu1)p Xgr(2)> > Xgr(my)>  1-€. We observe for each i¥ that Xy = Xz,
J=1,2,...,m. While it is therefore assumed that if element j is included in the sample
then the value of X; becomes known with certainty the model is being extended to
weaken this restriction and thereby incorporate response error, bias, and non-
response.

A sample design is then defined by some countable set S* of ordered sequences,
s*, together with a probability measure assigned by choosing a function p(s*)>0,
DsvesP(s¥) = 1, where p(s*) is the probability of choosing the sample s*. That any
such sample design may be implemented by an element by element sampling procedure
has been demonstrated by Hanurav (1962).
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For any such sample (s*, x*) we define the statistic (s, x) to be the set of indices
of distinct population elements, s = {i;, ..., i,) A4, included in the observed sequence
s* together with the observed values x; of X;, jes. For notational convenience, given
any sample s* containing the n distinct units s = {i;, ..., i,}, we define the (matrix)
operator S such that S(X)= (Xjq..-» Xymy) (for definiteness we assume
i <i<...<i,); the complementary operator S such that

SX) = Xy, Xj@1s -++» Xj(v—m)

for all jye N —s, (j1<Ja<...<Jn_n); and the vector x = (x;q), ..., X;(n)) Of Observed
values of S(X).

It is obvious under this model that for any joint prior probability distribution of
the vector parameter X given by the general density p'(Xj,..., Xy) the posterior
probability distribution of X given the sample (s*, x*) is precisely the same as that
given only the statistic (s, x). It then follows immediately from the Bayesian definition
of sufficiency that (s,x) is a sufficient statistic, a fact previously demonstrated or
noted using the more usual (and equivalent) definitions by Basu (1958), Hajek (1959),
and others.

It also follows that given (s*,x*) the likelihood function of X (the likelihood
function being unique only up to an arbitrary positive multiplicative constant) is
given by

IX; (s*,x%)} = {X; (5, %)} = [kp(s*)’ for X|S(X) =x, o

0, otherwise,

where k>0 is an arbitrary constant.

Hence given a joint N-dimensional prior on X, with density p'(X), posterior
distribution of X conditional on a sample of the sort described above has a density
given by

p(s¥)p'(X) for X|S(X) =x,

piX|(s,x)} cc [ ()

0 otherwise.

(Here and in the sequel, for notational convenience and where it will not lead to
confusion, we will use the same symbol, for instance, X, to indicate both a random
variable and its generic value.)

Finally, if p(s*) is independent of X (the case to be assumed here) then this
posterior density is given by

'(X)/psx(X), for X|S(X) = x,
X[ (5,5} = {p( )/Ps(®) l .(X) 3
0, otherwise.

where pgx,(X)# 0 is just the marginal prior density of S(X).

Several writers, notably Godambe (1966), have viewed the likelihood function,
(1), as being almost, if not completely, uninformative and have adopted principles of
inference eschewing the likelihood principle. Our view here, quite to the contrary, is
that when reasonable prior distributions are introduced, their revision by sample data
can lead to meaningful and useful inferences on those functions of X which are
typically of interest. No new principles of inference are necessary.
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In this paper we examine several instances of what we consider to be the simplest
useful class of prior distributions—those reflecting exchangeable or symmetrically
dependent opinions regarding the X’s. Such priors seem, in some sense, to yield a
subjectivist analogue to inference under simple random sampling. Some basic
notions and discussion of subjective Bayesian views in sampling are given in the next
section while specific examples and results are given in Sections 3 and 4. Section 5
presents some results on the use of auxiliary information in setting priors.

Before proceeding we note the following earlier relevant work. One of the earliest
published examples of a posterior distribution of a mean or total of a finite population
appears in a paper of Karl Pearson (1928). In this paper Pearson gives the posterior
distribution of the number or proportion of elements possessing some attribute using
a “diffuse” prior, by essentially normalizing the hypergeometric likelihood function.
Pearson’s result is a special case of the results of Section 4. More recently, Aggarwal
(1959, 1966) has used some normal distribution priors, mainly as a technique for
generating minimax estimators in finite populations. Some of his Bayes estimators
are special cases of those given in Section 3.

Hill (1968) has considered the posterior distributions of means and percentiles
of finite and infinite populations using quite a different model from that of the present
paper. Also, independently, Roberts (1967), using a model similar to that given below,
has obtained a few of the results given in Sections 3.1 and 3.2.

Other writers, notably Cochran (1939, 1946), Godambe (1955 and later), Hajek
(1959), have used prior distributions (or their equivalents) in sampling theory. These
uses have been almost exclusively in discussion of optimum design strategy and not
with a view to obtaining useful posterior distributions.

2. EXCHANGEABLE PRIORS

The view taken here is a purely subjectivistic Bayesian one which essentially views
statistical inference as a process of revision, by relevant evidence, of one’s degrees
of belief or ignorance as measured by subjective probability. That is, in the model
outlined in the preceding section, p’(X) represents one’s initial betting odds on the
X;’s in the sub_]ectlve probability sense of de Finetti, Savage, and others Perhaps the
s1mp1est class of prior distributions is that given by taking p'(X) = [TV pX;), that
is, by v1ew1ng the X;’s as independent a priori. The meaning and consequences of
such a prior are clear———glven a sample we learn for certain that X; = x; for ies but
such information does not alter our opinions in any way regarding the non-sampled
X;’s. It seems doubtful that there are many, if any, real problems in which one’s real
opinions would be so expressible.

The simplest useful class of prior distributions in this situation would seem to be
that in which the X;’s are viewed as exchangeable random variables. This notion was
introduced by de Finetti and discussions are available in de Finetti (1937) and briefly
in Feller (1966). De Finetti’s monograph is available in English translation and with
new notes in Kyburg and Smokler (1964).) The notion is one of symmetry: random
variables Xj,..., Xy are said to be exchangeable if each of the N! permutations,
X;1)s ---» Xyvy» has the same joint probability distribution. Exchangeability thus
expresses the prior knowledge that while the units of the finite population are identi-
fiable by their labels (here the integers 1,2, ..., N) there is no information carried by
these labels regarding the associated X;’s; that is, under exchangeability, given
1<r<N, one’s initial betting behaviour regarding events defined by the unknown
quantities X;(), ..., Xy is invariant over the ordered sets of indices iy,..., .
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Alternatively, exchangeability is akin to viewing the finite population as being
effectively randomized. I believe that the notion of exchangeability and exchangeable
prior distributions very closely approximates the real opinions of thoughtful “classical”
practitioners in many situations where they deem simple random sampling to be
appropriate.

Assuming that the X;’s are viewed as exchangeable, one still faces the problem of
assigning the N-dimensional joint prior distribution, p’(X). One may be aided in
this task by noting that a wide class of prior distributions p’(X) representing
exchangeability may be generated by viewing the X;’s as independent, identically
distributed conditional on some real or hypothetical parameter 8 = (8, ..., §,) with
general density p(X;|0) and where 0 is assigned the probability distribution function
F(0). The joint prior density p’(X) is then taken as the marginal distribution of X
given by the mixture

N
P(X) = | I p(X;|0) dF(®) @

The generation of a joint prior distribution by this approach is, barring differences
in probabilistic interpretation, equivalent to viewing the finite population as a sample
from an infinite superpopulation having unknown parameter 6. This notion has been
used previously in sampling theory. (See Cochran, 1939, 1946, for example.) Here,
unlike earlier uses of the superpopulation concept, the parameter 0 is itself assigned a
subjective probability distribution. This “superpopulation” notion seems more
generally reasonable from the present viewpoint than under objectivist interpretations
of probability.

2.1. Posterior Distribution
Combining a prior distribution of the sort generated by (4) with the likelihood
function (1) resulting from a sample (s*,x*) which yields the sufficient statistic (s, x)
we find that the posterior distribution of X is given by the density

PX|(s, %)} o o L il ) T p(x;|0)dF(8), for X|S(X) = x "

0, elsewhere.

Noting that the posterior distribution of the “‘superpopulation” parameter 0, is
proportional to IJ,.,p(x;|0) dF(8), the posterior on X may be expressed as

X,|0)dF®]x), X|S(X) =x,
pX|(s, %)} = ou%p( :|0)dF(8x), X[S(X)=x o

0, otherwise,

where F(8]x) is the posterior distribution function of 0. Thus it is seen that one’s
posterior opinions regarding the unobserved X;’s are also exchangeable but now with
a density yielded by a mixing distribution equal to the usual posterior on the
parameters, 6. Note that under this formulation both the prior and posterior
distributions of X can be viewed as predictive distributions of the unobserved com-
ponents of X under the parametric model specified by p(X;|0) and the prior F(6).
The notion of predictive distributions has been used and discussed by Roberts (1965).
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2.2. Discussion

Several points should be noted explicitly. First, the basic finite population model
which yields the likelihood function given in (1) above is general and virtually free
from any subjective element. From a Bayesian point of view the subjectivity enters
solely through the choice of the prior, p’(X). When one’s prior knowledge regarding
the X;’s is such that they may be viewed as exchangeable then, as indicated in
expression (4), the assessment of such a prior may be thought of as involving (a) the
choice of a parametric family of distributions, p(X;|6), and (b) the choice of a prior
distribution of 8. The same two specifications, where both typically involve some
degree of subjectivity, are precisely the ones required for a Bayesian approach in
most parametric inference problems.

The second point is that the basic notions given above can be extended in several
directions to give formal expression for a much wider class of realistic prior knowledge.
Two fairly obvious extensions are to cases where the elements of the population can
be partitioned into k subsets such that within each such subset one views the X’s as
exchangeable and to cases where one’s opinions regarding the X;’s are exchangeable
conditional on some known auxiliary measures y;, i = 1, ..., N. These extensions have
obvious connections with “classical” notions of stratification and regression and
ratio estimation. Some specific results along the latter lines will be given in Section 5.
Stratification will be dealt with in a subsequent paper.

A final point, to be noted explicitly here and used in the sequel, concerns intimate
similarities between subjective prior knowledge expressible by exchangeable prior
distributions of X and objective distributions induced by simple random sampling.
Recall that under the general model put forth above the units of the population are
distinguished by an associated tag (name, address, etc., of the element)—here taken
to be coded by the integers 1, ..., N. Thus X; is the (unknown) variate value possessed
by the population element tagged by the integer i (or with name, address, etc.,
coded by i).

From an objectivist point of view if a simple random sample of n of the N

population elements is drawn then each of the (IZ) subsets, s = {ij, ..., i,} SA" has

probability p(s) =1 / (IZ) Thus conditional on X = x the probability that the »

sample units assume the values x;), ..., Xy, iS given by

PXgays s Xom | X = X) = p(s) = 1/(]’:’)

This distribution, of course, yields the sampling distributions and moments of functions
of the sample observations upon which standard sampling theory inferences are
based.

From a Bayesian view suppose that a joint prior distribution, p’(X), has been
assessed which reflects exchangeable prior knowledge of the X;’s. Let s' be any
prespecified subset of n of the population elements—for definiteness we will suppose
s’ ={1,2,...,n}. Then the marginal prior distribution of X;, i€s’ is the same as that
for any other subset of n elements, that is,

P'(X1 Xy s X)) = P'(Xsqys -5 Xyimy)  fOr every {iy, ..., i} S A",
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This in turn implies, by simply looking at mixtures, that one’s prior distribution of
X, ..., X, is precisely the same as that on the variate values attached to » units
selected by simple random sampling (or indeed by any fixed size probability sampling
design). Further we note the property of such priors that given X = x then
(x, X,[X = %) L, ifX;=x, i=1,..,n,

yoees =X) = .
Pih " 0, otherwise.
While this stands in contrast to the objectivist’s sampling distribution there is another
aspect of an exchangeable prior which is tantamount to the sampling distribution.
Let X* = (X¥, ..., X}) denote the collection of values of X without their distinguishing
labels (or under an arbitrary labelling). Note that X* = x* whenever X equals any
permutation of the co-ordinates of x* = (x§,...,xf). It then follows immediately
from the exchangeability of p'(X) that conditional on X* = x* the X,’s are still
exchangeable random variables and hence

P'(X|X* = x*) = 1/N!

for X equal to any permutation of the co-ordinates of x*; and for any » co-ordinates
of x*, Xix(1)s ++0s Xix(n)

p,(Xl = xi;(l), ooy Xn = i.(n)lx* = X*) = Zp’(XlX* = X*) = (N—n)!/N!

Finally, if we ignore the ordering by letting X,, = {x;s(1), ---» X;+(y} denote the event
that X;u(q), .++» X5y are the values assumed by Xj, ..., X,, in any order then

(X = (Kiniays oo Fpou}| X = x9) = 1 / ("Z )
Thus it follows strictly from an exchangeable prior on X that given the collection, X*,
of the N population variate values, but not knowing the units to which they are
attached, the probability that any prespecified subset of z of the population units will
assume any subset of these NV values is precisely the same as if the subset were drawn
by simple random sampling from the N elements of X*.
As immediate consequences of this result we have that, if the prior on X is
exchangeable and if s denotes any specified set of # of the population elements, and
letting X and s2 be the mean and variance of these X;’s (i€s), then

E(X|w) = E(X|p,02) = p, Q)
—no?
V(X|p, 02 = x_’l’ — (®

and

©®

n
E(s2| u, 0?) = o? N1
where p and o? are the finite population mean and variance, respectively, as defined
earlier. These may also be seen directly by observing that conditional on u (or on p

and ¢%) the X;’s remain exchangeable random variables and hence have common
means, variances, and covariances, and using the conditions:

E(u|p) = p
V(u|p, 0® =0,
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and

E(s%| p, 0®) = o?

N-T

2.3. A Result on the Posterior Mean of u

In this section we show that under reasonably general conditions the posterior
expectation of u, E(u|(s, X)) is a weighted average of X and the prior expectation of p,
E(w), with weights respectively inversely proportional to the prior variance of u, V' (u),
and the prior expectation of the conditional “sampling” variance of X. This appealing
form follows as a corollary of a similar result for “infinite” populations given by
Ericson (1969).

By way of preliminaries observe that under the model above the posterior
expectation of u = Y.¥ X,/N is given by

1. .
E{p|(s,x)} = & %+ (N —n) E{X;| (s, )},
and since conditional on 0 the X;’s are independent identically distributed it follows
that

E{X;|(s, %)} = E{u(0)|(s, %)},
where u(0)= E(X;|0), the common superpopulation mean. Thus we have

E{u| (5,0} = 5 125+ (V=) E{u(8)] 5, ). (10)

Assuming the existence of the expectations used below and that ¥{u(6)} >0 we have
the following theorem.
Theorem. 1If E{u(0)| (s,x)} = aX+ B where o and § are independent of the x;’s then

2V () +m'E, V(| )
V(w)+E,V(X|p) ’

where ¥ (u) is the prior variance of p, m’= E(p), the prior mean of w and E, V(X|w)
is the prior expectation of the conditional variance of X given u.

Proof. It was shown by the author (1969) that under the conditions of the present
theorem

E{u|(s,x)} = (1D

_ XV{u(0)} + E{u(0)} Eg V' (X]6)

Now note that
m'=E(p) = E E(1|8) = E{u(6)},
and by the conditional independence of the X;’s
1
V(p) = Eg V(| 0)+ Vo E(1]|0) = \ By V(X;|0)+ V{p(0)}
and

1
EyV(X|6) =~ E, V(X;]0).
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Substituting these results in (12) and simplifying we find
XV () +m"{(N—n)/Nn} E, V(X,| )
E{u|(s,x)} = .
160 = = V=N B, VX [6)
The asserted result then follows using (8) and noting that
V(X|p) = Epn, V(X|py 0

¢r”|/t
and
N—n

(N— 1)n E(@*)

E V(Xl /-") y o? V(Xl My 02)

N—n
~(N-Dn

It will be noted that in all of the examples discussed in Sections 3 and 4 below, as
well as many others, the condition of the theorem holds, and thus the form (11) holds
for a variety of distribution assumptions for finite populations. The usefulness of this
theorem is that the condition E{u(8)|(s,x)} = aX+p is very easily verified, while to
show (11) directly has been found often to require considerable manipulation. The
last form in (13) also provides an easy way to evaluate E, V(X|p) rather than using
the conditional distribution of X given u.

2 E,E(0®|) = N —" E, V(X,]0). (13)

2.4. The Role of Randomization

A few fragmentary comments are in order on the subtle subject of the role of
randomization in inference and particularly as it pertains to the specific model
outlined above. These comments are in the spirit of general comments on randomiza-
tion in Bayesian inference given by Savage (1962).

The first point to be re-emphasized here is that under the present model and any
prior on X the form of the posterior conditional on the sample sufficient statistic (s, x)
is given by (3) no matter how the sample was selected. (Provided, of course, that the
measure p(s*) is independent of X). The problem of an initial choice of sample design
still remains and one might, for example, adopt a criterion such as choosing the
design to minimize the prior expectation of the posterior variance of u. The choice
of design under this model will quite realistically depend on one’s prior knowledge
of the population as reflected here in p'(X) as well as on the economics of implementing
various alternative designs.

It is also immediately evident by symmetry that if one’s initial knowledge regarding
the X;’s is truly reflected by an exchangeable prior on X then, economics aside, there
are no a priori grounds for preferring a sample consisting of any particular subset of n
of the N units over any other subset of the same size. Under this state of prior
knowledge and for the purposes of one’s own personal inference, ceteris paribus, one
may feel rather indifferent regarding randomization and depending on its cost may
have preferences against it. When observational costs are introduced there would still
remain the question of economic sample size.

Randomization seems compelling because the real world differs from the idealiza-
tion of the preceding paragraph in at least two important respects. First, sample
information is seldom obtained solely for one’s own personal inference purposes.
Clearly even if one has truly exchangeable opinions regarding the X;’s the use of
randomization may more than offset its cost through the increased utility of the
resulting sample to others.
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Second, it would appear that one’s true prior opinions are rarely exactly
represented by an exchangeable prior distribution of X = (Xj,..., Xy). Note,
however, that for any prior on X, py(X) say, if the original identifiability of the
population units is to be destroyed by a replacement of their labels (integers 1, ..., N)
by one of the N! permutations of these integers chosen with equal probability then
the prior distribution of the resulting X' = (X7, ..., X'y) (under the random labelling)
is given by the exchangeable prior p'(X"). (p'(X’) being merely the equally weighted
mixture of po(X) over all N! permutations of labels.) In view of this, if one’s initial
opinions regarding X were roughly exchangeable there may be considerable economy
of thought and effort through symmetry and little loss in directly assessing the
exchangeable prior p’(X’) rather than agonizing in detail over the contingencies needed
to assess p'(X). In this case the model discussed above is exactly applicable for
inference regarding X' and functions of X', and as pointed out above one would be
indifferent among samples consisting of any subset of # of the randomly relabelled
units. Finally, for inference regarding permutation-invariant functions of X (mean,
total, variance, percentiles, etc.) this procedure is tantamount to taking p'(X) = p'(X’),
that is, the exchangeable prior on the original identifiable units, and then selecting the
sample of n by simple random sampling.

3. RESULTS FOR SPECIFIC DISTRIBUTIONS

In this section we give illustrative results for two special cases obtained by taking
p(X;|0) to be normal with either known or unknown variance and taking dF(8) to be
either natural conjugate or diffuse. The case where p(X;|6) is binomial is a special
case of results given in Section 4. Similar results are readily obtained under various
other distributional assumptions. In carrying out this program much of the notation
follows that of Raiffa and Schlaifer (1961). The reader will also find that a good deal
of the required distribution theory used below is given in their monograph.

3.1. Normal-Superpopulation Variance Known

As a first example which may not be useful in characterizing real prior opinion but
which sets the pattern for many of the results persisting under different assumptions,
suppose p(X;|0) is taken as a normal density with unknown mean 6 and known
variance v and suppose further that dF(6) is taken as the conjugate prior—normal with
mean m’ and variance v’. It follows readily that the prior on X is an N-dimensional
symmetric normal distribution with common means, m’, common variances, v+v’, and
common covariances, v’. The prior distribution on p = N-13N X, is thus normal
with mean E(u) = m’ and variance

V(w) = v +u/N. (14

As one expects under such a model, the prior distribution of ¢ = ¥ (X;—pu)?/N,
the variance of the finite population, is such that No?/v has a y? distribution on N—1
degrees of freedom—reflecting little prior uncertainty regarding o2.

Given a sample consisting of » distinct units and observed variate values X, the
posterior on (), here equal to 6, is, by well-known normal distribution theory,
normal with mean
_Xv'+m'v/n

E{8|(s,x)}=m" = e (15)
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and variance

P Y LA
v= nfo+1v (v'+v/n) Vs (16)

that is, the posterior mean of the superpopulation mean 6 is a weighted average of the
sample mean, X, and the prior mean, m’, with weights inversely proportional to the
variances V(X|6) and V(6), while the posterior variance of 6 is the reciprocal of
the sum of these weights. These forms carry over to the finite population in a very
natural way.

From the form (6) it is clear that the posterior distribution of X is an N-dimensional
singular normal distribution with all its probability concentrated in the subspace where
S(X) = x, or equivalently the posterior distribution on the unobserved co-ordinates
S(X) is (N—n)-dimensional normal with common means, ", common variances and
covariances given by v+0v" and v” respectively, where v" is as in (16).

It then follows immediately that the finite population mean w, which we write in
the form

B = N-1 (n.f+ E Xi)’
i¢s
being a linear combination of normal random variables has a normal posterior
distribution with mean

E{p|(s,x)} = N"Ynx+(N—n)m"}
and variance
Vip|(s,x)} = N4 (N—n)(v+0")+(N—n)(N—n—1)0v"}.
Substituting from (14), (15), and (16) these quantities may be rewritten as

N ’ - N_ ’
Bl (6,0) = an

and
_N—no(Nv'+v) N-n uvfn
Vel (s%)} = N2 (m'+v) N v-+on

V(w). (18)

This last expression for the posterior variance is instructive, for the first factor is a
finite population correction factor and the second factor is just that by which the
data reduce the prior variance of the superpopulation mean (compare with (16)). It
is also clear from the theorem of Section 2.3 and the linearity of E{0|(s,x)} in X
(formula (15)) that the weights in (17) have the interpretation given in (11). This is
also directly verified using (14) and from (13) noting that E, V(X|u) = {(N—1)/nN}v.

Alternatively, under the present model, it is easily verified that X,,, the mean of any
n of the X;’s, and u have a bivariate normal distribution. From this and the sufficiency
of X, it follows that the distribution of X, given u is N[u,{(N—n)/N}(v/n)], while
the marginal on p is N{m',(Nv'+v)/N}. Thus using standard normal prior-to-
posterior results it follows that the posterior distribution of u given (s, x) is normal
with mean and variance given by (15) and (16), with v’ replaced by (Nv’+v)/N and v
by (N—n)v/N. It also follows immediately that in the present case

V(X|W) = E, V(S| .
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Finally, note that if the prior on 0 is taken as degenerate uniform on the whole
real line than the posterior on the finite population mean  is normal with mean *
and variance {(N—n)/N}(v/n).

3.2. Normal-Superpopulation Mean and Variance Unknown
Suppose now, somewhat more realistically, that the finite population is viewed
as a sample from a normal superpopulation with unknown mean 6 and unknown
variance 1/h, thus we here take 8 = (0,4). Hence

P(X|h, 0) oc ¥ exp (— $hNo®) exp (— ¥hN(u— 0%} = hi¥ exp {—%h % (Xi— 0)2}, (19

where again p and o? are the mean and variance of the finite population. Note that
here o? is not equal to 1/A.

Suppose further that F(6) is taken to be non-degenerate normal-gamma with
density

(8, h) oc exp{— 3hn' (0 —m")Z} B ) exp (—3/'v) B 1, O<h<oo, —o0<f<oo,
v',n',v' >0, (20)

(See Raiffa and Schlaifer, 1961, for further discussion.)

By defining 8(n’) = 0 if »’ =0 and &(n") = 1 for n’ >0 various degenerate priors
can be had as special cases of this density: for example, taking n' =+' =0 (20)
reduces to

f(O,h)och™, O<h<oo, —oco<B<o0. 1)

This is merely the often used prior discussed by Jeffreys (1948) and Savage (1961),
which seems a successful representation of vagueness in that it is uniform in 6 and in
the logarithm of the variance, A%, :
It is shown in the Appendix that under this model the prior distribution of the
finite population mean, p, is “Student” that is, u is distributed like
(N+n"yW\t
n'N : ’
where ¢, is a standard ¢ random variable on »" degrees of freedom. Thus the prior
mean and variance of u are m’ and v'v'(N+n")/n’ N(v' —2) respectively.
The main result concerning the posterior distribution of u is given in the following:
Theorem. (a) With the joint prior on X implied by (19) and (20) and given the
sample (s, X) with mean X and variance s2 the posterior distribution of  is “Student”,
that is, p is distributed like the quantity

V() 2+ V(X|p) E(w) N—n V{0|(s,%)} v =2]%
e T e Al I @)
where v = v +n, V(0](s,x)) and V(6) are the posterior and prior variances of 0,
V(X ) is the prior variance of the mean of a sample of size n given the finite population
mean, V() and E(w) are the prior variance and mean of u, respectively, and #,. is a
standard ¢ random variable on v” degrees of freedom.
(b) Under the prior on X generated by (19) and (21) the posterior distribution of u
given (s, x) is such that p is distributed like the quantity

- N—n s?\t
x+tn_1 N '-'; .

m'+t,,{ 22)

24
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A proof of this result, along with a number of alternative expressions, explicit
formulae, and some results on the prior and posterior distributions of the finite
population variance, o2 are given in the Appendix. We note here merely that the
posterior mean of u is again of the weighted average form given in equation (11), and
where, in this particular instance, V(X|u) is independent of u. Also from (23) it
follows that the posterior variance of u, {(N—n)/N} [V (0| (s, x)}/ V()] V (w), is simply
the prior variance reduced by the same two factors as in the preceding example
(compare (18)). Finally, for a diffuse prior on the superpopulation parameters the
posterior mean and variance of p are seen to be X and {(N—n)/N}{(n—1)/(n—3)}s*/n
respectively, in close agreement with that which one might expect from traditional
sampling theory.

4. EXTREME PRIOR VAGUENESS AND THE MULTINOMIAL

Analyses of the sort given in the preceding section can, of course, be carried through
under various alternative assumptions regarding p(X;|8), for example, by assuming
the superpopulations to be Poisson, gamma, binomial (a special case of the results
given below), etc. Under these models one’s prior uncertainty is represented in terms
of his imperfect knowledge regarding 6 and, to a lesser extent especially for large
finite populations, by viewing the population as a sample from a superpopulation.
While such models may often adequately approximate one’s prior uncertainty
regarding the unknown X, nevertheless they do assume strong prior knowledge
regarding the shape of the finite population distribution by taking the superpopulation
form as known. Weaker prior knowledge of the shape of the finite population can be
modelled by taking the p(X;|8) in (4) to be a member of a more flexible family of
distributions, for example, the power distributions used by Box and Tiao (1962).
Other approaches might take p’(X) as a more complicated mixture. An alternative
approach, based on the multinomial distribution and incorporating extreme vagueness
regarding the shape of the finite population, is developed in this section. Special
cases of the results below are the early result of Pearson (1928) suitable for
dichotomous populations (using (4) with a binomial superpopulation), and a
generalization using more general beta priors on 6 than the uniform one used by
Pearson.

4.1. The Basic Model

Suppose that each X, can only assume one of the finite set of numerical values
Y = {y1, Vs -oes Vie}s Y1 <Vo < ... <Y}, Where k may be an extremely large integer having
no relation whatever to N, the population size. This assumption clearly recognizes
the inherent discreteness of almost all observation due to limitations of measuring
instruments, etc. Suppose that the probability that X; equals y; is p;, that is,

k
P{X’L=y7|p}=pp .]= ls"'aka .EIP;'= 19 (25)

i=
and where p = (py, ..., Ps_y). Here p is assumed unknown and plays the role of 8 in

(4). The X;’s are assumed independent and identically distributed with the distribution
(25). Thus for any y = (¥;a)» - Yaw)s Vi €%, a joint prior on X can be given by

N
PX=y= . Elpi(j)f "(p) dp, (26)
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where f’(p) is a prior density on the superpopulation parameter p. The class of
prior distributions of X of the form (26) again reflects exchangeability regarding
the X;’s.

We shall find it more convenient in dealing with certain aspects of this model to
consider it in slightly different terms. Let N; be the unknown number of the N
population elements for which X; = y;, j = 1, ..., k. Inthis notationp = N1 Xk ¥ N;
and o = N-4(X%_; y2 N;— Nu?). In this manner inferences regarding these and other
symmetric functions of the unknown finite population X;’s are expressible in terms
of the unknown N;’s. From (26) it follows that the joint prior distribution on the
Ny’s is given in non-singular form by

T k-1 k=1 \N-TN;
PN =| 7= WD T—1 I p (1 -2 Pi) f'@adp, (27)
» HI‘(Ni+1)I‘(N— ZNi+1)‘=1 L
i=1 1

where N = (N, Ny, ..., Ny_1), P=(p1,Ds,-.-,P5—1), and the integral is over the
simplex {p|0<p; <1, T¥-1p,<1}.

To summarize briefly and in slightly different form: Under the present model both
the real finite population and the hypothetical “superpopulation” are defined by
unknown distributions over the k distinct and ordered values y,...,y,. The real
finite population is defined by the unknown distribution function (d.f.)

0, xX<Y1
Fx(x) = P(X<x) = { 2 NN, 71<x<pp
1, X> Vi

where £, = {i|y;<x}. In addition this finite population is assumed to have been
generated by N independent observations on a random variable having unknown
distribution function defined by

0, Z<Y1s
Fy(2) =P(Z<2)={ ZPp> N<Z<)w
1, Z> Yy,

where J(2) = {i|y;<z}.

Choice of f'(p)

To this point the model outlined above seems straightforward and realistic. The
difficulty, however, is in choosing appropriate and useful prior distributions for the
parameter p. Pending further study and only as a tentative and convenient approxima-
tion in certain special cases, we will take the prior on p to be a (k— 1)-dimensional
Dirichlet distribution, (see Wilks, 1962) with density

T k—1 k=1 \e-ZFlg-1
O = 2 M (1= 5 : (29)
1 T(e) T (e— > e,;) i=1 T
1

1
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for parameter values €,>0, i=1,....,k, (¢ =XF¢). It is well known that this
distribution has means, variances, and covariances given by

E(-p’l:)=€'i/€’ i=1,...,k,

_€i(€_€i) L
V(pi)___ez(e+1)’ z—l,}...,k,

— €, €; . .
cov(p;p) = El_f) i#j=1,..,k.

It then follows immediately that the mean and variance of the distribution function
F,(2) of the “superpopulation’ are given by

0, Z< Vg
1

E{Fy(2)} = { ¢ J%)Eia NSz
1, Z>Vp

where £, was defined above, and

0, z<y; Or z>y,,

F =
He B 1~ BN, n<z<r

It then follows that by the choice of the €,;’s (up to an arbitrary positive multiplicative
constant) the prior expectation of the d.f., F,(z), can assume almost any desired shape,
while by choosing that constant so that e = Y ¥ ¢; is small, the variance of F,(z) can
be made large—representing vagueness regarding this unknown ‘superpopulation”
d.f. It is in fact only for such small values of €; and e that we believe such a Dirichlet
prior is at all tenable in this setting and even then it is only tentatively put forth to
represent an initial state of extreme vagueness.

Before discussing this further we note that the resulting prior on N is given,
using (27) and (28), as

PN =fJa"(N| N, ¢, €)=
k-1

k—1 k-1
T(N+1) TI TV, +¢)T (N— S Ny+e— 3 ei) I'(e)
i=1 1 1

k—1 k—1 k—1 k-1
I IV+ )T (N— > N+ 1) T(N+¢) TI T(e) T (e— 5 ei),
i=1 1 =1 1

Bl
|

1
N;=0,1,...,N, N;<N, (29)

A
=1

and where € = (e, ..., €4_1)-

This joint distribution is merely a straightforward generalization of what Raiffa
and Schlaifer (1961) have termed the beta—binomial distribution. It might analogously
be termed the Dirichlet-multinomial distribution; Mosimann (1962) has termed it the
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compound multinomial distribution. We will adopt the notation f {4 (N[N, ¢, €) to
denote the (k—1)-dimensional Dirichlet-multinomial distribution whose density is
given in (29). It is also easily seen that this joint distribution arises by: assuming that
the N;’s are independent Poisson random variables with parameters A;, i=1,...,k,
assuming that the A;’s are independent gamma random variables with parameters ¢;
and common scale parameter «, and then finding the joint marginal distribution of the
N;’s conditioned on X} N; = N. Thus this prior has the property that the only relation-
ship among the N,’s is due to the constraint that they sum to N. When the finite
population is viewed microscopically as envisaged under the present model (i.e.
when k is huge and the collection of y,’s represents all possible observations on any
X; to the practical limitations of one’s measuring ability), such a feature of one’s
prior opinions does seem approximately realistic. However, this property persists
even when large numbers of adjacent cell frequencies, N, are grouped. This class
of priors thus seems incapable of giving formal expression to prior knowledge which is
characterized by vagueness concerning the shape of the finite population and a belief
that the grouped frequencies, at least, are “smooth”.

We proceed to examine some consequences arising from the adoption of such a
Dirichlet-multinomial prior with emphasis on the case where the ¢;’s and their sum
are chosen to be small. In such a case this prior seems to represent an extreme
position of prior vagueness, not even incorporating prior belief in the “smoothness”
of grouped frequencies. As will be seen below, even though in any sample from the
finite population almost all cells have an observed frequency of zero, seemingly
realistic and useful posterior inferences can be made about those properties of the
population typically of interest in sampling. Such inferences depend little on the
actual choice of the ¢;’s, providing they and their sum are small. However, since there
are aspects of this class of priors which are not at all realistic, it is to be expected that
certain features of the resulting posteriors will be disturbing.

Properties of the prior on N

Before proceeding with the analysis of aspects of the posterior distributions it is
useful for future reference to catalogue some properties of the prior distribution of
several characteristics of the finite population. Since, given P the N;’s are multi-
nomially distributed while the p,’s have means and variances given in the preceding
section, it follows readily that

k
E(u) = Eljyj €;fe (30)
and
N+e (F
V) = s (Botee— (Snede] | &

where again p is the finite population mean.
Similarly, the prior expectation of the population variance, o2, is given by

569 = 30D Sotese (Sese) | 32
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Also if £, is defined as the wth percentile of the finite population, that is, £, = Vi

if j is the smallest integer for which }i_; N;/N>m, then since &,< y; whenever
>_; N;> N the prior distribution function of ¢, is given by

v P(e)r(c,.+%ei)P(N+e—cj—$e¢)
P'(€,<y) = Cf=%""} (cf) r ( é ei) r (e— i ei) (N +¢)

i=1 i=1

. j=1,..,k—1,

1, j=k,
(33)

where {N7} denotes the smallest integer not less than Nz. This follows since, given
P, X}_; N;=c; has a binomial distribution with parameters N and Xi_, p; while, by
properties of the Dirichlet distribution on p, Yi_, p; has a beta distribution. The
successive terms in the sum (33) are merely the terms of the beta-binomial distribution.
For further discussion of this distribution see Raiffa and Schlaifer (1961).

There is a further interesting and useful property implicit in the use of the prior (29)
which we have assumed. If s denotes any subset of n of the N distinct population
elements and if n; denotes the number of those X;’s (i€s) equal to y; then the joint
prior distribution onn = (ny, ..., n,_;) given N is simply the generalized hypergeometric

1) (r-st,)
' _ =1 \n) \n=3F"1n,

p (nl N) - N 3
n

This result follows readily from (26) since the joint distribution of N and n is given, in

singular form, by

k-1
n.,:=0,-“,Ni, ?nién. (34)

1 k — 1 k
p'(n,N>=f AT PPl LI T

pH”z‘! ! 11 (V;—ny)! !
1 i=1

k
nl (N—n)! I'(e) 1;[ L(N;+¢;)

[Tt 11 (Ne=np)! T1 T(ed TV+e)
1 1 1

The result (34) then follows by dividing this expression by p’(N) (formula (29)).

This conditional “sampling” distribution is a property of the exchangeable prior
distribution and does not, in the usual sense, depend on random sampling. We
record, for future reference, some well-known properties of this conditional
distribution:

E(u|N) = £V, (39)

(N—n)nN(N—N,)

VoulN) = gy

(36)
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and

cov (ng, n;|N) = __(]1\\;—2_(1’\1/)—”# @37

4.2. Posterior Inference
We now proceed to develop some important aspects of the posterior distribution
of several characteristics of the finite population typically of interest in survey work.
Given any sample, no matter how selected, consisting of » distinct population units
with their associated observed variate values, that is, given (s,x), it follows
immediately from (5) and (26) that the posterior distribution of X is given by

k
t(j wf! d) s S = X,
X = y|(s, %)} oc p]l-}sp“”jglp’ f@)dp, y[SG) =x

0, otherwise,

(39)

where y = (Y1) s Vo) and n; (j=1,...,k) is the number of the n observed x;’s
equal to ;. Combining the second product in the integral above with the Dirichlet
density f'(p) it is clear that the posterior distribution on the unsampled units is of the
same form as the prior, (29). It is immediately evident that the posterior distribution
on the parameter p is of the same form as the prior—a (k— 1)-dimensional Dirichlet
with the ¢;’s replaced by (¢;+n,)’s.

Thus letting M; = N;—n; be the number of unsampled X;’s which are equal to
Ypi=1,..,k,n=(ny,...,n;_y), and M = N—n it follows that the posterior distribu-
tion of M = (M,,...,M;_,) is also (k— 1)-dimensional Dirichlet-multinomial with
parameters M, e+n, and €+n, that is, has a density given by

PM| (5, %)} = f {5 (M| M, € + 1, €+n) (39

in the notation of formula (29). The posterior distribution of N is then immediately
obtainable by substitution.

This posterior distribution, of course, is exactly that resulting by taking (34) as a
likelihood function using the observed n, with the prior (29): that is, (39) is, as a func-
tion of N, proportional to the product of (34) and (29). Also it should be emphasized
that a posteriori the M;’s are distributed multinomially given p while p has the
(k—1)-dimensional Dirichlet distribution defined by the parameters ¢;+n;.

The posterior mean of
Given any sample (s, X) with observed sample mean, %, the posterior distribution
of the finite population mean, p, has a mean E{u| (s, x)} which is again of the weighted
average form displayed in (11): also, for all intents and purposes, E{u|(s,X)} = %.
We note first that

(N—n)(e;+n;)

EM| (s, = N0t (40)
L R R @

and
—(N=n)(N+e¢)(e;+n) (¢ +nj).

COV{M:’JWII(S’X)}= (e+n)?(e+n+1)

42)
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These formulae follow most easily by conditioning on p initially, using moments of
the multinomial and Dirichlet distributions. Since u = N1 3%y, (M;+n,) and since
nt¥kny, =n13,  x; = %, it follows readily using (40) and (30) that

n(N+ €)X+ (N—n) eE(w)

It is then clear that if e is small, as assumed here, then
E{u|(s,x)}=X; 44)

even if € is near unity the relative weight assigned to E(u) is the typically small fraction
(N—n)/N(n+1).

It is here again easily verified that the condition of the theorem of Section 2.3
holds with @ = p under the present model, and hence the posterior mean, (43), can
be recast in the form (11). We then have

2 k
wp) = E(Xilp) = Enp E(XiIN, p) = Enpp ?J’i N;/N = ?J’il’i, (45)

and using the fact that p has, a posteriori, a Dirichlet distribution it follows that

_ k ni+€i_ nx—'l‘GE(’L)
E{p@)] (50} = Tyt = (46)
which is linear in X, as required.
We can thus deduce by equating (43) with (11) and using (31) and (32) that
N—n E(c?)
= 7

where E(o?) is as given in (32).

The posterior variance of u

Several results can now be demonstrated concerning the variance of the posterior
distribution u, V(u|(s, x)). Clearly

1 k
Visl5:0) = 73 7 Z M5 60,

and using the results (41) and (42) we find the expression

_WN=n) N+ [ ,(g+n)(ctn—e—n) (€5+n) (¢5+ny)
I @yﬁ e+ mP(esntl) igjyiy"(e+n)2(e—lzn+l)}'

48)
The first result, in analogy with results given in Section 3, is that if u(p)= kv
the superpopulation mean, then using (31), and the facts that the posterior variance

of u(p) is merely the quantity in curly brackets in (48) and that the prior variance of
p(p) is the same quantity with n; = n = 0 for all i, it follows from (48) that

N—n [V{H(P)l (5,%)
N Vi@

Viu|(s,x)

Vi|(s,x)} =

re. “9)
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The other, more interesting, results come from re-expressing (48) in a more
enhghtemng form. By letting s = (n—1)"1 (X%, yzn ;—nXx?), the observed sample
variance, then after some algebraic manipulation it may be verified that (48) is
equivalent to

WN-nN+e)(n—1)s* e(le+1)(N—n)V(w)

Vil 63} = e ot ed ) T Nt oot et D)
ne(N—n)(N+ &) (F— E@)}*
Nin+eP(n+e+l)

From this form it follows that if the prior parameter e is chosen small (approaching
zero) then

(50)

N—-nn—1s> N-ns?

VAl (s, x) = N n+ln N n G
Even if € is near unity the first term in (50) may be an adequate approximation if 7 is
large, for the latter two terms of (50) are of O(1/n?). Thus under the extreme diffuse-
ness of prior knowledge captured in this model the posterior distribution of the finite
population mean, u, has approximate mean X and variance given by (51). This provides
a Bayesian interpretation for the usual unbiased estimates in traditional sample survey
theory. Conclusions like this, especially regarding the mean, under an interesting
alternative Bayesian model have been obtained earlier by Hill (1969).

The final result concerns the exact form (50). At first glance it appears similar to
that obtained for the posterior variance of u assuming a normal superpopulation
with unknown mean and variance (Section 3.2). On closer examination it turns out
that V{u| (s, x)}, (50), is of precisely the same form as under that normal distribution
model! This may be seen by comparing (50) with the result (A21) of the Appendix
and using (A7) and taking € =n’ and €+3 =+'. This coincidence is being studied
further.

The posterior mean of o*

It is also interesting to note how the data change the expectation of the variance,
o?, of the finite population. Since ¢* = N-1(XF y2 N;— Nu?) it follows that the posterior
expectation of o2 is given by

1Mk
B0 (6,0} = g | 08 1t B 5,303 = NV 5,303~ NE*u .0 )
Substituting from (40), (43), and (50) and after some further algebra using (32) and

(33) it may be verified that

(N+e){Ne+n(N+1)}(n—1) s
E{02|( 5%) = [ Nn+e)(n+te+l)

(N—=n)(e+1){Nn+e(N— 1)} E(0®) (N—n)(N+e) (ne){)E—E(p.)}2] .

(N=1D(n+e)(nt+e+1) Nn+e)(nt+e+1)
(53)
Using (32) it follows that if € is very small then
Ef|(s0y = XH1nzl, (54)
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where s2 is, as before, the observed sample variance. For e near unity the two other
terms in (53) play a more important role than in ¥{u|(s, x)}, for here they are each
of O(1/n).

Here too it may be verified that the expression (53) is formally identical to that
(formula (A26) of the Appendix) under the normal model, by making the correspon-
dence e =1’ and e+3 =",

Posterior distribution of percentiles

In this section we obtain quite easily the exact posterior distribution of £,, the
wth percentile of the finite population. It is then briefly demonstrated that standard
confidence intervals for percentiles agree approximately with posterior probability
intervals under the model being treated here. An alternative subjectivistic approach
to the distribution of percentiles has been given by Hill (1968).

To obtain the posterior distribution of £,, as defined below equation (32), we note
that ¢, <y; whenever (M, +n;)> Nm and thus

j B
P, <] (5,30} = p ;Mi>Nw-$ni|(s,x)}.

As with the prior distribution on £, the posterior distribution of XJ_, M; is given by
the beta-binomial distribution:

J
Pl i)
1 _ Td(nte)—1 (] — w)n+e—Sd(nite)—1
=J‘ (Nu n) wu(l_w)N_n_ul"(n+e)w D-1(1—w)

D{Z (m+ €} T{n+ e — 2 (n;+ )}

_ N—n) Pn+e) M{u+ Y] (n;+ €} T{N+ e—u— Y4 (n;+ €)}
_( u P+ e} {Tn+e—Xi (n;+€)} I(N+e)

u=0,1,...,N—n. (55)

dw

It follows that

¢

Jj
0, if {Nm}—Sn,>N—n, j=1,..,k,
1

N—n j 0<{Nm}—Yin,<N-—n,
LR[SV B S 3 VR [C80) A
u={Nm—=dn; \1 - j=1,...,k-1,
Jj
t1, if j=k andfor {Nm}— n;<0,
1

(56)

where again {N=} denotes the smallest integer not less than N, and where the terms
in the sum are given by (55). This expression of course yields the posterior distribution
on ¢, for any configuration of sample observations. It is clear from (55) and (56) that
with the extremely diffuse prior (including no smoothness beliefs) under this model,
that is, €; and € small, most of the posterior probability is unrealistically concentrated
on those values, y,, observed in the sample. Nonetheless, posterior probability is
attached to intervals in approximate agreement with standard confidence intervals.
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To show briefly the relationship between inferences based on the above posterior
distribution and standard confidence intervals for percentiles we assume, for
simplicity, that the n sample observations are distinct, in other words that n; is either
zero or one for all j. We denote by x the ith sample order statistic, thus
X <Xg)<...<X(,; and suppose also that xy = y<y,, = X for any i<j. We
finally approximate the distribution in (56) by taking ¢, =0, i = 1, ..., k, in (55).

Under these assumptions it is first clear that if #n; = 0 then p{f = y,|(s, x)} = 0.
Additionally if n; = 1 then using (55) and (56) and for notational convenience letting

= Zni, (v,-+1 = Eni),
i=1 i=1

one has

p(¢, =y;|(s,%) = (NITI) {u={;§,,j_1 (u :; vj) (Nn'fv—] ?2“2)

n—1

_ Ni” (u+vj—1) (N—u—v]-—l)}

n={Nm}—v; Uj.— 1 n—vj— 1 '

C . .. (n n—1
Using the well-known identity (r ={,_1

hypergeometric term
{Nm}—1\ [N—1—-({N=}—1)
j—1 j—1
xn n—1—-3n;
1 1
N-— 1) ’
(n—l

whenever this expression is defined and zero otherwise. Using these results it follows
that

-1 . .
)+ (n , ), this expression reduces to the

(57)

pé, = ;| (5, %)} =

prw<br<xpl0}= 3 plE, =360}
F=1+1

ealiain

- v=1 N—-1

n—1
Finally, if N is large relative to »n and since ({N#}—1)/(N—1) = 7, using the binomial
approximation to the hypergeometric we have

(58)

Pl <£,<xl 60} = E (")) w =i

=In(i’n—i)—l7r(j>n—j)> (59)

where I (u,v) is the usual incomplete beta function. This expression is then recognized
as approximately the confidence coefficient attached to the statement that £, is trapped
within the random interval {x;, x(;)} (see Wilks, 1948).
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5. SoME RESULTS ON THE USE OF AUXILIARY MEASUREMENTS

In this section we give a simple extension of some of the earlier results to indicate
how the basic model may be extended to incorporate a priori knowledge of some
concomitant measurements yy,ys,...,yy and one’s prior knowledge regarding the
relation of the unknown X;’s to these values, by using them to help assess the
requisite N-dimensional prior distribution of X. Under various assumed relationships
between y and X some commonly used ratio and regression estimators turn out to
be the means of the posterior distribution of u under diffuse priors.

5.1. Regression Model

In the following it is assumed that the y,’s are known positive values associated
with the distinguishable population elements. Let z; = g(y;), i = 1, ..., N, where g is
some pre-specified positive valued function. We consider the model obtained by
assuming that given y;, o, and h, the X;’s are independent normally distributed with
means «y; and variances z;/h, i = 1,..., N. The parameter («, #) is assumed unknown
and assigned a normal-gamma prior.

We will be interested in three special cases obtained by taking z; to be y2, 1, and
¥; respectively. Each of these cases is equivalent to a regression through the origin
with three different assumptions regarding the error variances.

Letting v = 1/h note that these three cases are respectively equivalent to:

(a) Xi/yi = a+¢€;, where €~ N(O, v), (60)

that is, it is assumed that the unknown ratios X;/y;, given y;, are equal to an unknown
constant, «, plus a normally distributed error having unknown variance, v.

(b) X; = oy;+¢;, where €;~N(0,v), (61)
a regression through the origin with constant unknown error variance.
© Xi/y; = ate;, where €;~N(0,0v/yy), (62)

that is, the ratios X;/y; equal an unknown constant plus a normal error having an
unknown variance proportional to y;.

Before proceeding one further comment seems appropriate. Although it is
assumed here that the investigator can, on the basis of his prior information and
knowledge, adequately approximate his prior distribution by appropriately choosing
z;, this is not completely required. He can let the data (sample) point the way by his
choosing only a family of functions, say z; = %, where r is unknown and then
assigning a joint prior distribution on (a,h,r). The basic form of the analysis to
derive the posterior distribution of y remains unchanged. This remark is in the spirit
of the important paper of Box and Cox (1964.)

5.2. Analysis of Model: Prior to Posterior
Under this model for setting a joint prior on X

Pl e T (2] exp{ -5 2 (xi-anit), (6

the conditioning on the y;’s being implicit. It is assumed that a normal-gamma prior
distribution is assigned (o, 4) having density

S'(a, ) oc exp {— 3hn' (o — &')2} HA3) exp (— 3hv'v") YL, (64)
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where 3(n') = 0 if n’ = 0 and one otherwise. The ““diffuse” prior,
f'(e, By oc b7, (65)

will be considered as a special case obtained by putting »’ =+ =0in (64). The joint
prior distribution of X can then be obtained by multiplying (63) by (64) and integrating
out (o, h).

Given «a and A, p = XN X;/N is clearly normally distributed with mean o X y;/N
and variance Y.V z,/(N2h), and thus has density

Pp| b, o) oc (N2 /) exp{— $(N>h/z) (u— )},
where z =YYz, and j = XN ,y;/N. Multiplying by f'(«, /) and integrating out
(a, k) we find, after some simplification and assuming »’>0, ' >0, that the prior
density of u is given by
, , ' N2 e —{0' 41072},
p'(p)cc {V +W(M—OCJ’) }

where y = Nj = 3 ¥y;. From well-known properties of the “Student” distribution
it follows that

E(w =&

VY Az,
Y == e VR

and

To obtain the posterior distribution of u given the sample (s, x) we recall the fact
that u = (nX;+(N—n) pg)/N where us = ;. X;/(N—n) and %, is the sample mean.
Proceeding conditionally we have that, given (s,X), « and A, uz; has a normal density

—n)2h\t —n)2
Aosl 50, e [T exp | 2O o], 69

Z3
where z; = ¥,,2; and yg = Xy vi/(N—n). ]
Next the posterior distribution of (o, 4) given (s, x) has density
x;—op;\?

sy e e 3 (2

exp{— bhn'(a— &)% B exp (— Jhv's') b7,

This, after some simplification, can be written as

Slo, b (s, %)} oc exp{— $hn" (o — &") h¥O™) exp {— $hv"v"} IP L, 67)
where
n' =X yilz;+n, (68)
€8
& = l,, (E X yi/zi+n'&'), (69)
n \jes
v = :v'v’ +’i (m)2+—1— X3z > x2./z~—l (Z x; ¥z )2} (70)
n” ies «/Zi n” ies ¢ zies v n” ies el ’
v =n+v'+8@m)—8(n"), (71)

and 8(n") = 0 if n” = 0 and unity otherwise.
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Writing the distribution in this fashion it is immediately obvious that it is still of
the normal-gamma family. Thus the derivation of the posterior distribution of uy is
analogous to that of the prior on u. The result is again a “Student” density,

” —3(»"—1)
Flits] G 0} o { n(N—n)

-// 2
II( ”n Z- +ys) JLL— y b
where y; = (N—n) J; = X;4,¥;; and hence the posterior mean and variance of u; are
given by
E{IJ@I(S, X)) =a"y;
and

", .n

V0" n'zg+yE
//_2 n//(N__n)2’

It now follows immediately that the posterior distribution of u given (s, x) is like
that of the quantity

V{H§| (s,x)} = v >2.

n_ _,,N - v"(n"zz+ B\
R i 72
where ¢,. is a standard ¢ random variable on »” degrees of freedom. Thus
n_ N —n_,.
E{p|(s,x)} = Nt & (73)
and
/I ” (n//Z +y
V{I/«I (5%} = ) ——7/‘]‘\,—2—- (74)

The posterior distribution of the finite population mean, u, with only diffuse prior
information on (o, h) is immediately obtainable from the above results simply by
letting v' = n' = 8(n") = 0. It then follows that given the n distinct sample elements,
(s, x), p is distributed like a linear function of a standard ¢ random variable on n—1
degrees of freedom. This situation will be discussed explicitly for the three special
cases mentioned earlier.

5.3. Special Cases of Diffuseness

Several interesting results obtain by reconsidering the three cases introduced in
Section 5.1 with only vague prior information on o and A, as represented by the
improper prior density of (65). Under each of these models the posterior “Student”
distribution of u turns out to be centred on (has mean equal to) a familiar and natural
“classical” estimator. This then gives some formal subjective Bayesian interpretation
or justification for these estimators and some insight into the sort of prior distributions
which might result in their use. Exact Bayesian credible intervals on u are immediately
obtainable using (72). In each case below we merely state the posterior mean and
variance of pn obtained from (73) and (74) using the definitions (67)—(71) and taking
vV =n'=8n)=0.

In the first case (a) (z; = y2) one finds

Efu| (5,0} = 5 (15,4 739) = 405~ 5 +77) (75)
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where 7 = X, . r:/n, y = XV y; and r; = x,;/y;. Also

2
Viu|(s, %)} = (n S)S " Zee ;Vy;”i (76)

where 52 = ¥, (r;—7)?/(n—1). This posterior mean is a natural average of ratios
estlmator
In case (b) (z; = 1) one finds

Efu] (5,0} = 0%, + 40— ), )

where & = X x;;/2¥? is the usual least-squares estimator of o, and j, = X, y,/n.
Also

Vil (s, 0) = kg W B 78)

2= 25 Vi s X — (Zs %0
* (n— 1) =2

is also the usual “classical”” estimator of the variance of &.
Finally, in the last model (c) (z; = ;) one finds

where

Xg _
E{u|(s,x)} = J7s 7, (79
S
the usual ratio estimator, and
1 2
Vip|(s,x)} = M. (5»), (80)

where
s Vi D X3y — (Zg xo)
(n - 3) Zsy 1 ’
y and y; are the totals over the population and sample respectively of the y,’s, and
Ys=YV—DVs

52 =
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APPENDIX

We give here a proof of the theorem of Section 2.3, as well as a number of related
results under the normal distribution model of that section.

Prior on (u, 0?)
We begin by obtaining the prior distribution on X. Multiplying (19) by (20) and
integrating out 6 and 4 one finds that the prior on X is “Student” with density

PPX)oc {V +X—m)HX-—m )} —n<X<oo, (A1)
where the superscript ¢ denotes transpose, m’ = (m', ..., m’) and
N+n' -1 -1 . -1
1 -1 N+n' -1 .. -1
R — . A2
H v'(N+n') : : (A2)

-1 -1 w. N+n'—1



1969] ERICSON — Subjective Bayesian Models 221

The prior distribution of u can be readily deduced from this distribution, but
since we wish the prior on ¢ as well we take the following seemingly easier approach.
Note that given 4 and 0 the joint distribution of u and o2 has density

S, 0%| h, 0) oc Bt exp{—3hN (n— 0)*} (a®)¥ 2 h¥” exp (— $No?), (A3)
where v=N—1. This follows since given # and 0, No®h~x2 independently of
(AN)¥(u— 0) which is distributed as N(0, 1). Multiplying (A3) by (20) and integrating
out 4 and 0 one finds that the joint prior on u and o? has density

F az)oc(Naﬁ)*v-l{ Not+o/0/ 4 (' (A%)

} =3+ +6(n')}
This may be integrated with respect to u and o¢* as shown in Raiffa and Schlaifer
(1961) and yields the result that the prior distribution of p has a “Student” density
given by

nN —b ()}
f(p)oc{v'+m(y—m')2} , —00<pu<o0. (A5)
Expression (22) then follows immediately. Hence
E=m' (A6)
and
Ve =75 () = (74 ) g B (A7)

the last equality follows from (A9) below.
Similarly, by integrating u out of the joint density (A4) one finds that the prior
density of o2 is given by

(ch)}v-l
f(oz) o (]Vo'2 + v'v')*(”+l’,+a(n')_1},

0<o?<00, (A8)

i.e. No?/(No?+v'v") has a prior beta distribution, or No? has what Raiffa and Schlaifer
term an “inverted beta-2” distribution. The prior mean and variance of o2 are given by

E(o%) = ”’ZN];l, V'>2, (A9)
and
W+ =)V (N=1\2
V(o?) = (v’gi 5 (3,(1';)) ( E ) V>4, (A10)

Posterior on p

Turning to the posterior distribution of u we prooecd as follows: given the sample
(s,x) with observed mean X% and variance s% = (n—1)~ }_‘,ies(xi—x)z the posterlor
distribution of the superpopulation parameters (with the prior given in (20)) is also
normal-gamma with density given by

#{h, 0] (s,x)} o exp{—$hn"(6—m")?} bt exp (— }"v"h) "1, (A11)
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where
,/=nml +nx, (A12)
n+n
n" =n'+n, (A13)
N _ 2 nn, s )2
Vo' =vv'+(m—1)s +n’+n(x m')?, (A14)
and
v =v+8n)+n—1. (A15)

From well-known properties of the normal-gamma distribution it follows that the
posterior expectation of § = E(X;| 0, k) is m" which, being linear in X, implies by the
theorem of Section 2.3 that the posterior mean of u must be of the weighted average
form displayed in (11). By the same argument used in obtaining (A1), the posterior
distribution of X is of the same form as the prior on X and is a degenerate N-
dimensional “Student” distribution concentrated in the subspace of dimension N—n
where S(X) = x. Equivalently, the posterior distribution of the N—#n unobserved
X;’s is a non-singular N—n dimensional “Student” distribution having a density of
precisely the same form as the prior on X, (Al), obtained by replacing X by S(X),
N by (N—n), and the primed parameters by the double-primed parameters given in
(A12)~(A15). The derivation of the posterior distribution of u is analogous to that
of the prior. Let

1
H’§_N_n§sX’b
and
1
2 - — )2
o= T S )

be the mean and variance of the unobserved X;’s, i.e. of the elements of S(X). It is
then clear that

Slus 03[ h, 6,(5,%)} o htexp{—H(N —n) (u;— )%}
(oD N—n—D-1 jE(N-n—D) exp { — (N —n—1) o2h}. (A16)

Multiplying this expression by the posterior density of (&, 8) given (s, x), (Al11), and
integrating out (%, 6) we find, in direct analogy with (A4), that

S 0| (5, %)} oc {(N—n—1) oBN=n-11

"n,.n n” N—n ” —HN—n)
{(N—n—l)o§+v v +,;“|€TL—)([J§—”1 )2} (A17)
Integrating out o2, one finds
” l’l” N—n ” —H0rH)
Flals e v+ C D ] (A18)

or the posterior distribution of g is like that of m"+¢,{(N—n+n")v"[(N—n)n"}},
where #,. is a standard ¢ random variable on v” degrees of freedom.
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Since pu = {n%+(N—n) ug}/N, it follows readily that the posterior distribution of u
given (s, x) is like that of

n_ N-n , (N—n+n")(N—n)v"\?
e m +t,,.{ i } : (A19)
and thus using (A12)~(A15)
_n_ N-n_, nN+n)Z+(N—-nn'm
E{MI(S9 X)} - Nx+ N m = N(nl +n) > (A20)
and
_ N n+nl/ (N n) V” "
V{Hl (S, X)} ”N2 V”—2
_ N—nN+n'{y'v'+(n—1)s+nn'(X—m')%/(n+n’) (A21)
N2 n+n v +8(n)+n-3 )

Since the condition of the theorem of Section 2.3 holds here, we may identify
(A20) and (11). Making use of the fact that ¥(u) has the form in (A7) we deduce that

N—n Vv

nN v -2
Further in this case it follows from the fact that the joint prior on X is “Student”
(formula (A1)) that the conditional distribution of X given w has density

x _ N o\ @)
and hence it follows (Raiffa and Schlalfer, 1961) that
N n v
V(X|p) = d

and thus the posterior mean of p, (A20), may be recast as

V(W x+V(X|wm'
Elwl 620 = =505 v @l

Finally, it may be observed, using (A7), (A21) and known properties of the normal-
gamma distribution, that

_ V” " ’ VI—2 0
Vo) = M7 ey M e = FG Y v

Part (a) of the theorem is thus established using these results and (A19).
In the special case of the diffuse prior on (0, k) given by (21), all of the above results
hold merely by taking n’ = v’ = 8(n’) = 0. This yields part (b) of the theorem.

EV(X|p) = (A22)

(A23)

= EV(X|p),

(A24)

(A25)

Posterior on o?

While the posterior distribution of o2 is relatively messy, low moments may be
found. For example, the posterior expectation of ¢ may be found as follows: First
we note that

(F—ps

(=D = 3 (X T
i¢s N
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where u; is the mean of the N—n unobserved X;’s. Taking the expectation of this
expression, first conditional on 6, A, and (s, x) we find

E{No*—(n—1)5%| 0, h, (5, x)} = & — '%N Dy (G- ).

n(N—n)
N

Then taking the expectation of this quantity with respect to the posterior distribution
of (6, ) given (s, x), using known properties of that normal-gamma distribution, and
after some manipulation we have

_(m=1s? (N—n){N(m+n)—n'}
Bl =5 [l N+ 8(n’)+n—3}]
' —2)(N—n){N(n+n")—n'} E(c®
NWN-1)@m+n){y +6(@m)+n—3}

nn'(N—n) [0'{'+8(@)+n—4}+N@m+n')] , _
Nen+n ) '+ o) +n—73} F—EG}

+

(A26)

For the diffuse prior obtained by taking v' =n' = 6(n') =0

E{®|(s, %)} = (:%; %) .

DIscUSSION ON PROFESSOR ERICSON’S PAPER

Professor M. R. SaAMprorD (University of Liverpool): It gives me great pleasure to see
Professor Ericson here, and to have the opportunity of proposing the vote of thanks on
his extremely interesting paper. I find myself in a slight difficulty here. By Society tradition
the proposer of the vote of thanks is expected to be kind to the speaker: I thus find myself,
a non-Bayesian, having to be kind to a Bayesian! Perhaps we should have a film of this
rare and interesting event!

As T have said, I am not myself a convinced “Bayesian”—or, at least, not a convinced
practitioner of Bayesian methods. I agree, of course, that prior beliefs cannot safely be
ignored in the interpretation of experimental or survey results—no “thoughtful classical
practitioner”, to borrow a happy phrase from our speaker, can reasonably think otherwise.
Further, I accept that the use of Bayes’s theorem provides an apparently less arbitrary
method of taking account of such beliefs than the classical “method” of viewing with
extreme suspicion, and in sufficiently desperate situations repeating, any experiment whose
results conflict too violently with one’s prior notions. However, I remain unconvinced
of the practical value of the Bayesian argument—at least, in the field of biological and
agricultural statistics that I know best.

My reasons for remaining unconvinced about Bayesian methods in survey analysis are
rather different from my reasons relating to experimentation. It is arguable that
experimentation is a private activity (I am well aware that this is an oversimplification!),
so that if the experimenter wishes to interpret his results subjectively, he has every right to
do so, and no one should be able to quarrel with his interpretation. The difficulty here, in my
experience, is that most biological experiments involve so much extraneous, uncontrollable
variation that an honest prior must be so diffuse as to be of little value (and even then
one must be prepared for results in a particular experiment to be so anomalous as to suggest
that the experimental conditions achieved were quite different from those envisaged, so
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that the experimenter may, quite validly, choose to ignore them as being unrelated to his
intentions, rather than to use them to modify, however slightly, his prior beliefs).

From a practical viewpoint, on the other hand, there is often a great deal more
justification for adopting Bayesian methods in analysing survey data. We rather seldom
find ourselves sampling from a completely unknown population; at worst we have a
general idea of the sort of variability to be expected, while at best we may have either a
quite accurately determined prior, based on extensive observation (as in acceptance
sampling), or (as in some surveys) a great deal of information about individual units. The
choice of a realistic prior may thus not present any great difficulty. However, survey
sampling is an essentially public activity, and one must therefore question the social
validity of any single subjective interpretation of a set of survey results, when such an
interpretation may directly affect the actions, and possibly the whole lives, of so many
different subjects. I think Professor Ericson agrees with me here, in that he recognizes the
fact that the results of the survey need to be available, so that the user may, if he wishes,
reject any published subjective conclusions, and draw his own.

I would like to comment on one particular topic in detail— that of randomization. We
classical practitioners are, of course, by now quite used to hearing Bayesians blaspheming
this central article of our faith, and there are no doubt others like myself present who feel
that, while he is prepared to contemplate the possibility of random sampling, Professor
Ericson is not beyond hope of salvation. He could have been, and I feel he should have
been, more explicit on this topic, and in choosing to comment on his remarks, I have in
mind that, as far as I can make out, several recent disputes in the field of sampling theory
have arisen largely, if not entirely, because neither of the participants was clear what the
other was trying to do.

I am a classical practitioner, and I hope a thoughtful one, and I am willing to agree, if
I may quote from p. 198, that “the notion of exchangeability very closely approximates
[my] opinions in many situations where [I] deem simple random sampling to be
appropriate”, but only if I am allowed to sample at random, or, in other words, if I am
allowed to ensure exchangeability by randomizing my population unit labels before
sampling. Professor Ericson allows me to do this, on the grounds that my true opinions
will not in general be exactly exchangeable, but only roughly exchangeable, in which case
he appears to feel that randomization provides a convenient simplification. This seems to
me to be a dangerously casual way of disposing of one of the basic features of statistical
variation—namely, non-independence.

In many finite populations the units follow some systematic arrangement, either spatial
or temporal, and one cannot discount the possibility that pairs of neighbouring units will
be more similar than pairs of remote units—in other words, that one’s population displays
some measure of clustering, or clumping. Stratification will, of course, go some way
towards removing this effect, but often only part of the way. In fact, it is hard to envisage
a situation in which I would be willing to accept Professor Ericson’s arguments, and follow
his methods, without prior randomization. It seems to me that, for most practical applica-
tions, the element of randomization must be regarded as an intrinsic part of this method,
though he would possibly not agree. (Of course, the situation in which one has individual
priors for all units is quite different: if one intends to adopt a Bayesian argument,
randomization is then not merely unnecessary under the circumstances, but downright
misguided—one should obviously expend one’s sampling effort on the units with the most
diffuse priors.)

Having spent most of my time explaining that, in the light of my own experiences, his
paper seems a somewhat academic exercise, I must now conclude by saying that I found it
(as such) interesting and attractive, and most enjoyable to read and to listen to, and that I
admire the plausible simplicity of many of his results, and the way in which he has presented
such a “‘solid” paper in such a short space of time. I can even envisage some situations in
which I might be moved to adopt his method! It gives me great pleasure to propose the
vote of thanks.
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Dr A. Scort: (London School of Economics): As Godambe has been pointing out for
a number of years, there are special difficulties involved in the formulation of a satisfactory
theory of inference when the population consists of a finite set of identifiable elements.
Professor Ericson is to be congratulated on his careful account of how these difficulties
can be overcome in a Bayesian approach.

The two-stage approach to generating the prior distribution by setting up a parametric
superpopulation and then choosing a prior distribution for the parameters of the super-
population brings out very clearly the natural correspondence between sample survey work
and the mainstream of statistical theory. This is an attractive feature and perhaps might
help to end the comparative neglect of the survey field by most mathematical statisticians.
Some common ratio and regression estimates have been shown to arise as special cases of
ordinary regression theory, and the extension of the work in Section 3 to stratified sampling
can be achieved easily using results for the one-way analysis of variance.

An important topic not covered in the paper is that of multi-stage sampling which is a
natural analogue of the random effects model on the analysis of variance. Smith and
myself have recently done some work exploiting this correspondence.

As Professor Ericson remarks, the concept of a superpopulation has been widely used
in survey work, both for comparing the performance of estimates and particularly in
analytic surveys to make comparisons between the characteristics of sub-groups. Once the
superpopulation model has been set up, it seems more meaningful to work with the
parametric likelihood generated by the model instead of the rather sterile finite population
likelihood given in (1).

A model similar to that of Section 4, in which the X’s assume only a finite set of values
and the element labels carry no information, has recently been considered by Hartley and
Rao (1968). Their approach is a more conventional one based on simple random sampling
which leads to the generalized hypergeometric distribution of (34). Given the close
relationship between exchangeability and simple random sampling and the intuitive
interpetation of exchangeability as an effective pre-randomization, it seemed rather
surprising that the result of (34) should depend on the particular prior distribution chosen.
In fact, it is easy to see that the result is much more general and holds for any prior
distribution. This seems more natural and so, in a sense, the approach is similar to the
approach of Hartley and Rao. They are nmainly concerned with finding UMV and
maximum-likelihood estimates but do have a section on a Bayesian approach with a prior
distribution for the hypergeometric parameter N and the prior they choose is also of the
Dirichlet multinomial type. They derive expressions for the posterior mean and variance
of the moments of the finite population, so they are actually dealing with things rather
similar to Professor Ericson. I think that their results are equivalent to those given in
(43) for the posterior mean of the finite population, and in (48) for the variance of the
finite population.

A number of people working on problems of sampling inspection have also been
interested in Bayes’s estimates for the hypergeometric distribution, most notably Hald
(1960), who gives a number of interesting results including some for the Pélya distribution
which contains the Dirichlet multinomial as a special case. These results are for £<2 but
the extension to k> 2 is fairly simple.

A final comment on the area of estimation: it seems to me that if it is expected that
works such as these are going to make an impact on people who actually carry out surveys,
there needs to be work done on making the technical details more palatable. The problems
of estimation seem relatively simple when compared with the problems of design. There
has never been a satisfactory Bayesian approach to design problems, and Professor
Ericson has made an important first step on the problem in the discussion in Section 2 and
he hints he can suggest good reasons for a Bayesian to draw a stratified random sample
when his opinions about the elements within a stratum are roughly exchangeable. I
look forward with interest to the paper he promises on the subject. This is only the very
simplest case, although it is an important subject, and there is a long way to go. Variable
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probability sampling methods have been used widely without any noticeable dissatisfaction
amongst users. It seems a pity there has been no discussion at all from a Bayesian view-
point so far on some of the more complex design problems—perhaps the author has
some comments on this.

I would like to thank him very much for an important attack on a difficult problem,
and I therefore have much pleasure in seconding the vote of thanks.

The vote of thanks was put to the meeting and carried unanimously.

Professor M. StoNE (University College London): A little mystery has been cleared up
by the reference to Karl Pearson in tonight’s paper. For some time, newcomers in our
Department at University College have been intrigued by the source of a large framed
likelihood function on one of the walls.

May 1 join in the surprising reference game by mentioning Pearson and Sukhatme
(1935), who derive (24) in fiducial and confidence interval terms?

Professor Ericson’s message is beautifully clear—anything that classical statistics can
do, Bayesian statistics can do better. I want to fight a small rearguard action in the context
of Karl Pearson’s example, which may be formulated as the problem of estimation of the
total number of affected individuals in a labelled population of size N when we are allowed
to take a sample of size n.

On the question of randomization, Professor Ericson suggests that we randomize when
it does not matter, that is, when prior distribution is nearly exchangeable. The prior
distribution then becomes perfectly exchangeable and may be employed without much
average loss of information relative to the direct use of the nearly exchangeable prior.

This suggestion is in apparent contrast to Fisher’s principle which is to randomize when
it is likely to matter and when it is not known which systematic design will provide proper
safeguards. But harmony prevails when the insightful Bayesian remarks that exchange-
ability is the Bayesian equivalent of Fisher’s conditions.

But the harmony is disrupted when it comes to analysis. Suppose, in our example, the
sample of size n were obtained by random sampling and that all » individuals were found
to be affected. Let H; and H, denote the two extreme hypotheses that, in addition to the
observed data, all the unobserved individuals are affected and unaffected respectively. For
the Bayesian, the posterior odds for H,; against H, equal the prior odds. Your bets would
be the same whether you were to make a conditional bet on H; or H, either before or after
the data.

The Fisherian approach is, as one might expect, full of ambiguity. The likelihood
ratio is unity so randomization tests of H, and H, might be envisaged:

P(number affected in random sample> number affected in actual sample | Hy) = 1,
P(number affected in random sample> number affected in actual sample | H,) = 1 / (]Z)

So the data would speak against H, in favour of H,, the remarkable nature of the actual
sample in relation to H, being overlooked. Now I think that there is something to be said,
once we are off the Bayesian turf and into the area of scientific research, for using
randomization in this way to punish hypotheses such as H, for their ad hoc appearance.

Professor D. V. LiNDLEY (University College London): Tonight’s paper is an important
contribution to our understanding of both Bayesian methods and sampling from a finite
population. In particular it highlights the significant role played by a prior distribution
even when it superficially appears uninformative. It also demonstrates a substantial
difficulty in the Bayesian approach, namely the expression of these prior ideas in a realistic
and yet tractable form: in particular I notice that Ericson experiences the same difficulty as
myself in the unsuitability of the Dirichlet prior in adequately conveying the full impact
of the initial knowledge. A suitable prior is desperately needed here, for example, in
problems of medical diagnosis.
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Tonight I should like to describe briefly a situation in which the exchangeable prior is
unsuitable and the prior knowledge is of a different type. The work is being done jointly
with P. Brown. A chemical can be described by a sequence of n, say, zeros and ones: a one
in the rth place indicating that a particular chemical bond is present, a zero similarly
signifying its absence. Conversely each sequence describes a possible chemical (Table 1).

TABLE 1
Chemical Activities

o Y
000 0 0 1
001 0 1 0
010 0 0 1
100 0 0 0
011 ‘0 0 0
101 0 0 0
110 1 0 0
111 1 1 0

Consider the finite population of 2” chemicals: these are Ericson’s N distinguishable
elements and they may easily be enumerated by translating the sequence into binary
arithmetic. Any one of these chemicals can be tested for biological activity: in the simplest
situation the result can be a zero or a one corresponding to the absence or presence of
activity. These are the characteristics, X;, of the paper. To illustrate consider the simplest
non-trivial case, n = 3. Table 1 enumerates the eight chemicals and three possible
types of biological activity. The first, designated «, is chemically easily explained by
activity being caused by the simultaneous presence of the first two chemical bonds.
However B has no such simple chemical explanation. Nevertheless, « and B are permuta-
tions one of another. Thus we see that exchangeability is unreasonable here because the
chemist has a priori reasons for thinking that a simple explanation such as is associated
with « is more probable than a complex, artificial one of the 8 type.

What we have done is to express our ideas in terms of keys. Thus a-activity is associated
with a two-factor key: B-activity is not. We can, hopefully, express our prior beliefs about
the various types of key, recognizing that for a large value of » many keys may operate
simultaneously. Within a key some sort of exchangeability may be assumed: thus v lists a
two-factor key depending on the absence of the first and third bonds, and has the same
prior probability as «. The posterior distribution has the same form as Ericson’s
equation (3), namely zero for many keys, with the others all increased by the same factor.
Far from being unreasonable, this seems to capture the essence of the problem.

The practical object of this exercise is to help the scientist decide which chemical to
investigate with the greatest chance of biological activity. That is, to find s, 1 <s< N, with
maximum P(X, = 1). This has previously been done by some form of cluster analysis:
the device of keys gives an alternative approach.

Mr T. M. F. SmiTH (University of Southampton): I would like to add my congratula-
tions to Professor Ericson for his interesting paper. Buried deep in the mathematics are
some useful results for practical as well as theoretical statisticians. The key to Professor
Ericson’s approach is to consider the finite population as a sample from an infinite
superpopulation. In addition to this, as a Bayesian he requires the specification of a prior
distribution, and this assumes, to quote the paper, ‘“strong prior knowledge regarding the
shape of the finite population distribution by taking the superpopulation form as known”.
In the paper this problem is tackled by setting up a multinomial model, which entails some
rather complicated mathematics.
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Many survey practitioners find the concept of prior distributions hard to swallow while
accepting the usefulness of the superpopulation, as is evidenced by the quotations in the
paper referring to the use of superpopulations. An alternative to using prior distributions
within the superpopulation framework is to adopt an approach similar to that of the
Gauss—-Markov theorem and to consider only those estimates which are linear functions
of the observations. Taking the superpopulation model, with similar assumptions to
Professor Ericson’s, and assuming only that the mean and variance are finite, Dr Scott
and myself have shown that the simple random sampling mean, %, has minimum mean-
squared error among the class of all linear estimates with bounded mean-squared error.
As in this paper the result is independent of the sampling design.

The assumption of bounded mean-squared error is an assertion of vagueness about the
possible values of the parameter on a par with the use of diffuse prior distributions in the
Bayesian model, and it is not surprising that for both the normal and the multinomial
models considered in the paper diffuse prior knowledge leads to the simple random
sampling mean, X, as the estimate. Survey practitioners in many situations use % and hence
are acting as if they had diffuse prior knowledge.

If we look at the estimate suggested by Professor Ericson, given in (11), this requires
the subjective value of the prior mean of . Every user of a sample survey would have to
insert his own subjective prior value; in other words, every user would use a different
estimate in this particular situation. In my experience those carrying out survey research
and actually doing the estimation procedure are not the same people as those who actually
use the estimates as the end-product. You employ market researchers to carry out your
survey and they put the data on a computer and publish the estimates. It seems to me
that if you wish to have an estimate which is useful to a large number of users, the only
sensible assumption to make about prior knowledge is to assume diffuse prior knowledge
and hence to use X as the estimate. In this sense Professor Ericson has reinforced what is
often standard survey sampling practice. But it is not always standard practice because
sample survey practitioners sometimes use a design dependent estimate, which may differ
from %, and if the assumptions of this paper are satisfied they would be better to use X. So
this paper is also a contribution towards changing standard practice.

Professor D. F. KerRrIDGE (University of Aberdeen): I want to say something in
defence of the Bayesian point of view. To start with, let us look at the basic problem.

The practical user who first meets the problem of sampling from a finite population
cannot see the theoretical difficulties involved. Imagine a simple finite population consisting
of 1,001 animals, of which 1,000 are mice weighing 1 oz., and one is an elephant, weighing
10 tons. Take a random sample of 10 from this population, and you will see that there is a
99 per cent probability that you get an average weight of 1 oz. and just 1 per cent
probability that you get an average of 1 ton. Since the true average is a hundredth of a
ton, neither answer is very helpful.

Clearly, therefore, if you are to make sense of an inference, you have to impose some
constraints on your problem, such as “no elephants allowed”. There are two ways of
doing this. The frequentist introduces an imaginary superpopulation and says “my sample
of animals is drawn from a superpopulation of mice”, or perhaps one containing a certain
proportion of elephants. The alternative is to introduce Bayesian prior probabilities.

What strikes me as strange about the frequentist approach is their willingness to admit
this superpopulation at all because on standard frequentist principles, as applied rigidly in,
for example, confidence interval estimation, there is only one true mean, not a distribution
of means. Although this works in sampling from an infinite population, it fails to produce
sensible results with a finite population, so the frequentist has to admit the imaginary
superpopulation. I cannot see how this is very different from using a prior distribution.
It expresses the same knowledge, the same story as to how the population of the animals
arose, and it in fact expresses a strong opinion about the presence or absence of elephants.
If that is not Bayesian prior probability, I do not know what is.
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The following contributions were received in writing, after the meeting:

Professor V. P. Gopamsk (University of Waterloo, Ontario): I congratulate Professor
Ericson for his excellent paper which sets out in many details the implications of the
Bayesian viewpoint for survey-sampling.

I entirely agree with Professor Ericson (Section 2.2) that the likelihood function (1) of
Section 1, which I (1966, 1968, 1969) have been advocating is “general and virtually free
from any subjective element”. This likelihood function is, however, individualistic in
contrast to the conventional (Royall, 1968) likelihood function which is frequency oriented.
This can be further elaborated as follows. The conventional frequency statement

PA4|B)=r, )

asserts that “in the class B of the individuals (i, say) the proportion of the individuals
possessing the property A4 is r”’. It is important to note that the statement (I) does not
speak about any particular individual . On the other hand, de Finetti’s (1937) probability
theory replaces statement (I) by

P(Giisan A|iisaB)=r, (1))

which is an assertion about the individual i. Now let X; be the variate value associated
with the individual 7, in the population of N individuals, i = 1, ..., N. Further we write
X = (Xy, ..., Xx). The conventional (Royall, 1968) statement,

P(X=a|X)=r, (IID)

(analogous to the statement (I) above), asserts that “the proportion of X;’s in X which are
equal to « is . Further interpreting randomization more or less the same way as in the
Section 2.4, if X is unknown, the statement (III) defines the likelihood function for X given
that the randomly drawn X (we assume for simplicity that only one draw was made) was
equal to a. This likelihood function, I would say, is frequency oriented as it is based on
the probability statement (III) which (analogous to the statement (I)) says nothing at all
about any specific individual i of the population. However, one can replace the probability
statement (III) by

P(Gand X; = «|X)=1/N or 0 accordingas X; = « or =+ a. av)

This statement is clearly analogous to the statement (II) above and it gives the likelihood
function which is a special case of (1) of Section 1. This likelihood function, I say, is
individualistic as it is derived from the probability statement (IV) which, unlike (III),
speaks about the specific individual i. Yet, of course, the likelihood function (1) of
Section 1 is virtually objective as Professor Ericson correctly points out. The two
statements (III) and (IV) above can imply surprisingly different logical conclusions. This
is best illustrated by the demonstration (Godambe, 1955) of the non-existence of UMV
estimation.

Now I come to the second point. Again I believe Professor Ericson has rightly noted
(Section 2.2) the similarities of a subjective exchangeable prior and objective distributions
induced by simple random sampling. The more I meditate about it the more I realize the
profundity of the issue involved here. A very commonly shared feeling about randomization
is that it provides some protection to the inference in case the underlying assumptions go
wrong. In other words, randomization renders inference more robust. Possibly one
explanation of this robustness, as pointed out by Professor Ericson (Section 2.4), is that
randomization safeguards the assumption of the exchangeability of the subjective prior
distribution. A second explanation which utilizes the similarities, referred to above, of a
subjective prior and the sampling distribution obtained by randomization is as follows.
Suppose on the basis of some subjective prior distribution ¢ the statistician makes a
posterior probability statement (about the unknown finite population mean ),

Py(o; > p> oy | data) = r, W)
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oy, oy, r being some specified numbers. Of course almost never can the statistician be sure
that some specific prior distribution ¢ truly represents his prior knowledge. However, in
some situations he can be fairly certain that his true prior distribution belongs to a certain
class C of prior distributions. On the other hand, the statistician may consider some
specified £ in C as the most plausible or even most convenient distribution to work with.
Hence he would assert the statement (V) above but would like his statement to be protected
in some sense in case £ is not the true prior. This, sometimes, can be done by introducing
appropriate randomization, i.e. appropriate sampling design. For instance, the above-
referred-to class C of priors may imply (or approximately) that the finite population
X = (X, ..., Xn) belongs to a subset B of the Euclidean N-space. With the appropriate
sampling design then one may (in a frequency sense) be able to assert

P(oy>p>0,|X) = r for all X e B. (VD)

Now the validity of (V) is independent of sampling design, however, the validity of (VI)
essentially depends upon the appropriate sampling design. Hence if the statistician due to
incorrect analysis of his prior knowledge assumes £ to be his prior distribution and hence
makes the implied incorrect assertion (V), numerically his assertion would still be true in
frequency sense as (VI), provided he had used some appropriate sampling design. Thus,
the frequency assertion (VI), though weak for a single case situation, still renders the
Bayesian assertion (V) considerably robust. This robustness, as we have noted, depends
upon the use of some appropriate sampling design. Interestingly, however, the appropriate-
ness or otherwise of a sampling design is determined by the prior distribution £. I have
worked out in detail some illustrative examples which I hope to be able to publish soon.
Earlier comparisons of frequency and Bayes inferences are due to Bartholomew (1965).

Professor L. Kisa (University of Michigan): This is a substantial contribution to
justify and explain in Bayesian terms the role of randomization in sampling from a finite
population of distinguishable elements. The need to find that role had recently become a
dilemma and embarrassment for thoughtful Bayesians. It was perhaps only in less thought-
ful and more playful moods that the need was denied.

Exchangeability (or something much like it) can become a strong 11nk between Bayesian
and “classical” theory. To assess exchangeability each must ultimately utilize mixtures of
empirical evidence and of judgement, and randomization serves as means to that end.
First, note that randomizing operations and tables of random numbers must ultimately be
accepted or rejected by (personal) judgement. Second, a vast portion of research evidence,
even today and tomorrow, must be accepted, analysed and inferred from mere assumptions
of exchangeability and without actual randomization.

On the other hand, randomization is not merely one but the primary means to exchange-
ability. The statements in Section 2.4 bear stronger emphasis and elucidation. First,
without randomization the existing order of labels of real populations never justifies
exact exchangeability, only approximations, with varying and vague risks. Second,
statistics in research and in much else must be public, and so must be exchangeability.
Third, statistics and sampling cannot exist without economics; the costs of randomization
and its alternatives must be considered when choosing between them.

Real statistics for the real world is the motivation, I think, for the Bayesian departure
from the clear simple world of sampling distributions. It is a difficult path, as this paper
shows. In survey sampling we must face further complexities due to stratification, unequal
selection probabilities, and especially cluster and multi-stage selection. Can these be
best handled with complex prior distributions, or with modifications of the likelihood
function ?

To be useful for practice and teaching the theory must be simplified somehow. I
even wonder if exchangeability can some day yield a new simple and adequate theory of
(or similar to) sampling distributions. The problems and difficulties discussed here are not
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confined to survey sampling, but exist also for experimental design and other forms of
statistical investigations. None of these can be satisfied with merely the means of simple
random samples.

The author replied briefly at the meeting and subsequently more fully in writing, as
follows:

First, I would like to thank the discussants for their comments.

Some issues raised by several speakers might be clarified somewhat if I briefly indicated
some of the motivation underlying this work. Generally, the impetus arose from a desire
to find a Bayesian framework or model within which to consider problems of inference and
design in sampling finite populations. Such a model had to yield “sensible” answers in the
simplest cases (those treated in the present paper) and yet be potentially flexible enough to
encompass more complex practical situations. These criteria led to the general avoidance
of the class of priors which take the components of X to be independent. Professor
Stone’s example seems to be the result of such a prior; when the prior on X is taken as in
(26) with a rectangular distribution on p the likelihood ratio and the posterior odds in

favour of his H; and against H, are simply (]:) They also resulted in the retention of the

unit labels in the basic model put forth in the first three pages of the paper, even though
under an exchangeable prior the labels are totally irrelevant for most practical purposes.

I felt that in many situations more informative inferential statements were possible
from finite population samples than those which traditionally characterize this area. I also
suspect that these include cases which are “public” in the spirit of comments by Professors
Sampford and Kish and Mr Smith. The Bayesian approach seems suited to providing this
as well as a natural approach for formal consideration of ‘“non-sampling” errors, e.g.
response error, bias and non-response. Some work by Mr C. T. Tharakan is in progress
on these topics. No matter what point of view one takes on the inference question, the
Bayesian approach seems ideal for handling questions of optimal design and sample size,
questions where decisions must be made and where prior information and economic
considerations clearly dominate. While the present paper has concentrated more on simple
inference problems, some aspects of optimal stratified sample design have been treated in
Ericson (1969a).

My comments on randomization are not, in any sense, intended to be complete but
rather indicative of one possible factor contributing to a Bayesian role for randomization—
a part which becomes less important as prior information increases.

In reply to Professor Sampford, I do feel that when my prior is roughly exchangeable,
randomization provides a convenient simplification without much loss of information. On
the other hand, if I had information leading me to believe that the unit values followed
some systematic pattern I would then certainly exploit this by incorporating it into my
prior distribution. In many cases this would lead to a non-exchangeable prior and would
result in some restricted role for randomization. In any event, under the general model
put forth there is always a (marginal) prior on each X; and a reasonable optimal design
criterion would certainly lead one to sample those units effecting the greatest expected
reduction in posterior variance. However, there may be many equivalent best designs
under this criterion and randomizing among them would seem judicious.

I certainly agree with Dr Scott that equation (34) is independent of f“(p). The return
reference provided by Professor Stone is equally appreciated. I tend to agree more with
Professor Kerridge than with Mr Smith on the place of the superpopulation concept. From
my point of view it often serves as a convenient artifact, but only as a halfway house in
establishing an exchangeable prior.

Finally, I look forward to seeing more details on the example put forth by Professor
Lindley and on Professor Godambe’s robustness studies.
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