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Abstract

We study maximum likelihood estimation for the statistical model for both directed and undirected

random graph models in which the degree sequences are minimal sufficient statistics. In the undirected case,

the model is known as the beta model. We derive necessary and sufficient conditions for the existence of

the MLE that are based on the polytope of degree sequences, and wecharacterize in a combinatorial fashion

sample points leading to a nonexistent MLE, and non-estimability of the probability parameters under a

nonexistent MLE. We formulate conditions that guarantee that the MLE exists with probability tending to

one as the number nodes increases. By reparametrizing the beta model as a log-linear model under product

multinomial sampling scheme, we are able to provide usable algorithms for detecting nonexistence of the

MLE and for identifying non-estimable parameters. We illustrate our approach on other random graph

models for networks, such as the Rasch model, the Bradley-Terry model and the more general p1 model of

Holland and Leinhardt (1981).

Keywords: beta model, polytope of degree sequences, random graphs, Rasch model, p1 model

1 Introduction

Virtually all models for network data rely, directly or indirectly, on the information contained in the de-

grees associated with the nodes of the corresponding graphs. The simplest instance of such a model is
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the beta model (a named coined by Chatterjee et al., 2011), the exponential family of probability distri-

butions for undirected random graphs for which the node degrees are natural sufficient statistics. Its rel-
evance and use in the social sciences and in the physics literature is detailed and extensively reviewed by

Newman et al. (2001), Newman (2003), Park and Newman (2004) and Blitzstein and Diaconis (2009), and

references therein. The beta model is a simple undirected version of the p1 class of statistical models for
directed networks introduced by Holland and Leinhardt (1981), discussed later in section 6.4. In this article

we address the issue of existence of maximum likelihood estimates of the probability parameters of the ex-
ponential family of probability distributions for both directed undirected random graphs for which the nodal

degrees are natural sufficient statistics.

Lauritzen Lauritzen (2003, 2008) characterized beta models as the natural models for representing ran-
dom binary symmetric arrays that are weakly summarized, i.e., random arrays whose distribution only de-

pends on the row and column totals. The properties of these models are linked to the solutions of a certain

system of functional equations of Rasch type, as well as to the properties of exchangeable and summarized
doubly infinite random arrays. More recently, Chatterjee et al. (2011) have conducted an extensive analysis

of the asymptotic properties of the beta model, including existence and consistency of the MLE as the dimen-
sion of the network increases, and have provided a simple algorithm for estimating the natural parameters.

Furthermore, they have fully characterized the graph limits, or graphons, corresponding to a sequence of beta

models with given degree sequence (for a connection between the theory of graphons and deFinetti’s theo-
rem for exchangeable arrays see Diaconis and Janson, 2007; Diaconis et al., 2008). Barvinok and Hartigan

(2010) also explores the asymptotic behavior or sequences of random graphs with given degree sequences,

proving that a different mode of convergence takes place. In their analysis, the Barvinok and Hartigan show
that, as the size of the network increases, the number of edges of a uniform graph with given degree se-

quence converges in probability to the number of edges of a random graph drawn following a beta model
parametrized by the MLE corresponding to degree sequence. Blitzstein and Diaconis (2009) consider the

problem of carrying out exact inference for the beta model and propose an algorithm for sampling from the

set of graphs with given degree sequence (see also Viger and Latapay, 2005). The same problem is tack-
led also by Hara and Takemura (2010) and Ogawa et al. (2011) and by Petrović et al. (2010), who study

Markov bases for the beta and the more general p1 directed network model, respectively.

Here we investigate in detail the issue of existence of the MLE for the parameters of the beta model
under a general sampling scheme in which each edge is observed a fixed number of times. Using the theory

of exponential families, we provide necessary and sufficient conditions for existence of the MLE that are
based on the polytope of degree sequences, a well-studied polytope arising in the study of threshold (see

Mahadev and Peled, 1996). We show how nonexistence of the MLE is brought on by certain forbidden pat-

terns of extremal network configurations, which we fully characterize in a combinatorial way. In particular,
when the MLE does not exist, we can identify exactly which probability parameters are estimable. To il-

lustrate our findings, we rely on the computational algebraic software polymake (see Gawrilow and Joswig,

2000) to compute the forbidden configurations leading to nonexistence of the MLE. Next, we use the prop-
erties of the polytope of degree sequences to formulate geometric conditions that allow us to derive finite

sample bounds on the probability that the MLE does not exist. When applied to the random graph model
of fixed degree sequence, our asymptotic result sharpens the analogous result of Chatterjee et al. (2011).

Our numerical experiments with polymake are based on re-expressing the beta model as a log-linear model

under the product-multinomial sampling scheme. Though highly redundant, this reparametrization, which
in polyhedral geometry is known as the Cayley embedding, has the crucial advantage of yielding geomet-

ric objects that are simpler to analyze, both computationally and theoretically. This approach harks back

to the earlier re-expression of the Holland-Leinhardt p1 model and its natural generalizations as log-linear
models (Fienberg and Wasserman, 1981a,b; Fienberg, et al.).

While we do not pursue a detailed treatment of the theoretical and algorithmic connections with the
broader theory of log-linear models, for which the interested reader is referred to Fienberg and Rinaldo

(2011), we repeatedly use the Cayley embedding device to analyze other network models that are variations

on or generalizations of the beta model: the Rasch model, the Bradley-Terry model and the p1 model. Our
analysis illustrates a principled way for detecting nonexistence of the MLE and identifying non-estimable
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parameters that applies more generally to discrete models.

In addition to improving upon the results of Chatterjee et al. (2011) concerning the probability of an
existent MLE for the beta model as the number of nodes increases, we exemplify the relevance and use of

polyhedral geometry in dealing with nonexistence of the MLE and and identification of estimable parameters

in discrete linear exponential families. For a more in-depth study of the geometric properties of log-linear
models under general sampling schemes, we refer the reader to Fienberg and Rinaldo (2011).

We proceed as follows. In section 2 we describe a generalized version of the beta model in which we
observe the edges of a graph a fixed number of times, possibly larger than one, and we express it as a natural

exponential family with linear sufficient statistics. We obtain the beta model as a special case in which we

observe edges only once. In section 3 we introduce the polytope of degree sequences and use it to derive
necessary and sufficient conditions for the existence of the MLE. In particular, we characterize the patterns

of edge counts for which the MLE does not exist, called co-facial sets. In section 3.1 we show a number of

examples of co-facial sets, obtained using polymake. Furthermore, we use a result from Mahadev and Peled
(1996) to show in section 3.2 how to construct virtually any example of random graphs for which the MLE

of the beta parameters does not exist. In section 4 we once again use the polytope of degree sequences to
obtain finite sample bounds on the probability that the MLE does not exist. As the number of objects to be

compared increases, the MLE exists with probability approaching one. In section 5 we describe a general

procedure for computing and identifying facial sets and, in section 6, we apply them to the Rasch model,
a generalized beta model with no sampling restriction on the number of observed edges, the Bradley-Terry

model and p1 directed graph models.

Notation

For vectors x and y in the Euclidean space R
n, we will denote with xi the value of x at its i-th coordinate and

with 〈x, y〉 := x⊤y =
∑

i xiyi their standard inner product. Operations on vector will be performed element-

wise. For a matrix A, convhull(A) and cone(A) denote the set of all convex and conic combinations of the

columns of A, respectively. For a polyhedron P , we denote with ri(P ) its relative interior. We will assume
throughout some familiarity with basic concepts from polyhedral geometry (see, e.g., Schrijver, 1998) and

the theory of exponential families (see, e.g., Barndorff-Nielsen, 1978; Brown, 1986).

2 The Beta Model

In this section we describe the beta model of Chatterjee et al. (2011) and introduce the exponential family

parametrization we will be using throughout the entire article.
The beta model focuses on the occurrence of edges in a simple undirected graph, whose nodes are

labeled {1, . . . , n}, for convenience, and whose edges are {(i, j), i < j}. The associated statistical experiment

consists of recording, for each pair of nodes (i, j) with i < j, the number of edges appearing in Ni,j distinct
observations, where the integers {Ni,j, i < j} are deterministic and strictly bigger than zero (the non-

randomness and positivity assumptions can in fact be relaxed, as shown in section 6.2 and 7, respectively).

For i < j, we denote with xi,j , the number of times edge (i, j) was observed and, accordingly, with xj,i the
number of times object edge (i, j) was missing. Thus, for all (i, j),

xi,j + xj,i = Ni,j .

This is the natural heterogenous version of the well-known Erdös-Rényi random graph model (Erdös and Rényi,

1959). For a more general discussion of this model and its generalizations see ?.

The observed edge counts {xi,j , i < j} are modeled as draws from mutually independent binomial dis-
tributions, with xi,j ∼ Bin(Ni,j , pi,j), where pi,j ∈ (0, 1) for each i < j. Accordingly, xj,i = Ni,j − xi,j has a

Bin(Ni,j , pj,i) distribution, where pj,i = 1− pi,j , for all i < j.
Data arising from such an experiment can be naturally represented through a n × n contingency table

with empty diagonal cells and whose (i, j)-th cell contains the count xi,j , i 6= j. For modeling purposes,
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however, it is enough to consider the upper-triangular part of this contingency table. Indeed, since given xi,j
with i < j, the value of xj,i is determined by Ni,j − xi,j , the set of all possible outcomes can be represented

more parsimoniously as the following subset of N(
n

2
):

Sn := {xi,j : i < j and xi,j ∈ {0, 1, . . . , Ni,j}} .

We will adopt the convention of indexing the coordinates {(i, j) : i < j} of any point x ∈ Sn lexicographically.

We parametrize the beta model by points in R
n, so that for each β ∈ R

n, the probability parameters are
represented as

pi,j =
eβi+βj

1 + eβi+βj
and pj,i = 1− pi,j =

1

1 + eβi+βj
, ∀i 6= j, (1)

or, equivalently, in term of odds ratios,

log
pi,j
pj,i

= βi + βj, ∀i 6= j.

For a given choice of β, the probability of observing a given vector of edge counts x ∈ Sn is

∏

i<j

(
Ni,j
xi,j

)
p
xi,j

i,j (1− pi,j)Ni,j−xi,j , (2)

with the probability values pi,j satisfying (15). Simple algebra shows that this probability can be written in
exponential family form as

exp

{
n∑

i=1

diβi − ψ(β)
}
∏

i<j

(
Ni,j
xi,j

)
, (3)

where the coordinates of the vector of minimal sufficient statistics d = d(x) ∈ N
n are given by

di =
∑

j<i

xj,i +
∑

j>i

xi,j , i = 1, . . . , n, (4)

and the log-partition function ψ : Rn → R by

β 7→
∑

i<j

Ni,j log
(
1 + eβi+βj

)
.

Note that eψ(β) < ∞ for all β ∈ R
n, so R

n is the natural parameter space of the full and steep exponential
family on Sn (see, e.g. Barndorff-Nielsen, 1978) with densities given by the exponential term in (3).

Random graphs with fixed degree sequence

In the special case in which Ni,j = 1 for all (i, j), the support Sn reduces to the set Gn := {0, 1}(n2), which

encodes the set of all undirected simple graphs on n nodes: for any x ∈ Gn, the corresponding graph has an

edge between nodes i and j, with i < j, if and only if xi,j = 1. In this case the beta model yields a class of
distributions for random undirected simple graphs on n nodes, where the edges are mutually independent

Bernoulli random variables with probabilities of success {pi,j, i < j} satisfying (15). Then, by (4), the i-th
minimal sufficient statistic di is the degree of node i, i.e. the number of nodes adjacent to i. The vector d(x)
of sufficient statistics is known as the degree sequence of the observed graph x.
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The Rasch model

The Rasch model (see, e.g., Rasch, 1960; Andersen, 1980), one of the most popular statistical models used
in item response theory and in educational tests, is concerned with modeling the joint probabilities that k
subjects provide correct answers to a set of l items. The Rasch model can be recast as a random bipartite

graph model with sufficient statistics given by the node degrees, where, without loss of generality, the
bipartition of the nodes consists of the sets I := {1, . . . , k} and J := {k + 1, n − 1, n}, with k ≥ 2 and

l := n− k ≥ 2. In this model, the set I represents the subjects and the set J the items, and edges can only be
of the form (i, j), with i ∈ I and j ∈ J . The sample space is given by the set Rn = {0, 1}kl, and the vector

x ∈ {xi,j , i ∈ I, j ∈ J} ∈ Rn encodes the bipartite graphs in which the edge (i, j) is present if and only if

xi,j = 1 if and only if subject i answered correctly to item j.

3 Existence of the MLE

We derive a necessary and sufficient condition for the existence of the MLE of the natural parameter β ∈ R
n

and, equivalently, of the probability parameters {pi,j, i < j}. Notice that nonexistence of the MLE entrails,
in the case of the natural parameters, that the supremum of the likelihood function (3) cannot be attained

by any finite vector in R
n, and, in the case of the probability parameters, that the supremum of (2) cannot

be attained by any set of probability values bounded away from 0 and 1.
To determine when the MLE exists, we first introduce a geometric object that will play a key role through-

out the rest of the paper. First, note that the vector of sufficient statistics d(x) for the beta model, for each

x ∈ Sn, can be obtained as
d(x) = Ax

where A is the n ×
(
n
2

)
design matrix consisting of the node-edge incidence matrix of a complete graph on

n nodes. Specifically, the rows of A are indexed by the object labels i ∈ {1, . . . , n}, and the columns are

indexed by the set of all pairs (i, j) with i < j, ordered lexicographically. The entries of A are ones along the
coordinates (i, (i, j)), when i < j and (i, (j, i)) when j < i, and zeros otherwise. For instance, when n = 4

A =




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


 ,

where the columns are indexed by the pairs (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4). In particular, as

pointed out above, for any undirected simple graph x ∈ Gn, Ax is the associated degree sequence.
The polytope of degree sequences Pn is the convex hull of all possible degree sequences, i.e.

Pn := convhull ({Ax, x ∈ Gn}) .

The integral polytope Pn is a well-studied object: see Chapter 3 in Mahadev and Peled (1996). In the lan-

guage of algebraic statistics, Pn is called the model polytope (see Sturmfels and Welker, 2011). In particular,
when n = 2, Pn is just a line segment in R

2 connecting the points (0, 0) and (1, 1), while, for all n ≥ 3,

dim(Pn) = n.
The main result in this section is to show that existence of the MLE for the beta model can be fully

characterized using the polytope of degree sequences in the following fashion. For any x ∈ Sn, let

p̃i,j :=
xi,j
Ni,j

, i < j,

denote the frequency of wins of i over j and set d̃ = d̃(x) ∈ R
n to be the vector with coordinates

d̃i :=
∑

j<i

p̃j,i +
∑

j>i

p̃i,j , i = 1, . . . , n. (5)
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Notice that, d̃ is a just a rescaled version of the sufficient statistics (4), normalized by the number of obser-

vations. It is also clear that, for the random graph model, d̃ = d.

Theorem 3.1. Let x ∈ Sn be the observed vector of edge counts. The MLE exists if and only if d̃(x) ∈ int(Pn).

Remark
Theorem 3.1 verifies the conjecture contained in Addenda A in Chatterjee et al. (2011): for the random

graph model, the MLE exists if and only if the degree sequence belongs to the interior of Pn. This result

follows from the standard properties of exponential families: see Theorem 9.13 in Barndorff-Nielsen (1978)
or Theorem 5.5 in Brown (1986). The theorem also confirms the observation made by Chatterjee et al.

(2011) that the MLE never exists if n = 3: since P3 has exactly 8 vertices, as many as possible graphs, no
degree sequence can be inside P3.

A significant consequence of the geometric nature of Theorem 3.1 is the possibility of characterizing the

patterns of observed edge counts that cause nonexistence of the MLE. This is done in the next result.

Lemma 3.2. A point y belongs to the interior of some face F of Pn if and only if there exists a set F ⊂ {(i, j), i <
j} such that

y = Ap, (6)

where p = {pi,j : i < j, pi,j ∈ [0, 1]} is such that pi,j ∈ {0, 1} if (i, j) 6∈ F and pi,j ∈ (0, 1) if (i, j) ∈ F . The set

F is uniquely determined by the face F and is a maximal set for which (6) holds.

Following Geiger et al. (2006) and Fienberg and Rinaldo (2011), we call any such set F a facial set of

Sn and its complement, Fc = {(i, j) : i < j} \ F , a co-facial set. Facial sets form a lattice that is isomorphic

to the face lattice of Pn as shown by Fienberg and Rinaldo (2011, Lemma 3.4). This means that the faces
of Sn are in one-to-one correspondence with the facial sets of Sn and, for any pair of faces F and F ′ of Sn
with associated facial sets F and F ′, F ∩ F ′ if and only if F ∩ F ′ = ∅ and F ⊂ F ′ if and only if F ⊂ F ′. In

particular, the facial set corresponding to Sn is the set {(i, j) : i < j}.
Facial sets are combinatorial objects that have statistical relevance for two reasons. First, non-existence of

the MLE can be described combinatorially in terms of co-facial sets, i.e. patterns of entries on the contingency
table that are either 0 or Ni,j . In particular, the MLE does not exist if and only if the set {(i, j) : i < j, xi,j =
0 or Ni,j} contains a co-facial set. Secondly, apart from exhausting all possible patterns of forbidden entries

in the table leading to a nonexistent MLE, facial sets specify which probability parameters are estimable. In
fact, inspection of the likelihood function (2) reveals that, for any observable set of counts {xi,j : i < j},
there always exists a unique set of maximizers p̂ = {p̂i,j , i < j} which, by strict concavity, are uniquely

determined by the first order optimality conditions

d̃(x) = Ap̂,

also known as the moment equations. Existence of the MLE is then equivalent to 0 < p̂i,j < 1 for all i < j.

When the MLE does not exist, i.e. when d̃ is on the boundary of Pn, the moment equations still hold, but the

entries of the optimizer {p̂i,j, i < j}, known as the extended MLE, are no longer strictly between 0 and 1.

Instead, by Lemma (3.2), the extended MLE is such that p̂i,j = p̃i,j ∈ {0, 1} for all (i, j) ∈ Fc. Furthermore,
it is possible to show (see, e.g., Morton, 2008) that p̂i,j ∈ (0, 1) for all (i, j) ∈ F . Therefore, when the MLE

does not exist, only the probabilities {pi,j, (i, j) ∈ F} are estimable.
Therefore, while co-facial sets encode the patterns of table entries leading to a non-existent MLE, facial

sets indicate which probability parameters are estimable. A similar, though more involved interpretation

holds for the estimability of the natural parameters, for which the reader is referred to Fienberg and Rinaldo
(2011).

Below, we further investigate the properties of Pn and provide several examples of co-facial sets associ-

ated to the facets of Pn.
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× 0

N1,2 ×
× N3,4

0 ×

Table 1: Example of a co-facial set leading to a nonexistent MLE.

× 0 1 2

3 × 2 1

2 1 × 3

1 2 0 ×

× 0 0.5 0.5

1 × 0.5 0.5

0.5 0.5 × 1

0.5 0.5 0 ×

Table 2: Left: data exhibiting the pattern reported in Table 1, when Ni,j = 3 for all i 6= j. Right: table
of the extended MLE of the estimated probabilities. Under natural parametrization, the supremum of the

log-likelihood is achieved in the limit for any sequence of natural parameters {β(k)} of the form β(k) =
(−ck,−ck, ck, ck), where ck →∞ as k →∞.

× 2 1 2

1 × 0 1

2 3 × 3

1 2 0 ×

× 0.225 0.384 0.725

0.775 × 0.225 0.551

0.616 0.775 × 0.725

0.275 0.449 0.275 ×

Table 3: Left: same data as in Table 2, but with the values for the cells (1, 2) and (2, 3) switched with the
values in the cells (2, 1) and (3, 2), respectively. Right: table of probabilities at which the log-likelihood is

optimal. The MLE of the natural parameters are β = (−0.237,−1.002,−0.237, 1.205).

× 0

N1,2 × 0 0

N3,2 ×
N4,2 ×

Table 4: Example of a co-facial set leading to a nonexistent MLE. In this case d̃2 = 0.

× N1,2

0 × 0 0

N3,2 ×
N4,2 ×

Table 5: Example of a co-facial set leading to a nonexistent MLE. In this case the second row sum is 0.

3.1 The Co-facial Sets of P
n

Theorem 3.1 and Lemma 3.2 both show that the boundary of the polytope Pn plays a fundamental role in

determining the existence of the MLE for beta models and in specifying which parameters are estimable.

Mahadev and Peled (1996) derived the facet-defining inequalities of Pn, for all n ≥ 4. For reader’s
convenience, we report this result below. Let P be the set of all pairs (S, T ) of disjoint non-empty subsets of

7



× 0 0

N1,2 × 0

×
N4,1 N4,2 ×

Table 6: Example of a co-facial set leading to a nonexistent MLE.

{1, . . . , n}, such that |S ∪ T | ∈ {2, . . . , n− 3, n}. For any (S, T ) ∈ P and y ∈ Pn, let

g(S, T, y, n) := |S|(n− 1− |T |)−
∑

i∈S

yi +
∑

i∈T

yi. (7)

Theorem 3.3 (Theorem 3.3.17 in Mahadev and Peled (1996)). Let n ≥ 4 and y ∈ Pn. The facet-defining

inequalities of Pn are

(i) yi ≥ 0, for i = 1, . . . , n;

(ii) yi ≤ n− 1, for i = 1, . . . , n;

(iii) g(S, T, y, n) ≥ 0, for all (S, T ) ∈ P .

The combinatorial complexity of the face lattice of an n-dimensional polytope can be summarized by

its f -vector, a vector of length n + 1 whose i-th entry is the number of i-dimensional faces, i = 0, . . . , n.
Stanley (1991) studies the number faces of the polytope of degree sequences Pn and derives an expression

for computing the entries of the f -vector of Pn. For example, the f -vector of P8 is the 9-dimensional vector

(334982, 1726648, 3529344, 3679872, 2074660, 610288, 81144, 3322, 1),

so P8 is an 8-dimensional polytope with 334982 vertices, 1726648 edges, and so on, up to 3322 facets. Also,

according to Stanley’s formula, the number of facets of P4, P5, P6 and P7 are 22, 60, 224 and 882, respectively

(these numbers correspond to the numbers we obtained with polymake, using the methods described in
section 5).

Despite the fact that much is known about Pn, the number of facet-defining inequalities appears to be
exponential in n and, consequently, the tasks of identifying points on the boundary of Pn and the associated

facial set remain computationally challenging. In section 5, we discuss these difficulties and propose a

solution for detecting boundary points and the associated facial sets that is based on a log-linear model
reparametrization. Using the methods and computations described in that section, we were able to identify

few interesting cases in which the MLE is nonexistent, some of which seem to be unaccounted for in the

statistical literature. Below we describe some of those cases.
Recall that the data can be represented as a n × n table of counts, in which the diagonal elements are

expunged and where the (i, j) − th entry of the table indicates the number of times, out of Ni,j , in which
the edges (i, j) was observed. In our examples, empty cells correspond to facial set and may contain any

count values, in contrast to the cells in the co-facial sets that contain either a zero value or a maximal value,

namely Ni,j . As we say in Lemma 3.2, extreme count values of this nature are precisely what leads to a
nonexistent MLE.

Table 1 provides an instance of a co-facial set, which corresponds to a facet of P4. Assume for simplicity

that each of the empty cells contain counts bounded away from 0 and Ni,j. Then the sufficient statistics d̃
are also bounded away from 0 and n− 1 and, and so are the row and column sums of the normalized counts

{ xi,j

Ni,j
: i 6= j}, yet the MLE does not exist. This is further illustrated in Table 2, which shows, on the left,

an instance of data with Ni,j = 3, for all i 6= j satisfying the pattern indicated in Table 1 and, on the right,
the probability values maximizing the log-likelihood function. Since the MLE does not exist, some of these

probability values are 0 and 1. The order of the pattern is crucial. Indeed, Table 3 shows, on the left, data
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containing precisely the same counts as in Table 2, but with the values in cells (1, 2) and (2, 3) switched with

the values in cell (2, 1) and (3, 2), respectively. On the left of Table 3 the MLE of the cell probabilities are
shown; as the MLE exists, they are bounded away from 0 and 1.

In Table 4 we show another example of co-facial set that is easy to detect, since it corresponds to a value

of 0 for the normalized sufficient statistic d̃2. Indeed, from cases (i) and (ii) of Theorem 3.3, the MLE does
not exist if d̃i = 0 or d̃i = n−1, for some i. Table 5 shows yet one more example of a co-facial set that is easy

to detect, as it leads to a zero row margin for the second row. Finally, Table 6 provides one more example
of a co-facial set, which unlike the ones in Tables 4 and 5, has normalized row sums and the normalized

sufficient statistics bounded away from 0 and n − 1. In Table 7 we list all 22 co-facial sets associated with

the facets of Pn, including the cases already shown in Tables 1, 4, 5 and 6.
In general, there are 2n facets of Pn that are determined by d̃i equal to 0 or n − 1 and 2n other facets

associated to values of the normalized row sums equal to 0 or n−1. Thus, just by inspecting the row sums or

the observed sufficient statistics, one can detect 4n co-facial sets associated to as many facets of Pn. However,
comparing this number to the entries of the f -vector calculated in Stanley (1991) and as our computations

confirm, most of the facets of Pn do not yield co-facial sets of this form. Since the number of facets appear
to grow exponentially in n, we conclude that most of the co-facial sets do not appear to arise in this fashion,

and methods for detecting them are called for. We discuss them in section 5.

3.2 Random Graphs with Nonexistent MLEs

When dealing with the special case of Ni,j = 1 for all i < j, which we showed to be equivalent to a model

for random graphs with independent edges and node degrees as minimal sufficient statistics, points on the
boundary of Pn are, by construction, degree sequences and have a direct graph-theoretical interpretation, as

shown in the next result.

Lemma 3.4 (Lemma 3.3.13 in Mahadev and Peled (1996)). Let d be a degree sequence of a graph G that lies

on the boundary of Pn. Then either di = 0, or di = n − 1 for some i, or there exist non-empty and disjoint
subsets S and T of {1, . . . , n} such that

1. S is clique of G;

2. T is a stable set of G;

3. every vertex in S is adjacent to every vertex in (S ∪ T )c in G;

4. no vertex of T is adjacent to any vertex of (S ∪ T )c in G.

A direct consequence of lemma 3.4 is that the MLE does not exists if the observed network is a split graph,

i.e. a graph whose node sets can be partitioned into a clique S and a stable set T . More generally. Lemma

3.4 can be used to create virtually any example of random graphs with fixed degree sequences for which the
MLE does not exist. Notice that, in particular, having node degrees bounded away from 0 and n− 1 is not a

sufficient condition for the existence of the MLE (though its violation implies nonexistence of the MLE). We

point out that, in order to detect boundary points and the associated co-facial sets, Lemma 3.4 is, however,
of little help. Instead, one can use the procedures described in section 5.

Below, we provide some examples of co-facial sets for random graphs with fixed degree sequences for
which the MLE does not exist, yet the node degrees are bounded from 0 and n− 1.

For the case n = 4, our computations show that there are 14 distinct co-facial sets associated to the facets

of Pn. Eight of them correspond to degree sequences containing a 0 or a 3, and the remaining six are shown
in Table 8, which we computed numerically using the procedure described in section 5. Notice that the three

tables on the second row are obtained from the first three tables by switching zeros with ones. Furthermore,

the number of the co-facial sets we found is smaller than the number of facets of Pn, which is 22, as shown
in Table 7. This is a consequence of the fact that the only observed counts in the random graph model are 0’s

or 1’s: it is in fact easy to see in Table 7 that any co-facial set containing three zero counts and three maximal
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× 0

N1,2 ×
× N3,4

0 ×

× 0

N1,2 × 0 0

N3,2 ×
N4,2 ×

× 0 0

N1,2 × 0

×
N4,1 N4,2 ×

× 0 0 0

N1,2 ×
N1,3 ×
N4,1 ×

× 0 0

N1,2 × 0

N1,3 N2,3 ×
×

× 0 0

×
N1,3 × 0

N1,4 N3,4 ×

× 0

× 0

N1,3 N2,3 × 0

N3,4 ×

× N1,2 N1,3 N1,4

0 ×
0 ×
0 ×

× N1,3 N1,4

×
0 × N3,4

0 0 ×

× N1,2 N1,3

0 × N2,3

0 0 ×
×

× N1,3

× N2,3

0 0 × N3,4

0 ×

× N1,2 N1,4

0 × N2,4

×
0 0 ×

× N1,4

× N2,4

× N3,4

0 0 0 ×

× N1,3

× N2,3

0 0 × N3,4

0 ×

× N1,2

0 × 0 0

N2,3 ×
N2,4 ×

×
× 0 0

N2,3 × 0

N2,4 N3,4 ×

× 0

× 0

× 0

N1,4 N2,4 N3,4 ×

× N1,2

0 ×
× 0

N3,4 ×

× 0

× N2,4

N1,3 ×
0 ×

× N1,3

× 0

0 ×
N2,4 ×

× N1,4

× 0

N2,3 ×
0 ×

× 0

× N2,3

0 ×
N1,4 ×

Table 7: All possible co-facial sets for P4 (empty cells indicate any entry values).

counts Ni,j is equivalent, in the random graph case, to a node having degree zero or 3. However, as soon as

Ni,j ≥ 2, the number of possible co-facial sets matches the number of faces of Pn.

Table 9 shows an observed graph with degrees all larger than 0 and less than 3 but for which the MLE
does not exist. Notice that the co-facial set corresponds to the one shown in the upper left corner of Table 8.

Finally, Tables 9 and 10 show two more examples of random graphs on n = 5 and n = 6 nodes, respectively,
for which the MLE does not exist (by Lemma 3.4), and yet the degrees are such that 0 < di < n− 1 for all i.
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× 0

1 ×
× 1

0 ×

× 0

×
1 × 1

0 ×

× 1

× 0

1 ×
0 ×

× 1

0 ×
× 0

1 ×

× 1

×
0 × 0

1 ×

× 0

× 1

0 ×
1 ×

Table 8: Patterns of zeros and ones yielding random graphs with non-existent MLE (empty cells indicate that
the entry could be a 0 or a 1).

× 0 1 0

1 × 0 1

0 1 × 1

1 0 0 ×

Table 9: Random graph with node degrees larger than 0 and smaller than 3 exhibiting the same co-facial set

show in the upper left corner of Table 8. In this case, lemma 3.4 applies with S = {3, 4} and T = {1, 2}.

× 1 0 0 0

0 × 1 1 0

1 0 × 1 0

1 0 0 × 1

1 1 1 0 ×

Table 10: Network with n = 5 for which the MLE does not exist and the degrees are bounded away from 0
and 4. In this case, lemma 3.4 applies with S = {2, 3, 4} and T = {1, 5}.

× 1 0 1 1 1

0 × 1 0 0 1

1 0 × 0 0 0

0 1 1 × 0 0

0 1 1 1 × 0

0 0 1 1 1 ×

Table 11: Network with n = 6 for which the MLE does not exist and the degrees are bounded away from 0
and 5. In this case, lemma 3.4 applies with S = {1, 2, 6} and T = {3, 4, 5}.

4 Existence of the MLE: Asymptotics

In this section we derive sufficient conditions that imply existence of the MLE with large probability as n
grows. We will make the simplifying assumption that Ni,j = Nn, for all i and j, where Nn ≥ 1 could itself

depend on n. In studying Bradley-Terry models, Simons and Yao (1999), for instance, study the asymptotic
scenario of a fixed number Nn = N of pairwise comparisons.
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Recall the random vector d̃, whose coordinate are given in (5) and set d = E[d̃] ∈ R
n. Then

di =
∑

j<i

pj,i +
∑

j>i

pi,j , i = 1 . . . , n.

We formulate our sufficient conditions in terms of the entries of the vector d.

Theorem 4.1. Assume that, for all n ≥ max{4, 2
√
cn logn

N + 1}, the vector d satisfies the conditions

(i) minimin
{
di, n− 1− di

}
≥ 2

√
cn logn

N + C,

(ii) min(S,T )∈P g(S, T, d, n) > |S ∪ T |
√
cn logn

N + C,

where c > 1/2 and C ∈
(
0, n−1

2 −
√
cn logn

N

)
. Then, with probability at least 1− 2

n2c−1 , the MLE exists.

When Nn is constant, for instance when Nn = 1, as in the random graph case, the conditions of Theo-
rem 4.1 can be relaxed by requiring condition (ii) to hold only over subsets S and T of cardinality of order

Ω(
√
n logn). While we present this result in greater generality by assuming only n ≥ Nn, we do not expect

it to be sharp in general when Nn grows with n.

Corollary 4.2. Let n ≥ max{N, 4, 2√cn logn + 1}, c > 1 and C ∈
(
0, n−1

2 −
√
cn logn

)
. Assume the vector

d = E[d̃] ∈ R
n satisfies the conditions

(i’) minimin
{
di, n− 1− di

}
≥ 2
√
cn logn+ C;

(ii’) min(S,T )∈Pn
g(S, T, d, n) > |S ∪ T |√cn logn+ C,

where

Pn := {(S, T ) ∈ P : min{|S|, |T |} >
√
cn logn+ C},

where the set P was defined before Theorem 3.3. Then, the MLE exists with probability at least 1 − 2
n2c−2 . If

N = 1, it is enough to have c > 1/2, and the MLE exists with probaiblity larger than 1− 2
n2c−1

Remarks

1. It is clear that, asymptotically, the value of the constant C becomes irrelevant, as the constraints on its

range will be satisfied by any positive C, for all n large enough.

2. Since |S ∪ T | ≤ n, one could replace assumption (ii) of Theorem 4.1 with the simpler but stronger

condition
min

(S,T )∈Pn

g(S, T, d, n) > n3/2
√
c logn+ Cn.

Then, assuming for simplicity thatN is a constant, turning Theorem 4.1 into asymptotic statement, the

MLE exists with probability tending to one at a rate that is polynomial in n whenever

min
i

min
{
di, n− 1− di

}
= Ω

(√
n logn

)

and, for all pairs (S, T ) ∈ P ,

g(S, T, d, n) > Ω
(
n3/2

√
log n

)
.
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3. For the case Nn = 1, corollary 4.2 should be compared with theorem3.1 in Chatterjee et al. (2011),

which also provides sufficient conditions guaranteeing the existence of the MLE with probability no
smaller than 1 − 1

n2c−1 (for all n large enough), but appear to be stronger than ours. Explicitly, those

conditions require that, for some constant c1, c2 and c3 in (0, 1), c1(n − 1) < di < c2(n − 1) for all i,
and

|S|(|S| − 1)−
∑

i∈S

di +
∑

i6∈S

min{di, |S|} > c3n
2 (8)

for all sets S such that |S| > (c1)
2n2. It is easy to see that, for any non-empty subsets S ⊂ {1, . . . , n}

and T ⊂ {1, . . . , n} \ S, ∑

i6∈S

min{di, |S|} ≤
∑

i∈T

di + |S||(S ∪ T )c|,

which implies that

|S|(n− 1− |T |)−
∑

i∈S

di +
∑

i∈T

di > |S|(|S| − 1)−
∑

i∈S

di +
∑

i6∈S

min{di|S|},

where we have used the equality n = |S| + |T | + |(S ∪ T )c|. Thus if (8) holds for some non-empty

S ⊂ {1, . . . , n}, it satisfies the facet conditions implied by all the pairs (S, T ), for any non-empty set T ⊂
{1, . . . , n} \ S. As a result, for any subset S, (8) is a stronger condition than any of the facet conditions
of Pn specified by S. In addition, we weakened significantly their requirements that |S| > (c1)

2n2 and

c1(n−1) < di < c2(n−1) for all i to |S| > √cn logn+C and minimin
{
di, n− 1− di

}
≥ 2
√
cn logn+C,

respectively.

4. Theorem 1.3 in Chatterjee et al. (2011) shows that, when the MLE exists, maxi |β̂i−βi| = O(
√
n logn),

with probability at least 1− 2
n2c−1 .

5 Computations

In this section, we describe the procedure we used to compute the facial sets of Pn. The main difficulties
with working directly with Pn is that this polytope arises a Minkowksi sum and, even though the system of

defining inequalities is given explicitly, its combinatorial complexity grows exponentially in n. Furthermore,

we do not have available a set of vertices for Pn. Algorithms for obtaining the vertices of Pn, such as minksum
(see Weibel, 2005), are computationally expensive and require generating all the points {Ax, x ∈ Gn}, where

|Gn| = 2(
n

2). In general, when n is as small as 10, this is not feasible.

Our basic strategy to overcome these problems is quite simple, and entails representing the beta model

as a log-linear model with
(
n
2

)
product-multinomial sampling constraints. Though this re-parametrization

increases the dimensionality of the problem, it nonetheless has the crucial computational advantage of reduc-

ing the determination of the facial sets of Pn to the determination of the facial sets of a pointed polyhedral
cone spanned by n(n−1) vectors, which is a much simpler object to analyze, both theoretically and algorith-

mically. This procedure is known as the Cayley embedding in polyhedral geometry, and its use in the analysis

of log-linear models is described in Fienberg and Rinaldo (2011). The advantages of this re-parametrization
are two-fold. First, it allows us to use the highly optimized algorithms available in polymke for listing ex-

plicitly all the facial sets of Pn, which is the strategy we used. Secondly, the general algorithms for detecting

nonexistence of the MLE and identifying facial sets proposed in Fienberg and Rinaldo (2011), which can
handle larger dimensional models, can be directly applied to this problem. This reference is also relevant for

dealing with inference under a non-existent MLE.
In the interest of space, we do not provide all the details, and instead only sketch the two main steps of

our procedure.

• Step 1: Enlarging the space
In the first step, we switch to a redundant representation of the data by considering all the observed
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counts {xi,j , i 6= j} and not just {xi,j , i < j}. We index the points of this enlarged set of n(n − 1)
numbers as pairs S ′n = {(xi,j , xj,i) : i < j} ⊂ N

n(n−1), with the pairs ordered lexicographically based
on (i, j). For instance, when n = 4, any point x′ ∈ S ′4 has coordinates indexed by

(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3).

It is clear that the sets Sn and S ′n are in one-to-one correspondence with each other and that, for each

corresponding pair x ∈ Sn and x′ ∈ S ′n, x′i,j = xi,j for all i < j and x′j,i = Ni,j − xi,j for all j > i.

In this new setting, we construct a new polytope P ′
n ⊂ R

2n that is combinatorially equivalent to Pn but
whose facial sets are easier to interpret. This is achieved by first constructing a new design matrix B
of dimension (2n)× n(n − 1), with the columns indexed according to the order described above. The

matrix B has the form

B =

(
B1

B2

)
(9)

where both B1 and B2 have n rows. For all i < j, the columns of B1 corresponding to the coordinate

(i, j) and the columns of B2 corresponding to the coordinate (j, i) are both equal to ai,j , and all the
other columns are zeros. For instance, when n = 4,

B =




1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 1




.

By construction, d = Ax = B1x
′ for any corresponding pair x ∈ Sn and x′ ∈ S ′n. Furthermore, if we

let d′ = B2x
′, it is easy to see that d′ and d are in one-to-one correspondence with each other. Indeed,

recalling that Ni,j = Nj,i,

d′i =
∑

j<i x
′
i,j +

∑
j>i x

′
j,i

=
∑

j<i(Ni,j − xj,i) +
∑

j>i(Ni,j − xi,j)
=

∑
j 6=iNi,j −

(∑
j<i xj,i +

∑
j>i xi,j

)

=
∑

j 6=iNi,j − di,

where we used (4) in the last step. Thus, Bx′ is also a sufficient statistic, though highly redundant due

to linear dependencies. Next, for any i < j, let

Bi,j = convhull({bi,j , bj,i})
where bi,j is the column of B indexed by (i, j), and set

P ′
n =

∑

i<j

Bi,j .

The polytopes Pn and P ′
n are combinatorially equivalent, even though their ambient dimensions are

different. In fact, using arguments similar to the ones used in the proof of corollary 3.2, one can

characterize the facial sets of P ′
n as follows.

Lemma 5.1. A point y′ belongs to the interior of some face F ′ of P ′
n if and only if there exists a set

F ′ ⊂ {(i, j), i 6= j} such that

y′ = Bp′, (10)

where p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1− p′j,i} is such that p′i,j = 0 for all (i, j) 6∈ F ′ and p′i,j > 0 for

all (i, j) ∈ F . The set F is uniquely determined by the face F and is a maximal set for which (10) holds.
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Because Pn and P ′
n are combinatorially equivalent, their co-facial sets are also in one-to-one corre-

spondence. The advantage of using P ′
n instead of Pn is that its co-facial sets arise by entries of p′ that

are all zeros, as opposed to the more complicated co-facial sets of Pn, which are obtained from entries

of p = {pi,j : i < j} which are both ones and zeros. For instance, the co-facial set of Pn corresponding

to the counts reported in Table 1 is {(1, 2), (3, 4)} with p1,2 = 0 and p3,4 = 1. In contrast, the corre-
sponding co-facial set for P ′

n is {(1, 2), (4, 3)}, with p′1,2 = 0 and p′4,3 = 0. Clearly, they convey the same

information.

• Step 2: Lifting
As we saw, the advantage of the larger polytope P ′

n derived in the first step is that, when searching
for co-facial sets, it is enough to consider points of the form p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1]} with

zero coordinates only. However, P ′
n is still a hard object to deal with computationally, since it is

prescribed as a Minkowski sum of
(
n
2

)
polytopes. In this second step, we lift P ′

n to a polyhedral cone

in dimension 2n +
(
n
2

)
which is simpler to analyze (in fact, as remarked below, this polyhedral cone

has smaller dimension: n +
(
n
2

)
). This cone is spanned by the columns of a matrix C of dimension

(2n+
(
n
2

)
)× n(n− 1) which has the form

C =

(
C1

B

)
,

where the rows of C1 are indexed by the pairs {(i, j) : i < j} ordered lexicographically. Each row (i, j)
of C1 contains all zeroes, except for two ones in the coordinates (i, j) and (j, i). In fact for any x′ ∈ Sn,

the vector C1x
′ is constant, and its (i, j)-the entry is

x′i,j + x′j,i = Ni,j .

For instance, when n = 4,

C =




1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 1




.

Let Dn = cone(C) be the polyhedral cone of spanned by the columns of C. The facial sets of Dn are
defined as follows (see, e.g., Geiger et al., 2006). The subset F ⊂ {(i, j) : i 6= j} is a facial set of Dn

when there exists a v ∈ R
2n+(n

2
) such that

〈v, ci,j〉 = 0, ∀i ∈ F and 〈v, ci,j〉 < 0, ∀i 6∈ F ,
where ci,j indicates the column of C indexed by the pair (i, j). It follows that F is face of Dn if and only
if F = cone({ci : i ∈ F}), for some facial set F of Dn, and that there is a one-to-one correspondence

between the facial sets and the faces of Dn. Thus, as before, facial sets form a lattice isomorphic to the
face lattice of Dn. Following Eriksson et al. (2006), we will call Dn the marginal cone.

The following result shows how one can obtain the facial sets of Pn from the facial set of Dn through

the facial sets of P ′
n (see also section 3 in Fienberg and Rinaldo (2011)).
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Theorem 5.2. Let p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1 − p′j,i}. Then Bp′ ∈ ri(P ′
n) if and only if

Cp′ ∈ ri(Dn). Furthermore, if F ′ is a facial set of P ′
n, then F ′ is a facial set of Dn.

In particular, the only facial sets of Dn that are not facial sets of P ′
n are the ones corresponding to

the supports of the first
(
n
2

)
rows of C, so that Dn has

(
n
2

)
more facets than Pn (and P ′

n). Since, by

construction x′i,j + xj,i = Ni,j, Cx
′ will never be a point in the interior of the

(
n
2

)
facets of D whose

facial sets are the supports of the first
(
n
2

)
rows of C.

Theorem 5.2 can be used as follows. The MLE exists if and only if Cx′ ∈ ri(Dn). When the MLE does

not exist, the corresponding facial set of Dn gives the required facial set for P ′
n and, therefore, for Pn.

Finally, it is clear to see that C is rank-deficient due to linear dependencies among the rows, so one
could instead consider the marginal cone spanned by the columns of the matrix

(
C1

B1

)
, (11)

which has full dimension
(
n
2

)
+ n and is combinatorially equivalent to Dn.

The final result of the two-step procedure just outlined is a reparametrization of the beta model in the

form of a log-linear model with full-rank design matrix given in (11) and Poisson sampling scheme. The

constrains on the number of observed edges translate into
(
n
2

)
product-multinomial sampling restrictions for

this log-linear model. However, it is well known that the conditions for existence of the MLE are the same

under Poisson and product-multinomial scheme, so whether we incorporate these constraints or not has

no bearing on parameter estimability. See Haberman (1974, Chapter 2) and Fienberg and Rinaldo (2011,
section 3.4).

The examples of co-facial sets were obtained by first computing the matrix (11) and then using polymake

to compute the facial sets of the resulting marginal cone1 For a detailed description of the connection with

log-linear models, and for algorithms to compute the facial sets of this cone that can be used in higher

dimensions, the reader is referred to Fienberg and Rinaldo (2011).
Finally, to deal with the Rasch model, the procedure can be trivially modified by eliminating the columns

of A and, in particular, of C′ corresponding to all the edges between the sets I and J comprising the bipar-

tition of the node set. In particular, the resulting matrix C′ has dimension (kl + k + l) × 2kl and has rank
kl + k + l − 1, where k and l are the cardinalities of I and J , respectively.

Algorithms

We first indicate how the non-existence of the MLE and the determination of the appropriate facial set can be
addressed using simple linear programming. While checking for the existence of the MLE is immediate, the

second task is more demanding.In order to decide whether the MLE exists it is sufficient to establish whether
the observed sufficient statistics Ax belong to the relative interior of Pn, which, by Theorem 5.2, happens if

and only if t := Cx′ belongs to the relative interior of Dn, where for convenience the matrix C can be taken

to be as in (11) (so it has dimension n +
(
n
2

)
× n(n − 1) and is of full rank). In turn, we can decide this by

solving the following simple linear program

max s
s.t. Cx′ = t

x′i,j − s ≥ 0
s ≥ 0,

where the scalar s and vector x′ = {x′i,j , i 6= j} ∈ R
n(n−1) are the variables. At the optimum (s∗, x∗), the MLE

exists if and only if s∗ > 0. Though very simple, the previous algorithm may not be sufficient to compute

1The R code we used to perform the numerical calculations is available at http://www.stat.cmu.edu/~arinaldo/Rinaldo_Petrovic_Fienberg_Rcode.txt
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the support of p̂ if the MLE does not exist. To this end, we need to resort to a more sophisticated algorithm.

Consider the following n(n− 1) programs, one for each column of C:

max〈ci,j , y〉
s.t. y⊤t = 0

C⊤y ≥ 0
−1 ≤ y ≤ 1,

where the last inequalities are taken element-wise. Let y∗i,j ∈ R
n+(n

2
) denote the solution to the linear

program corresponding to the (i, j)-th column of C.

Lemma 5.3. The MLE does not exist if and only if 〈ci,j , y∗i, j〉 > 0 for some (i, j), in which case the co-facial set
associated with t is given by

{(i, j) : 〈ci,j , y∗i,j〉 > 0}.

See Fienberg and Rinaldo (2011, section 4.1) for a more refined and efficient implementation of the

above algorithms.

6 Applications and Extensions

The main arguments and the algorithmic procedures that we have used to explore nonexistence of the MLE
and parameter estimability in the beta model are rather general, as they pertain to all log-linear models (see,

e.g., Fienberg and Rinaldo, 2011). In this section we extend them to different models for networks.

6.1 The Rasch model

Just like in section 3.2, necessary and sufficient conditions for the existence of the MLE of the Rasch model

parameters can also be formulated in geometric terms based on the polytope of degree sequence. In detail,
for a bipartition of the n nodes of the form I = {1, . . . , k} and J = {k + 1, n − 1, n}, where l = n − k,

let Pk,l ⊂ R
n denote the associated polytope of bipartite degree sequences, i.e. the convex hull of all degree

sequences of bipartite undirected simple graphs on n nodes, with tge bipartition specified by I and J . Let d(x)
denote the degree sequence associated with the observed bipartite graph x ∈ Rn. Then, a straightforward

application of Theorem 9.13 in Barndorff-Nielsen (1978) yields the following result.

Theorem 6.1. The MLE of the Rasch model parameters exists if and only if d(x) ∈ ri(Pp,q).

The polytope of bipartite degree sequences was introduced by Hammer et al. (1990). We briefly recall
its properties (see Mahadev and Peled, 1996, section 3.4 for more details). Let

FI,J := {y ∈ Pn : g(y, I, J, n) = 0}

be the facet of Pn specified by I and J , where g is given in (7) (the sets I and J can be interchanged). Also,
let c ∈ R

n be the vector with coordinates

ci =

{
k − 1 i = 1, . . . , k
0 i = k + 1, . . . , n.

The polytope of bipartite degree sequences Pk,l is just the translate by c of the facet FI,J , which implies,

in particular, that dim(Pp,q) = n− 1 (this explains why, in Theorem 6.1, we used the correct notation ri(Pl,k)
instead of int(Pp,q)).

Theorem 6.2 (Theorem 3.4.4 in Mahadev and Peled (1996)). Pk,l = {y − c, y ∈ FI,J}.
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The previous result is rather useful: in order to determine whether the MLE fails to exist, i.e. whether the

degree sequence of the observed bipartite graph is on the relative boundary of Pk,l, one can use Lemma 3.4
as follows. First add an edge between each pair of nodes in I (so, the graph is no longer bipartite). Then,

check whether there is a pair of sets S and T , different from I and J , for which the conditions of Lemma 3.4

apply. Thus, the MLE does not exists if and only if there exists a partition of the nodes into three non-empty
sets S, T and (S ∪ T )c, such that, with respect to this enlarged graph,

1. S ⊆ I (hence S is complete);

2. T ⊆ J (hence, T is stable);

3. every vertex of S is adjacent to every vertex in (S ∪ T )c;
4. no vertex in T is adjacent to any vertex in (S ∪ T )c.
In fact, the above conditions are equivalent to the conditions for existence of the MLE in the Rasch model

found independently by Haberman (1977) and Fischer (1981). Indeed, recall that Haberman’s condition are

as follows: the MLE does not exists if there there exists sets A, B , C and D such that

1. A ∪B = I and C ∪D = J , with A ∩B ∩C ∩D = ∅;
2. A 6= ∅ and C 6= ∅ or B 6= ∅ and D 6= ∅;
3. xi,j = 0 for all i ∈ A and j ∈ C;

4. xi,j = 10 for all i ∈ B and j ∈ D,

were x ∈ Rn is the observed graph. Then, to see the equivalence, take S = B, T = C and (S ∪ T )c = A∪D.

6.2 Removing the Sampling Constraint in the Beta Model

We first consider a slightly modified form of the beta model, in which the number of observed edges {xi,j : i 6=
j} are assumed to be realizations of n(n−1) independent Poisson random variables with means {mi,j : i 6= j}.
As a result, the quantities {Ni,j, i 6= j} are now random and can be zero with positive probabilities. In this

case, the natural generalization of the beta model is to consider a parametrization of the mean values by

points α ∈ R
n and γ ∈ R

n so that
logmi,j = αi + γj , ∀i 6= j. (12)

As usual, we index the coordinates of a sample point x as {(xi,j , xj,i), i < j}, with the pairs of coordinates

ordered lexicographically based on (i, j). Some algebra then shows that the probability of observing a point

x ∈ N
n(n−1) is

pα,γ(x) = exp




∑

i

αid
out
i +

∑

j

γjd
in
j − φ(α, γ)





∏

i6=j

1

xi,j !
, x ∈ N

n(n−1)

where the coordinates of the vectors of minimal sufficient statistics dout = dout(x) and din = din(x) are

douti :=
∑

j 6=i

xi,j , i = 1, . . . , n,

and
dinj :=

∑

i6=j

xi,j , j = 1, . . . , n,

respectively, and the log-partition function φ : R2n → R is given by

(α, γ) 7→
∑

i6=j

exp{αi + γj}.
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× 0 0

0 × 0

×
0 0 ×

× 0 0

0 × 0

0 0 ×
×

× 0 0

×
0 × 0

0 0 ×

×
× 0 0

0 × 0

0 0 ×

Table 12: Co-facial sets of the second kind, as specified in theorem 6.3, for the case n = 4. Empty cells refer

to arbitrary entries.

The sufficient statistics d = d(x) can be obtained as

d =

(
dout

din

)
= Ax,

where A is the 2n× n(n− 1) whose columns are indexed in the same way as the columns B of equation (9),
while the rows are indexed by the parameters {α1, . . . , αn, γ1, . . . , γn}. The entries of the row corresponding

to αi are all zeros, except for the coordinates corresponding the columns (i, j) with i < j and (j, i) with

i > j, which are ones. Similarly, the rows corresponding to γj are all zeros, except for the coordinates
corresponding the columns (j, i) with i < j and (i, j) with i > j, which are ones. For instance, when n = 4,

A =




1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0




,

We remark that A is rank-deficient, as its rank is 2n − 1, which reflect the fact that the parametrization in

(12) is non-identifiable (this can be easily fixed by imposing, for instance the constraint
∑

i αi = 0).
Notice that if the entries of x ∈ {0, 1}n(n−1) are all zeros and ones, then x encodes a directed graph on

n nodes, with an arrow going from node i to node j if and only if xi,j = 1 (thus, there may be two edges

connecting any pair of nodes, directed in opposite ways). In this case, the sufficient statistics dout and din

correspond to the in-degrees and out-degrees of the nodes.

If Cn denotes the polyhedral cone spanned by the columns of A, then, for a given sample point x, the
MLE of (α, γ) or, equivalently, of {mi,j : i 6= j} exists if and only if d(x) ∈ int(CA). It turned out that Cn has

small combinatorial complexity, as shown in the next results.

Theorem 6.3. The polyhedral cone Cn has 3n facets. The co-facial sets corresponding to the facets of Cn can be

classified as follows:

1. the 2n support sets of the columns of A, each corresponding to a zero entry in the vectors of in-degree or

out-degree statistics;

2. n co-facial sets of the form {(i, j) : i 6= j 6= k}, one for each k = 1, . . . , n.

For instance, when n = 4, there are 12 facial sets, 8 of them associated to a zero value in the 8 dimensional

vector of sufficient statistics. The remaining 4 co-facial sets are shown in table 12.

The previous Theorem implies that the number of facets of Cn grows only linearly in n, unlike the number
of facets of the polytope of degree sequences Pn. Thus, for this model, nonexistence of the MLE is a much less

frequent phenomenon, at least combinatorially. Note in particular, that the MLE exists even if xi,j + xj,i = 0
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for some (in fact many) pairs. Theorem 6.3 can be used to easily show that the MLE exists with probability

tending to one as n increases. Indeed, the probability of a nonexistent MLE is no larger than

n∑

i=1

e−
∑

j 6=imi,j +

n∑

j=1

e−
∑

i6=j mi,j +

n∑

k=1

e−
∑

i6=j 6=k mi,j . (13)

Then, assuming n ≥ 7 and letting
m∗ := min

i6=j
mi,j ,

the first two terms in equation (13) are each smaller than ne−(n−1)m∗

, while the last term is bounded from
above by

ne−(
n

2
)+2(n−1)m∗ ≤ ne−(n−1)m∗

,

where the last inequality is due to the fact that
(
n
2

)
− 2(n− 1) ≥ n− 1 for all n ≥ 7. Thus, (13) is bounded

from above by 3ne−(n−1)m∗

, which implies that, if m∗ = m∗(n) = c log n
n−1 , the MLE exists with probability at

least 1 − 3
nc . This simple calculation then shows that the MLE exists with overwhelming probability even if

the expected cell counts all tend to zero, as long as these values decay at a rate Ω
(

logn
n

)
.

The results just obtained can be specialized to the Rasch model, in which the nodes are partitioned into

two sets I and J of cardinality k and l = n− k, and edges can only occur between a node i ∈ I and a node
j ∈ J , though the number of edges between any pair of nodes (i, j) is random. The observed set edge counts

takes the form of a k × l contingency table and the sufficient statistics are the k row sums and the l column
sums. As noted by Haberman (1977), in this case the MLE exists if and only if the row and column sums are

all positive.

6.3 The Bradley-Terry Model

We can specialize the model described in section 6.2 to a directed graph without multiple edges, thus obtain-

ing the Bradley-Terry model for pairwise comparisons. See Bradley and Terry (1952), David (1988), Hunter
(2004) and references therein. In detail, let pi,j denote the probability of a directed edge from i to j and

pj,i the probability of a directed edge from j to i. According to the Bradley-Terry model, the probabilities of
directed edges can be parametrized by vectors β ∈ R

n so that

pi,j =
eβi

eβ + eβj
, ∀i 6= j, (14)

or, equivalently, in terms of log-odd ratios,

log
pi,j
pj,i

= βi − βj, ∀i < j.

Notice that this parametrization is redundant, and identifiability is typically enforced by requiring that∑n
i=1 e

βi = 1. Data are obtained by recording, for each pair of nodes (i, j) the outcomes of Ni,j pair-
wise comparisons, where Ni,j are fixed positive integers, resulting in xi,j instances of node i being preferred

to node j and xj,i instances of node j being preferred to node i, with xi,j + xj,j = Ni,j . The outcomes of the

pairwise comparison are assumed mutually independent. Thus, for i < j, the Bradley-Terry model treats the
n(n− 1) observed counts {xi,j : i 6= j} as a realization of mutually independent Bin(Ni,j , pi,j) distributions,

where the probability parameters {pi,j : i 6= j} satisfy (14),
Despite the apparent similarity between equations (15) and (14) the beta model and the Bradley-Terry

model are radically different. Indeed, for the Bradley-Terry model, it is well known that the minimal suffi-

cient statistics are the row sums (or the column sums) of the observed table. Indeed, this model can be al-
ternatively prescribed as a model of quasi-symmetry and quasi-independence (see, e.g. Fienberg and Larntz,

1976). Necessary and sufficient conditions for the existence of the MLE, due to Zermelo (1929) and Ford
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(1957), are as follows: In every possible partition of the objects into two nonempty subsets, some object in the

second set has been preferred at least once over some object in the first set (see Ford, 1957, page 29). We
can express the Zermelo-Ford condition equivalently in a graph theoretic form as follows: the MLE exists if

and only if the observed directed graph is strongly connected, a property which we can easily check by a

depth-first search. According to this condition, the number of facial sets corresponding to the facets of the
associated convex support is

n−1∑

i=1

(
n

i

)
= 2n − 2.

See Simons and Yao (1999) for an analysis of the existence and asymptotic normality of the MLE for the

Bradley-Terry model under the condition that all the terms Ni,j are constant and the number of objects n
increases.

We conclude this section by noting the arguments and algorithms for facial set identification discussed in

section 5 apply to this model as well. In this case, the marginal cone is spanned by a matrix of dimension((
n
2

)
+ n

)
×n(n− 1), the first

(
n
2

)
rows corresponding to the sampling constraints {xi,j + xj,i = Ni,j : i < j},

and the remaining n rows to the row sums.

6.4 p1 Models

Both the beta model and the Bradley-Terry model can be obtained as a special cases of the class of p1
models for directed graphs proposed by Holland and Leinhardt (1981). In fact, existence of the MLE and

the identification of the facial sets for p1 models can be treated using the very same arguments we have

presented in the first part of the article. In this final section we detail these arguments for the more general
and challenging class of p1 models.

In p1 models, the occurrence of a random edge between any pair of nodes i and j, or dyad, is modeled
independently from all the others edges. We keep track of four possible edge configurations within each

dyad: node i has an outgoing edge into node j: i → j; node i as an incoming edge originating from node

j: i ← j; nodes i and j are linked by a bi-directed edge: i ←→ j; and node i and j are not adjacent in the
network. Following the notation we established in Petrović et al. (2010), which is slightly different than the

original notation of Holland and Leinhardt (1981), for every pair of nodes (i, j) we define the probability

vector
pi,j = (pi,j(0, 0), pi,j(1, 0), pi,j(0, 1), pi,j(1, 1)) ∈ ∆3 (15)

containing the probabilities of the four possible edge types, where ∆3 is the standard simplex in R
4. The

numbers pi,j(1, 0), pi,j(0, 1) and pij(1, 1) denote the probabilities of the edge configurations i→ j, i← j and
i ←→ j, respectively, and pi,j(0, 0) is the probability that there is no edge between i and j (thus, 1 denotes

the outgoing side of the edge). Notice that, by symmetry pi,j(a, b) = pj,i(b, a), for all a, b ∈ {0, 1} and that

pi,j(0, 0) + pi,j(1, 0) + pi,j(0, 1) + pi,j(1, 1) = 1. (16)

The fundamental assumption underlying p1 models is that the dyads are independent. This is formalized by
modeling each of the

(
n
2

)
dyads as mutually independent draws from multinomial distributions with class

probabilities pi,j , i < j. Specifically, the Holland-Leinhardt p1 model specifies the multinomial probabilities

of each dyad (i, j) in logarithmic form as follows (see Holland and Leinhardt, 1981):

log pi,j(0, 0) = λij
log pi,j(1, 0) = λij + αi + βj + θ
log pi,j(0, 1) = λij + αj + βi + θ
log pi,j(1, 1) = λij + αi + βj + αj + βi + 2θ + ρi,j .

(17)

The parameter αi quantifies the effect of an outgoing edge from node i, the parameter βj instead measures
the effect of an incoming edge into node j, while ρi,j controls the added effect of reciprocated edges (in both

directions). The parameter θ measures the propensity of the network to have edges and, therefore, controls
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the “density” of the graph. The parameters {λi,j : i < j} are normalizing constants to ensure that (16) holds

for each each dyad (i, j) and need not be estimated. Note that, in order for the model to be identifiable,
additional linear constraints need to be imposed on its parameters. We refer the interested readers to the

original paper on p1 model by Holland and Leinhardt (1981) for an extensive interpretation of the model

parameters.
As noted in Fienberg and Wasserman (1981a,b), different variants of the p1 model can be obtained by

constraining the model parameters. In Petrović et al. (2010) we consider three special cases of the basic p1
model, which differ in the way the reciprocity parameter is modeled:

1. ρij = 0, no reciprocal effect;

2. ρij = ρ, constant reciprocation;

3. ρij = ρ+ ρi + ρj , edge-dependent reciprocation.

As it is often the case with network data, we assume that data become available in the form of one

observed network. Thus, each dyad (i, j) is observed in only one of its four possible states and this one
observation is a random vector in R

4 with a Multinomial(1, pi,j) distribution. As a result, data are sparse

and, even though the dyadic probabilities are strictly positive according to the defining equations (17), only

some of the model parameters may be estimated from the data. Extension to the case in which the dyads are
observed multiple times are straightforward.

For a network on n nodes, we represent the vector of 2n(n− 1) dyadic probabilities as

p = (p12, p13, . . . , pn−1,n) ∈ R
2n(n−1),

where, for each i < j, pij is given as in (15). The p1 model is the set of all probability distributions that
satisfy the Holland-Leinhardt equations (17). The design matrix associated with a given p1 model can be

constructed as follows (this construction is by no means unique and leads to rank-deficient matrices, though

it is rather simple). The columns of A are indexed by the entries of the vectors pi,j , i < j, where the pi,j ’s
are ordered lexicographically, and its rows by the model parameters, ordered arbitrarily. The (r, c) entry of

A is equal to the coefficient of the c-th parameter in the logarithmic expansion of the r-the probability as

indicated in (17). In particular, notice that the entries of A can only be 0, 1 or 2. For example, in the case
ρij = ρ+ ρi + ρj , the matrix A has

(
n
2

)
+ 3n+ 2 rows. When n = 3, the design matrix corresponding to this

model is

λ12
λ13
λ23
θ
α1

α2

α3

β1
β2
β3
ρ
ρ1
ρ2
ρ3

p1,2 p1,3 p2,3
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2 0 1 1 2
0 1 0 1 0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1

Let Sn = {xi,j , i 6= j} ⊂ {0, 1}2n(n−1) denote the sample space, i.e. the set of all observable networks on

n nodes. Then, every point x in the sample space X can be written as

x = (x1,2, x1,3, . . . , xn−1,n),
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n ρi,j = 0 ρi,j = ρ ρ = ρi + ρj 2n(n− 1)

3 62 62 62 12
4 1,862 2,415 3,086 24

5 88,232 158,072 347,032 40

Table 13: Number of vertices for the polytopes PA for different specifications of the p1 model and different
network sizes. Computations carried out using minksum Weibel (2005). The last column indicates the

number of columns of the design matrix A, which correspond to the number of generators of CA.

where each of the
(
n
2

)
subvectors xi,j is a vertex of ∆3. Notice that |Xn| = 4n(n−1). This way of representing

a network on n nodes with a highly-constrained 0/1 vector of dimension 2n(n− 1) may appear cumbersome

and redundant. Indeed, as in Holland and Leinhardt (1981), we could more naturally represent an n-node
network using the n × n incidence matrix with 0/1 off-diagonal entries, where the (i, j) entry is 1 is there

is an edge from i to j and 0 otherwise. While this representation is more intuitive and parsimonious (as

it only requires
n(n−1)

2 bits), whenever ρ 6= 0, the sufficient statistics for the reciprocity parameter are not

linear functions of the observed network. As a consequence, the adjacency matrix representation does not
lead directly to a linear exponential family.

The convex support for this family is the polytope obtained as the Minkowski sum

PA :=
∑

i<j

Ai,j ,

where Ai,j is the sub-matrix of A comprised by the four columns referring to the dyad (i, j). Given an
observed network x ∈ Sn the MLE of the parameters exists if and only of Ax ∈ ri(Sn) and, when the MLE

does not exist, the associated facial set provides the non-estimable probability parameters. Like with the

convex support of the beta model, the combinatorial complexity of this object is quite high and increases
very rapidly with n (though, unlike the beta model, the convex supports for these models do not appear to

be a known or well studied polytopes). See table 6.4 and the discussion below.

The arguments and results of section 3 extend in a straightforward way: the MLE exists if and only if

Ax ∈ ri(CA), where CA = cone(A), and the facial sets of PA are also facial sets of CA.

Numerical Experiments

We conclude this section by describing some numerical experiments illustrating the reduction in complexity

associated to the Cayley trick from in section 5 for the genral p1 model. Table 6.4 displays the number of

vertices of the polytopes PA for the three p1 model specifications we consider and various networks sizes.
The last column of the table contains the number of columns of the design matrix, which is also the number

of extreme rays of the marginal cone CA. In comparison, the number of vertices of PA, whose determination

is computationally very hard, is very large and grows extremely fast with n.
In Table 6.4 we report the number of facets, dimensions and ambient dimensions of the cones CA for

different values of n and for the three specification of the reciprocity parameters ρi,j we consider here.

Though this only provides and indirect measure of the complexity of these models and of the non-zero
patterns in extended MLEs, it does show how quickly the complexity of p1 models may scale with the network

size n.
Another point of interest is the assessment of how often the existence of the MLE arises. In fact, because of

the product Multinomial sampling constraint, nonexistence of the MLE is quite severe, especially for smaller

networks. Below we report our findings, which are necessarily restricted to networks of small sizes:

1. n = 3.
The sample space consists of 43 = 64 possible networks. When ρi,j = 0 for all i and j, there are 63
different observable sufficient statistics, only one of which belongs to ri(PA). Thus, only one of the 63
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n ρi,j = 0 ρi,j = ρ ρ = ρi + ρj
Facets Dim. Ambient Dim. Facets Dim. Ambient Dim. Facets Dim. Ambient Dim.

3 30 7 9 56 8 10 15 10 13

4 132 12 14 348 13 15 148 16 19
5 660 18 20 3,032 19 21 1,775 23 26

6 3,181 25 27 94,337 26 28 57,527 31 34

Table 14: Number of facets, dimensions and ambient dimensions of the the cones CA for different specifi-
cations of the p1 model and different network sizes. The number of facets of CA is equal to the number of

facets of PA plus
(
n
2

)
, these additional facets corresponding to the sampling constraints of one observation

per dyad.

observable sufficient statistics leads to the existence of the MLE. This sufficient statistic corresponds to

the two nextworks 

× 0 1

1 × 0

0 1 ×


 and



× 1 0
0 × 1

1 0 ×


 .

In both cases, the associated MLE is the 12-dimensional vector with entries all equal to 0.25. Inciden-

tally, the polytope PA has 62 vertices and 30 facets. When ρi,j = ρ 6= 0 or ρi,j = ρi + ρj the MLE never
exists.

2. n = 4.

The sample space contains 4096 observable networks. If ρi,j = 0, there are 2, 656 different observable

sufficient statistics, only 64 of which yield existent MLEs. Overall, out of the 4096 possible networks,
only 426 have MLEs. When ρi,j = ρ 6= 0, there are 3, 150 different observable sufficient statistics, only

48 of which yield existent MLEs. Overall, out of the 4, 096 possible networks, only 96 have MLEs. When
ρi,j = ρi + ρj , there are 3, 150 different observable sufficient statistics and the MLE never exists.

3. n = 5.

The sample space consists of 410 = 1, 048, 576 different networks. If ρi,j = 0, there are 225, 025
different sufficient statistics, and the MLE exists for 7, 983. If ρi,j = ρ 6= 0 the number of distinct
possible sufficient statistics is 349, 500, and the MLE exists in 12, 684 cases. Finally, when ρi,j = ρi+ ρj,
the number of different sufficient statistics is 583, 346 and the MLE never exists.

7 Discussion

In this paper we derived necessary and sufficient conditions for the existence of the MLE of the parameters of

the beta model. These conditions are tied to the polytope of degree sequences, whose geometric properties
we exploit to characterize sample points leading to a non-existent MLE and to formulate conditions that

imply that the MLE exists with probability approaching one as the number of nodes increases. For the ran-

dom graph model, our results improve similar results recently obtained by Chatterjee et al. (2011). Finally,
we showed how representing the beta model in the form of a log-linear model with product multinomial

constraints is well-suited to characterize the nonexistence of the MLE, and we extend the procedure to more

general discrete models, such as the Rasch model, the Bradley-Terry model and more general p1 models.
We can relax the assumption that we observe each edge with positive probability a straightforward way.

In our framework, this corresponds to removing from the design matrix the columns corresponding to the
edges that never occur. In fact, this is precisely how we can obtain the Rasch model.

For the random graph models we have considered, the nonexistence of the MLE typically has no ef-

fect on the convergence properties of algorithms for maximum likelihood estimation that maximize the
log-likelihood with respect to the probability parameters, such as iterative scaling algorithms. Indeed, the
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likelihood function (2) is strictly concave for any observable set of counts. What is unclear, however, is the

effect on the rate of convergence. On the other hand, precisely because convergence always occurs, these
algorithms are not suited to detect the nonexistence of the MLE or the non-estimability of the model pa-

rameters should the MLE be undefined. The procedures we describe in section 5, or the ones we detail in

Fienberg and Rinaldo (2011, section 4), are instead appropriate.

The R routines used to carry out the computations for the results presented in the paper and for creating
the input files for polymake are available at http://www.stat.cmu.edu/~arinaldo/Rinaldo_Petrovic_Fienberg_Rcode.txt
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9 Proofs

Proof of Theorem 3.1. Throughout the proof, we will use standard results and terminology from the theory

of exponential families, for which standard references are Brown (1986) and Barndorff-Nielsen (1978). The
polytope

Sn := convhull ({Ax, x ∈ Sn})
is the convex support for the sufficient statistics of the natural exponential family described in section 2.

Furthermore, by a fundamental result in the theory of exponential families (see, e.g., Theorem 9.13 in

Barndorff-Nielsen, 1978), the MLE of the natural parameter β ∈ R
n (or, equivalently of the set probabilities

{pi,j, i < j} ∈ R
(n
2
) satisfying (15)) exists if and only if d ∈ int(Sn). Thus, it is sufficient to show that

d ∈ int(Sn) if and only if d̃ ∈ int(Pn).
Denote with ai,j the column of A corresponding to the ordered pair (i, j), with i < j, and set

Pi,j = convhull{0, ai,j} ⊂ R
n. (18)

Each Pi,j is a line segment between its vertices 0 and ai,j . Then, Pn can be expressed as the zonotope

obtained as the Minkowski sum of the line segments Pi,j :

Pn =
∑

i<j

Pi,j . (19)

This identity can be established as follows. On one hand, Pn is the convex hull of vectors that are Boolean
combinations of the columns of A. Since all such combinations are in

∑
i<j Pi,j , and both Pn and

∑
i<j Pi,j

are closed sets, we obtain Pn ⊆
∑

i<j Pi,j . On the other hand, the vertices of
∑

i<j Pi,j are also Boolean

combinations of the columns of A (see, e.g., corollary 2.2 in Fukuda, 2004), and, therefore,
∑

i<j Pi,j ⊆ Pn.

Equation (19) shows, in particular, that d̃ ∈ Pn. Furthermore, using the same arguments, we see that,
similarly to Pn, Sn too can be expressed as a Minkowski sum:

Sn =
∑

i<j

Si,j ,

where

Si,j := Pi,jNi,j = {xNi,j : x ∈ Pi,j}
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is the rescaling of Pi,j by a factor ofNi,j. In fact, we will prove that Sn and Pn are combinatorially equivalent.

For a polytope P and a vector c, we set F (P ; c) := {x ∈ P : x⊤c ≥ y⊤c, ∀y ∈ P}. Any face F of P can
be written in this way, where is c is any vector in the interior of the normal cone to F . By Proposition 2.1 in

Fukuda (2004), F is a face of Pn with F = F (Pn, c) if and only if it can be written uniquely as

F (Pn, c) =
∑

i<j

F (Pi,j , c),

for any c in the interior of the normal cone to F . It is immediate to see that F (Pi,j , c) is a face of Pi,j if and

only if F (Si,j , c) is a face of Si,j , and that F (Si,j , c) = Ni,jF (Pi,j , c); in fact, Pi,j and Si,j are combinatorially

equivalent. Therefore, invoking again Proposition 2.1 in Fukuda (2004), we conclude that F (Pi,j , c) is a face
of Pn if and only if ∑

i<j

Ni,jF (Pi,j , c)

is a face of Sn (and this representation is unique). From this, we see that Pn and Sn have the same normal

fan and, therefore, are combinatorially equivalent. �

Proof of Lemma 3.2. By Proposition 2.1 in Fukuda (2004),

F = F (Pn, c) =
∑

i<j

F (Pi,j , c), (20)

for any c in the interior of the normal cone to F , where the above representation is unique. Since Pi,j is a
line segment (see (18)), its only proper faces are the vertices 0 and ai,j . Let the set F be the complement

of the set of pairs (i, j) with i < j such that F (Pi,j , c) is either the vector 0 or ai,j . By the uniqueness of
the representation (20), F is unique as well and, in particular, maximal. Furthermore, as it depends on F
only through the interior of its normal cone and since the interiors of the normal cones of Pn are disjoint,

different faces will be associated with different facial sets. �

Proof of Theorem 4.1. Let d̃ = (d̃1, . . . , d̃n) be the random vector defined in (5). We will show that, under
the stated assumptions, d̃ ∈ int(Pn) with probability no smaller than 1− 2

n2c−1 .

Since N is constant, we can conveniently re-express the random vector d̃ as an average of independent
and identically distributed graphical degree sequences. In details, we can write

d̃ =
1

N

N∑

k=1

d(k), (21)

where each d(k) is the degree sequence arising from of an independent realization of random graph with
edge probabilities {pi,j : i < j}, for k = 1, . . . , N .

Thus, each d̃i is the sum of N(n − 1) independent random variables taking values in {0, 1
N }. Then, an

application of Hoeffding’s inequality and of the union bound yields that the event

On :=

{
max
i
|d̃i − di| ≤

√
c
n logn

N

}
(22)

occurs with probability at least 1− 2
n2c−1 . Throughout the rest of the proof we will assume that the event On

holds.

By assumption (i), for each i,

0 < C +

√
c
n logn

N
≤ di −

√
c
n logn

N
≤ d̃i ≤ di +

√
c
n logn

N
≤ n− 1− C −

√
c
n logn

N
< n− 1,
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so that

0 < d̃i < n− 1, i = 1, . . . , n. (23)

Notice that the assumed constraint on the range of C guarantees the above inequalities are well defined.

Next, for each pair (S, T ) ∈ P ,

|g(S, T, d̃, n)− g(S, T, d, n)| ≤ |S ∪ T |max
i
|d̃i − di|,

which yields

g(S, T, d̃, n) ≥ g(S, T, d, n)− |S ∪ T |
√
c
n logn

N
.

Using assumption (ii), the previous displays implies that

min
(S,T )∈P

g(S, T, d̃, n) > C > 0. (24)

Thus, we have shown that (23) and (24) hold, provided that the event On is true and assuming (i) and (ii).

Therefore, by Theorem 3.3 the MLE exists.
�

Proof of Corollary 4.2. Using the same setting and notation of Theorem 4.1, we will assume throughout

the proof that the event

O′
n :=

{
max
k

max
i
|d(k)i − di| ≤

√
cn logn

}

holds true. Note that by Hoeffding’s inequality and the union bound,

P(O′c
n ) ≤ 2 exp {−2c logn+ log n+ logN} ≤ 2

n2c−2
,

where we have used the inequality logN ≤ log n. A simple calculation shows that, when O′
n is satisfied, we

also have {
max
i
|d̃i − di| ≤

√
cn logn

}
.

Then, by the same arguments used in the proof of Theorem 4.1, assumption (i’) yields that

0 < d̃i < n− 1, i = 1, . . . , n. (25)

and, for each pair (S, T ) ∈ P ,

g(S, T, d̃, n) ≥ g(S, T, d, n)− |S ∪ T |
√
cn logn. (26)

Now, it is easy to see that, on the event O′
n, assumption (i’) also yields

min
k

min
i

min
{
d
(k)
i , n− 1− d(k)i

}
≥

√
cn logn+ C. (27)

We now show that, when (25) and the previous equation are satisfied, the MLE exists if

min
(S,T )∈Pn

g(S, T, d, n) > C > 0. (28)

Indeed, suppose that (25) is true and that d̃ belongs to the boundary of Pn. Then, by the integrality of the
polytope Pn, there exist non-empty and disjoint subsets T and S of {1, . . . , n} satisfying the conditions of

lemma 3.4 for each of the degree sequences d(1), . . . , d(k). If minkmini d
(k)
i >

√
cn logn+C, then, necessarily,
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|S| > √cn logn+ C, because |S| is the maximal degree of every node i ∈ T . Similarly, since each i ∈ S has

degree at least |S| − 1 + |(S ∪ T )c|, if maxkmaxi d
(k)
i < n− 1−√cn logn− C, the inequality

|S| − 1 + |(S ∪ T )c| < n− 1−
√
cn logn− C

must hold, implying that |T | = n− |S| − |(S ∪ T )c| > √cn logn+ C. Thus, we have shown that, if (25) and
(27) hold, and d̃ belongs to the boundary of Pn, the cardinalities of the sets S and T defining the facet of Pn
to which d̃ belongs cannot be smaller than

√
cn logn + C. By Theorem 3.3, when (25) and (27) hold, (28)

implies that d̃ ∈ int(Pn), so the MLE exists. However, equation (26) and assumption (ii’) implies (28), so the

proof is complete. �

Proof of Theorem 5.2. We first define a new polytope Qn ⊂ R
2n+(n

2
) which is combinatorially equivalent

to P ′
n and, therefore, to the polytope of degree sequences Pn. Let ci,j be the column of C index by the pair

(i, j) and, for each i < j, set

Ci,j := convhull ({ci,j , cj,i})
and

Qn :=
∑

i<j

Ci,j .

By construction, w ∈ P ′
n if and only if (

1
w

)
∈ Qn,

where 1 ∈ R
(n
2
) is a vector of all ones, which shows that P ′

n and Qn are combinatorially equivalent, so they

have the same facial sets. We make a simple but useful observation: because the first
(
n
2

)
coordinates of any

point in Qn are all ones, and given the patter of non-zero entries in the first
(
n
2

)
rows of C, it must be that if

y ∈ Qn and y = Cp′, the vector p′ is of the form {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1− p′j,i}.
Since Qn ⊂ Dn and both sets are closed, y ∈ ri(Qn) implies that y ∈ ri(Dn). As for the converse

statement, suppose y belongs to the interior of a proper face of Qn with facial set F ′. Then, by Proposition
2.1 in Fukuda (2004), y can be uniquely expressed as

y = y1,2 + y1,3 + . . .+ yn−1,n (29)

where yi,j ∈ ri(Ci,j) if and only if (i, j) and (j, i) are in F ′. Equivalently, yi,j = ci,j or yi,j = cj,i if and only if

(i, j) 6∈ F ′ or (j, i) 6∈ F ′, respectively. Arguing by contradiction, suppose that y ∈ ri(Dn). Then, there exists a

point p∗ = {p∗i,j : i 6= j} with strictly positive entries such that y = Cp∗. By the observation above, it must be
that p∗i,j ∈ (0, 1) and p∗i,j = 1− p∗j,i, for all i < j. In turn, this implies that, in equation (29), yi,j ∈ ri(Ci,j) for

all i < j, i.e. yi,j 6∈ {ci,j, cj,i} for all i < j. Then, using again Proposition 2.1 in Fukuda (2004), y ∈ ri(Qn),
a contradiction.

To prove the second claim, notice that, the arguments so far yield that, for every proper face F of Qn,

there exists one face G of Dn such that ri(F ) ⊂ ri(G), so that F ′ ⊆ G, where F ′ and G are the facial sets
associated with F and G, respectively. We now show that F ′ = G. To see this, let y ∈ ri(F ) for some face F
of Qn with facial set F ′, so that

y = Cp′

for some p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1− p′j,i} such that p′i,j > 0 if and only if (i, j) ∈ F ′. On the other

hand, since y ∈ ri(G),
y = Cp∗,

where p∗ = {p∗i,j : p∗i,j ≥ 0} is such that p∗i,j > 0 if and only if (i, j) ∈ G. However, using the observation
above, it must be that p∗i,j ∈ [0, 1] and p∗i,j = 1 − p∗j,i, for all i < j. By maximality of the facial sets, F ′ = G,

as claimed.

Thus, we have shown that if F ′ is a facial set of Qn and hence of P ′
n, it is also a facial set of Dn. �
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Proof of Lemma 5.3. Let F̃ = {(i, j) : 〈ci,j , y∗i,j〉 = 0}. If F̃ = {1, . . . , n}, then there does not exist any

vector v ∈ R
n+(n

2
) such that 〈v, ci,j〉 ≥ 0 with strict inequality for some (i, j). Thus, the normal cone at t is

the zero vector, so t ∈ ri(Dn), and the MLE exists by Theorem 5.2. We now show that the if the MLE does not

exist, then F̃ = F , where F is the facial set associated with the face of Dn whose relative interior contains
t. To see this, let ṽ =

∑
(i,j)∈F̃

y∗i,j . It is clear that F̃ ⊆ F , for otherwise the vector ṽ would produce a strictly

larger facial set, which violates the maximality of F . On the other hand, if (i, j) ∈ F \ F̃ , then there does not

exist any vector y∗i,j in the feasible set of the (i, j)-th program such that 〈y∗i,j , ci,j〉 = 0. However, the vector v
specifying F is clearly in that feasible set and, by definition, 〈v, ci,j〉 = 0, which gives a contradiction. Thus

F̃ = F , as claimed. �

Proof of Theorem 6.3. Equivalently, since the row span of A contains the constant vectors, we study the
facets of the polytope P := conv(B) ⊂ R

n ×R
n. Denote by xi and x′i the coordinates of the two spaces, and

by ei and e′i the corresponding standard unit vectors in R
n. The polytope P is contained in the product of

simplices ∆n−1 ×∆n−1 := conv{ei × e′j : 1 ≤ i, j ≤ n}, where, for two vectors x and x′ in R
n,

x× x′ :=
(

x
x′

)
∈ R

2n.

The point ei × e′j corresponds to the (i, j)-entry of the n × n incidence table of the network. P is obtained
from the product of simplices by removing the n vertices {ei×e′i : i = 1 . . . , n}. To show that P has 3n facets,

we will use the fact that ∆n−1 × ∆n−1 has 2n facets whose defining inequalities are xi ≥ 0, x′i ≥ 0, for

i = 1 . . . , n. Note that these facets correspond to zero margins in the incidence table: for example, xi = 0
refers to the zero margin corresponding to the i-th row and x′i = 0 to the zero margin for the (i+ n)-th row.

Define a new polytope, P ′, cut out by the following 3n inequalities:

P ′ := {xi ≥ 0, x′i ≥ 0, xi + x′i ≤ 1, for all i}.

We need to show that P = P ′ and that the defining inequalities are all facets. For the first claim, we

already see that P ⊆ P ′. Since ∆n−1 × ∆n−1 is simple, every vertex has dimension many neighbors.
Thus, removing the vertex ei × e′i introduces one new facet, namely, xi + x′i ≤ 1. Since we are removing

n non-adjacent vertices, P = P ′. Next, our arguments so far already imply that the n new inequalities

{xi + x′i ≤ 1: i = 1, . . . , n} define facets, so we need to show that other 2n inequalities, corresponding to
zero row margins, define facets as well. But this follows from the fact that the support sets of each of the

rows of A are facial sets of P and that they are incomparable, in the sense that none of them is contained in

any of the others. Thus, since the lattice of facial sets of P is isomorphic to the face lattice of P , the 2n null
margins each specifies a different facet of P . �
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Abstract

We study maximum likelihood estimation for the statistical model for both directed and undirected

random graph models in which the degree sequences are minimal sufficient statistics. In the undirected

case, the model is known as the beta model. We derive necessary and sufficient conditions for the existence

of the MLE that are based on the polytope of degree sequences. We characterize in a combinatorial fashion

sample points leading to a nonexistent MLE, and non-estimability of the probability parameters under a

nonexistent MLE. We formulate conditions that guarantee that the MLE exists with probability tending to

one as the number nodes increases. We illustrate our approach on other random graph models for networks,

such as the Rasch model, the Bradley-Terry model and the more general p1 model of Holland and Leinhardt

(1981).

Keywords: beta model, polytope of degree sequences, random graphs, Rasch model, p1 model

1 Introduction

Virtually all statistical models for the representation and analysis of network data rely on the information

contained in the degree sequence, the vector of node degrees of the observed graph. The node degrees con-

stitute one of the most basic forms of data summary that not only encodes the overall connectivity of the

∗Email: arinaldo@cmu.edu
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network, but can also potentially reveal many other significant features of interest. The study of the degree

sequences and, in particular, of the the degree distributions of real networks is a classic topic in the network
analysis, which has received extensive treatment in the physics literature (see, e.g., Newman et al., 2001;

Albert and Barabási, 2002; Newman, 2003; Park and Newman, 2004; Newman et al., 2006; Foster et al.,

2007; Willinger et al., 2009) as well as in the social network literature (see, e.g., Robins et al., 2008; Goodreau,
2007, and references therein). See also Kolaczyk (2009), Cohen and Havlin (2010) and Neman (2010) for

textbook treatments.
The simplest instance of a statistical network model based exclusively on the node degrees is the ex-

ponential family of probability distributions for undirected random graphs with the degree sequence as its

natural sufficient statistic. For convenience, we will refer to this model as the beta model, a name recently
coined by Chatterjee et al. (2011). The beta model is a well-known model for network data (see in particular

the discussion in Blitzstein and Diaconis, 2009, and references therein) and can also be characterized as a

simpler, undirected version of the traditional p1 class of statistical models for directed networks introduced
by Holland and Leinhardt (1981), which we discuss later in section 6.4.

Despite its apparent simplicity and popularity, the beta model, much like most network models, is how-
ever a non-standard statistical model: its complexity, measured by the dimension of the parameter space,

increases with the size of the graph. In fact, the statistical and probabilistic properties of the beta model,

especially under the asymptotic scenario of a growing sample space, have remained largely unexplored
up until quite recently. Lauritzen (2003, 2008) has characterized beta models as the natural models for

representing random binary symmetric arrays that are weakly summarized, i.e., random arrays whose dis-

tribution only depends on the row and column totals. The properties of these models are characterized in
terms of the solutions of a certain system of functional equations of Rasch type, and are also directly related

to exchangeable doubly-infinite random arrays. More recently, Chatterjee et al. (2011) have conducted a
thorough analysis of the asymptotic properties of the beta model, including existence and consistency of the

maximum likelihood estimator (MLE) as the dimension of the network increases, and have provided a simple

algorithm for estimating the natural parameters. Furthermore, they have fully characterized the graph lim-
its, or graphons, corresponding to a sequence of beta models with given degree sequences (for a connection

between the theory of graphons and deFinetti’s theorem for exchangeable arrays see Diaconis and Janson,

2007; Diaconis et al., 2008). Concurrently, Barvinok and Hartigan (2010) have also explored the asymptotic
behavior of sequences of random graphs with given degree sequences, and have studied a different mode of

stochastic convergence. Among other things, they show that, as the size of the network increases and under
a “tameness” condition, the number of edges of a uniform graph with given degree sequence converges in

probability to the number of edges of a random graph drawn from a beta model parametrized by the MLE

corresponding to degree sequence.
As an alternative to asymptotic analysis, researchers have also looked into conducting exact inference

with the beta model, which entails the non-trivial task of sampling from the set of graphs with a given degree

sequence. Blitzstein and Diaconis (2009) have developed and analyzed a sequential importance sampling
algorithm for generating a random graph with the prescribed degree sequence (see also Viger and Latapay,

2005, for a different algorithm). The same task is tackled using algebraic methods by Hara and Takemura
(2010) and Ogawa et al. (2011) and by Petrović et al. (2010), who study Markov bases for the beta model

and for the more general p1 model, respectively.

In this article we study the existence of the MLE for the parameters of the beta model under a more
general sampling scheme in which each edge is observed a fixed number of times (instead of just once, like

in previous works) and for increasing network sizes. The reasons of our focus on the issue of existence

of the MLE, which we view as a natural measure of the intrinsic statistical difficulty of the beta model, is
twofold. First, existence of the MLE is a natural minimum requirement for feasibility of statistical inference

in discrete exponential families, such as the beta model: nonexistence of the MLE is in fact equivalent to
non-estimability of the model parameters, as illustrated in Fienberg and Rinaldo (2011). Thus, establishing

conditions for existence of the MLE amounts to specifying the conditions under which statistical inference for

these models is fully possible. Secondly, under the asymptotic scenario of growing network sizes, existence
of the MLE will provide a natural measure of sample complexity of the beta model, and will indicate the
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asymptotic scaling of the model parameters for which statistical inference is viable. In fact, our results from

section 4 will prove that the parameters of the beta model can be estimated consistently even when the
edge probabilities approach 0 or 1, provided the network size is sufficiently large and under appropriate

conditions.

Though prior studies of the beta model by Chatterjee et al. (2011) and Barvinok and Hartigan (2010)1

also revolve around the very same issue of existence of the MLE, our method of analysis is significantly

different from existing contributions in that it is rooted in the statistical theory of discrete linear exponential
families and relies in a fundamental way on the geometric properties of these families (see, in particular,

Rinaldo et al., 2009; Geyer, 2009). Our contributions are as follows.

• We provide explicit necessary and sufficient conditions for existence of the MLE for the beta model that
are based on the polytope of degree sequences, a well-studied polytope arising in the study of thresh-

old graphs (see Mahadev and Peled, 1996). In contrast, the conditions of Chatterjee et al. (2011)

are only sufficient. We then show that non-existence of the MLE is brought on by certain forbidden
patterns of extremal network configurations, which we fully characterize in a combinatorial way. Fur-

thermore, when the MLE does not exist, we can identify exactly which probability parameters are
estimable. To illustrate our findings, we rely on the computational geometry software polymake (see

Gawrilow and Joswig, 2000) to compute the forbidden configurations leading to nonexistence of the

MLE for some simple beta models.

• We use the properties of the polytope of degree sequences to formulate geometric conditions that
allow us to derive finite sample bounds on the probability that the MLE does not exist. In particular,

our results imply that the MLE exists with overwhelming probability even when the edge probabilities

tend to zero or one as the network grows, a case unaccounted for by existing literature. Our asymptotic
results improve analogous results of Chatterjee et al. (2011) and our proof is both simpler and more

direct. Furthermore, we show that the tameness condition of Barvinok and Hartigan (2010) is stronger
than our conditions for existence of the MLE.

• Our analysis is not specific to the beta model but, in fact, follows a principled way for detecting nonex-
istence of the MLE and identifying non-estimable parameters that is based on polyhedral geometry and

applies more generally to discrete models. We illustrate this point by analyzing other network models
that are variations or generalizations of the beta model: the Rasch model, the Bradley-Terry model and

the p1 model.

Finally, we remark that our results arise as non-trivial applications of the geometric and combinatorial
properties of log-linear models under general sampling schemes, as thoroughly described in the companion

paper Fienberg and Rinaldo (2011), to which the reader is referred for further details as well as for practical

algorithms.

Notation

For vectors x and y in the Euclidean space R
n, we will denote with xi the value of x at its i-th coordinate and

with 〈x, y〉 := x⊤y =
∑

i xiyi their standard inner product. Operations on vectors will be performed element-

wise. For a matrix A, convhull(A) and cone(A) denote the set of all convex and conic combinations of the
columns of A, respectively. For a polyhedron P , we denote with ri(P ) its relative interior. We will assume

throughout some familiarity with basic concepts from polyhedral geometry (see, e.g., Schrijver, 1998) and

the theory of exponential families (see, e.g., Barndorff-Nielsen, 1978; Brown, 1986).

1In the analysis of Barvinok and Hartigan (2010), the maximum entropy matrix associated to a degree sequence is in fact exactly
the MLE corresponding to the observed degree sequence. This is a well-known propertie of linear exponential families: see, e.g.,
Cover and Thomas (1991, Chapter 11)

3



2 The (Generalized) Beta Model

In this section we describe a simple generalization of the beta model and introduce the exponential family

parametrization we will be using throughout the article. Though our analysis applies to the generalized beta

model and recovers the original beta model as described in Chatterjee et al. (2011) as a special case, for
simplicity and with slight abuse of notation, we will refer to our more general setting as the beta model as

well.

The beta model is concerned with the occurrence of edges in a simple undirected random graph, with
the nodes labeled {1, . . . , n} for convenience. The associated statistical experiment consists of recording, for

each pair of nodes (i, j) with i < j, the number of edges appearing in Ni,j distinct observations, where the

integers {Ni,j, i < j} are deterministic and positive (both the non-randomness and positivity assumptions
can in fact be relaxed). For i < j, we denote with xi,j , the number of times the edge (i, j) was observed and,

accordingly, with xj,i the number of times object edge (i, j) was missing. Thus, for all (i, j),

xi,j + xj,i = Ni,j .

This is the natural heterogenous version of the well-known Erdös-Rényi random graph model (Erdös and Rényi,

1959). For a discussion of this model and its generalizations see Goldenberg et al. (2010). The observed
edge counts {xi,j , i < j} are modeled as draws from mutually independent binomial distributions, with

xi,j ∼ Bin(Ni,j , pi,j), where pi,j ∈ (0, 1) for each i < j. Accordingly, xj,i = Ni,j − xi,j has a Bin(Ni,j , pj,i)
distribution, where pj,i = 1− pi,j .

Data arising from such an experiment can be naturally represented through a n × n contingency table

with empty diagonal cells and whose (i, j)-th cell contains the count xi,j , i 6= j. For modeling purposes,
however, it is enough to consider the upper-triangular part of this contingency table. Indeed, since, given

xi,j , the value of xj,i is determined by Ni,j − xi,j , the set of all possible outcomes can be represented more

parsimoniously as the following subset of N(
n

2
):

Sn := {xi,j : i < j and xi,j ∈ {0, 1, . . . , Ni,j}} .

Throughout the article, we index the coordinates {(i, j) : i < j} of any point x in the sample space Sn
lexicographically.

In the beta model, the
(
n
2

)
edge probabilities are parametrized by points β ∈ R

n as follows. For each
β ∈ R

n, the probability parameters are uniquely determined as

pi,j =
eβi+βj

1 + eβi+βj
and pj,i = 1− pi,j =

1

1 + eβi+βj
, ∀i 6= j, (1)

or, equivalently, in term of odds ratios, log
pi,j
pj,i

= βi + βj , ∀i 6= j. Therefore, for a given choice of β, the

probability of observing the vector of edge counts x ∈ Sn is

pβ(x) =
∏

i<j

(
Ni,j
xi,j

)
p
xi,j

i,j (1 − pi,j)Ni,j−xi,j , (2)

with the probability values pi,j satisfying (1). Simple algebra shows that this expression can be written in
exponential family form as

pβ(x) = exp

{
n∑

i=1

diβi − ψ(β)
}
∏

i<j

(
Ni,j
xi,j

)
, (3)

where the coordinates of the vector of minimal sufficient statistics d = d(x) ∈ N
n are

di =
∑

j<i

xj,i +
∑

j>i

xi,j , i = 1, . . . , n, (4)
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and the log-partition function ψ : Rn → R is given by β 7→ ∑
i<j Ni,j log

(
1 + eβi+βj

)
. Note that eψ(β) < ∞

for all β ∈ R
n, so R

n is the natural parameter space of the full and steep exponential family with support Sn
(see, e.g. Barndorff-Nielsen, 1978) and densities given by the exponential term in (3). We take note that in

the beta model parametrization the probability of an undirected simple graph with possibly multiple edges

is fully determined only by the n natural parameters in β instead of the
(
n
2

)
edge probability parameters

{pi,j, i < j}.

Random graphs with fixed degree sequence

In the special case in which Ni,j = 1 for all (i, j), the support Sn reduces to the set Gn := {0, 1}(n2), which
encodes all undirected simple graphs on n nodes: for any x ∈ Gn, the corresponding graph has an edge

between nodes i and j, with i < j, if and only if xi,j = 1. In this case the beta model yields a class of

distributions for random undirected simple graphs on n nodes, where the edges are mutually independent
Bernoulli random variables with probabilities of success {pi,j , i < j} satisfying (1). Then, by (4), the i-th
minimal sufficient statistic di is the degree of node i, i.e. the number of nodes adjacent to i, and the vector
d(x) of sufficient statistics is the degree sequence of the observed graph x. This precisely the version of the

beta model studied by Chatterjee et al. (2011).

The Rasch model

The Rasch model (see, e.g., Rasch, 1960; Andersen, 1980) is concerned with modeling the joint probabilities

that k subjects provide correct answers to a set of l items, and is one of the most popular statistical models
used in item response theory and in educational tests. This model can be recast as a random bipartite graph

model in which, without loss of generality, the bipartition of the nodes consists of the sets I := {1, . . . , k}
and J := {k + 1, n − 1, n}, with k ≥ 2 and l := n − k ≥ 2. The set I represents the subjects and the set J
the items, and edges can only be of the form (i, j), with i ∈ I and j ∈ J . In particular, the presence of an

edge (i, j) indicates that the ith subject has responded correctly to the jth item. The sample space is given
by the set Rn = {0, 1}kl, and the vector x ∈ {xi,j , i ∈ I, j ∈ J} ∈ Rn encodes the bipartite graphs in which

the edge (i, j) is present if and only if xi,j = 1, i.e. if and only if subject i answered correctly to item j.
The Rasch model (see, e.g. Rasch, 1960) is then formulated by assuming that the edge probabilities

satisfy equation (1), for some β ∈ R
n. Then, it follows directly from on our discussion above that the Rasch

model is a beta model for bipartite graphs, and, in particular, that the degree sequence provides the sufficient

statistics.

3 Existence of the MLE for the Beta Model

In this section we derive a necessary and sufficient condition for the existence of the MLE of the natural

parameter β ∈ R
n of the beta model or, equivalently, of the probability parameters {pi,j , i < j} as defined in

(1). For a given x ∈ Sn, we say that the MLE does not exist when

{β∗ : pβ∗(x) = sup
β∈Rn

pβ(x)} = ∅,

where pβ(x) is given in (3). Notice that nonexistence of the MLE entrails, in the case of the natural parame-
ters, that the supremum of the likelihood function (3) cannot be attained by any finite vector in R

n, and, in

the case of the probability parameters, that the supremum of (2) cannot be attained by any set of probability
values bounded away from 0 and 1, and satisfying the equations (1).

We will formulate conditions for the existence of the MLE for the beta model based on a geometric object

that will play a key role throughout the rest of the paper: the polytope of degree sequences. To this end, note
that, for each x ∈ Sn, the vector of sufficient statistics d(x) for the beta model can be obtained as

d(x) = Ax

5



where A is the n ×
(
n
2

)
design matrix consisting of the node-edge incidence matrix of a complete graph on

n nodes. Specifically, the rows of A are indexed by the node labels i ∈ {1, . . . , n}, and the columns are
indexed by the set of all pairs (i, j) with i < j, ordered lexicographically. The entries of A are ones along the

coordinates (i, (i, j)), when i < j and (i, (j, i)) when j < i, and zeros otherwise. For instance, when n = 4

A =




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


 ,

where the columns are indexed lexicographically by the pairs (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4).
In particular, as pointed out above, for any undirected simple graph x ∈ Gn, Ax is the associated degree
sequence. The polytope of degree sequences Pn is the convex hull of all possible degree sequences, i.e.

Pn := convhull ({Ax, x ∈ Gn}) .

The integral polytope Pn is a well-studied object: see Chapter 3 in Mahadev and Peled (1996). In the lan-

guage of algebraic statistics, Pn is called the model polytope (see Sturmfels and Welker, 2011). In particular,

when n = 2, Pn is just a line segment in R
2 connecting the points (0, 0) and (1, 1), while, for all n ≥ 3,

dim(Pn) = n.

The main result in this section is to show that existence of the MLE for the beta model can be fully

characterized using the polytope of degree sequences in the following fashion. For any x ∈ Sn, let

p̃i,j :=
xi,j
Ni,j

, i < j,

and set d̃ = d̃(x) ∈ R
n to be the vector with coordinates

d̃i :=
∑

j<i

p̃j,i +
∑

j>i

p̃i,j , i = 1, . . . , n. (5)

Notice that, d̃ is a just a rescaled version of the sufficient statistics (4), normalized by the number of obser-
vations. It is also clear that, for the random graph model, d̃ = d.

Theorem 3.1. Let x ∈ Sn be the observed vector of edge counts. The MLE exists if and only if d̃(x) ∈ int(Pn).

Remark
Theorem 3.1 verifies the conjecture contained in Addenda A in Chatterjee et al. (2011): for the random

graph model, the MLE exists if and only if the degree sequence belongs to the interior of Pn. This result

follows from the standard properties of exponential families: see Theorem 9.13 in Barndorff-Nielsen (1978)
or Theorem 5.5 in Brown (1986). The theorem also confirms the observation made by Chatterjee et al.

(2011) that the MLE never exists if n = 3: indeed, since P3 has exactly 8 vertices, as many as the possible

graphs on 3 nodes, no degree sequence can be inside P3.

The geometric nature of Theorem 3.1 has important consequences. First, it provides the algorithmic basis
for detecting existence of the MLE, as discussed in the appendix. Secondly, and quite importantly, it allows

to indentify the patterns of observed edge counts that cause nonexistence of the MLE, i.e. the sample points
for which the MLE is undefined. This is done in the next result.

Lemma 3.2. A point y belongs to the interior of some face F of Pn if and only if there exists a set F ⊂ {(i, j), i <
j} such that

y = Ap, (6)

where p = {pi,j : i < j, pi,j ∈ [0, 1]} ∈ R(
n

2) is such that pi,j ∈ {0, 1} if (i, j) 6∈ F and pi,j ∈ (0, 1) if (i, j) ∈ F .

The set F is uniquely determined by the face F and is the maximal set for which (6) holds.
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× 0

N1,2 ×
× N3,4

0 ×

Table 1: Example of a co-facial set leading to a nonexistent MLE.

Following Geiger et al. (2006) and Fienberg and Rinaldo (2011), we call any such set F a facial set of

Sn and its complement, Fc = {(i, j) : i < j} \ F , a co-facial set. Facial sets form a lattice that is isomorphic
to the face lattice of Pn as shown by Fienberg and Rinaldo (2011, Lemma 3.4). This means that the faces

of Sn are in one-to-one correspondence with the facial sets of Sn and, for any pair of faces F and F ′ of Sn
with associated facial sets F and F ′, F ∩ F ′ if and only if F ∩ F ′ = ∅ and F ⊂ F ′ if and only if F ⊂ F ′. In
particular, for a point x ∈ Sn, d(x) = Ax belongs to the interior of a face F of Pn if and only if there exists a

non-negative p such that d(x) = Ap, where F = {(i, j) : pi,j > 0} is the facial set corresponding to F . By the
same token, y ∈ int(Pn) if and only if y = Ap for a vector p whose coordinates are strictly between 0 and 1.

Facial sets are combinatorial objects that have statistical relevance for two reasons. First, non-existence

of the MLE can be described combinatorially in terms of co-facial sets, i.e. patterns of edge counts that are
either 0 or Ni,j . In particular, the MLE does not exist if and only if the set {(i, j) : i < j, xi,j = 0 or Ni,j}
contains a co-facial set. Secondly, apart from exhausting all possible patterns of forbidden entries in the

table leading to a nonexistent MLE, facial sets specify which probability parameters are estimable. In fact,
inspection of the likelihood function (2) reveals that, for any observable set of counts {xi,j : i < j}, there

always exists a unique set of maximizers p̂ = {p̂i,j, i < j} which, by strict concavity, are uniquely determined
by the first order optimality conditions

d̃(x) = Ap̂,

also known as the moment equations. Existence of the MLE is then equivalent to 0 < p̂i,j < 1 for all i < j.

When the MLE does not exist, i.e. when d̃ is on the boundary of Pn, the moment equations still hold, but

the entries of the optimizer {p̂i,j , i < j}, known as the extended MLE, are no longer strictly between 0 and 1.
Instead, by Lemma (3.2), the extended MLE is such that p̂i,j = p̃i,j ∈ {0, 1} for all (i, j) ∈ Fc. Furthermore,

it is possible to show (see, e.g., Morton, 2008) that p̂i,j ∈ (0, 1) for all (i, j) ∈ F . Therefore, when the MLE
does not exist, only the probabilities {pi,j, (i, j) ∈ F} are estimable.

Therefore, while co-facial sets encode the patterns of table entries leading to a non-existent MLE, facial

sets indicate which probability parameters are estimable. A similar, though more involved interpretation
holds for the estimability of the natural parameters, for which the reader is referred to Fienberg and Rinaldo

(2011).

Below, we further investigate the properties of Pn and provide several examples of co-facial sets associ-
ated to the facets of Pn.

3.1 The Co-facial Sets of P
n

Theorem 3.1 and Lemma 3.2 both show that the boundary of the polytope Pn plays a fundamental role in

determining the existence of the MLE for beta models and in specifying which parameters are estimable.
Mahadev and Peled (1996) have fully characterized the boundary of Pn and derived the facet-defining

inequalities of Pn, for all n ≥ 4 (when n ≤ 3 the problem is of little interest). For the reader’s convenience,

we report this result below. Let P be the set of all pairs (S, T ) of disjoint non-empty subsets of {1, . . . , n},
such that |S ∪ T | ∈ {2, . . . , n− 3, n}. For any (S, T ) ∈ P and y ∈ Pn, let

g(S, T, y, n) := |S|(n− 1− |T |)−
∑

i∈S

yi +
∑

i∈T

yi. (7)
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× 0 1 2

3 × 2 1

2 1 × 3

1 2 0 ×

× 0 0.5 0.5

1 × 0.5 0.5

0.5 0.5 × 1

0.5 0.5 0 ×

Table 2: Left: data exhibiting the pattern reported in Table 1, when Ni,j = 3 for all i 6= j. Right: table

of the extended MLE of the estimated probabilities. Under the natural parametrization, the supremum
of the log-likelihood is achieved in the limit for any sequence of natural parameters {β(k)} of the form

β(k) = (−ck,−ck, ck, ck), where ck →∞ as k →∞.

× 2 1 2

1 × 0 1

2 3 × 3

1 2 0 ×

× 0.225 0.384 0.725

0.775 × 0.225 0.551

0.616 0.775 × 0.725

0.275 0.449 0.275 ×

Table 3: Left: same data as in Table 2, but with the values for the cells (1, 2) and (2, 3) switched with the
values in the cells (2, 1) and (3, 2), respectively. Right: table of probabilities at which the log-likelihood is

optimal. The MLE of the natural parameters are β = (−0.237,−1.002,−0.237, 1.205).

× 0

N1,2 × 0 0

N3,2 ×
N4,2 ×

Table 4: Example of a co-facial set leading to a nonexistent MLE. In this case d̃2 = 0.

Theorem 3.3 (Theorem 3.3.17 in Mahadev and Peled (1996)). Let n ≥ 4 and y ∈ Pn. The facet-defining

inequalities of Pn are

(i) yi ≥ 0, for i = 1, . . . , n;

(ii) yi ≤ n− 1, for i = 1, . . . , n;

(iii) g(S, T, y, n) ≥ 0, for all (S, T ) ∈ P .

The combinatorial complexity of the face lattice of an n-dimensional polytope can be summarized by its

f -vector, the vector of length n+1 whose i-th entry contains the number of i-dimensional faces, i = 0, . . . , n.

Stanley (1991) studies the number faces of the polytope of degree sequences Pn and derives an expression
for computing the entries of the f -vector of Pn. For example, the f -vector of P8 is the 9-dimensional vector

(334982, 1726648, 3529344, 3679872, 2074660, 610288, 81144, 3322, 1),

so P8 is an 8-dimensional polytope with 334982 vertices, 1726648 edges, and so on, up to 3322 facets. Also,

according to Stanley’s formula, the number of facets of P4, P5, P6 and P7 are 22, 60, 224 and 882, respectively.
These numbers correspond to the numbers we obtained with polymake, using the methods described in the

appendix.
Despite the fact that much is known about Pn, the number of facet-defining inequalities appears to be

exponential in n and, consequently, the tasks of identifying points on the boundary of Pn and the associated

facial set remain computationally challenging. In the appendix, we discuss these difficulties and propose an
algorithm for detecting boundary points and the associated facial sets that is based on a log-linear model

reparametrization. Using the methods described there, we were able to identify a few interesting cases in
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× N1,2

0 × 0 0

N3,2 ×
N4,2 ×

Table 5: Example of a co-facial set leading to a nonexistent MLE. In this case the second row sum is 0.

× 0 0

N1,2 × 0

×
N4,1 N4,2 ×

Table 6: Example of a co-facial set leading to a nonexistent MLE.

which the MLE is nonexistent, most of which seem to be unaccounted for in the statistical literature. Below
we describe some of our computations.

Recall that the data can be represented as a n × n table of counts, in which the diagonal elements are

expunged and where the (i, j) − th entry of the table indicates the number of times, out of Ni,j , in which
the edges (i, j) was observed. In our examples, empty cells correspond to facial set and may contain any

count values, in contrast to the cells in the co-facial sets that contain either a zero value or a maximal value,

namely Ni,j . As we say in Lemma 3.2, extreme count values of this nature are precisely what leads to a
nonexistent MLE.

Table 1 provides an instance of a co-facial set, which corresponds to a facet of P4. Assume for simplicity
that each of the empty cells contain counts bounded away from 0 and Ni,j. Then the sufficient statistics d̃
are also bounded away from 0 and n− 1 and, and so are the row and column sums of the normalized counts

{ xi,j

Ni,j
: i 6= j}, yet the MLE does not exist. This is further illustrated in Table 2, which shows, on the left,

an instance of data with Ni,j = 3 for all i 6= j, satisfying the pattern indicated in Table 1 and, on the right,

the probability values maximizing the log-likelihood function. Since the MLE does not exist, some of these

probability values are 0 and 1. The order of the pattern is crucial. Indeed, Table 3 shows, on the left, data
containing precisely the same counts as in Table 2, but with the values in cells (1, 2) and (2, 3) switched with

the values in cell (2, 1) and (3, 2), respectively. On the left of Table 3 the MLE of the cell probabilities are

shown; as the MLE exists, they are bounded away from 0 and 1.
In Table 4 we show another example of a co-facial set that is easy to detect, since it corresponds to a value

of 0 for the normalized sufficient statistic d̃2. Indeed, from cases (i) and (ii) of Theorem 3.3, the MLE does
not exist if d̃i = 0 or d̃i = n−1, for some i. Table 5 shows yet one more example of a co-facial set that is easy

to detect, as it leads to a zero row margin for the second row. Finally, Table 6 provides one more example

of a co-facial set, which unlike the ones in Tables 4 and 5, has normalized row sums and the normalized
sufficient statistics bounded away from 0 and n − 1. In Table 7 we list all 22 co-facial sets associated with

the facets of Pn, including the cases already shown in Tables 1, 4, 5 and 6.

In general, there are 2n facets of Pn that are determined by d̃i equal to 0 or n − 1, and 2n other facets
associated to values of the normalized row sums equal to 0 or n−1. Thus, just by inspecting the row sums or

the observed sufficient statistics, one can detect 4n co-facial sets associated to as many facets of Pn. However,
comparing this number to the entries of the f -vector calculated in Stanley (1991) and as our computations

confirm, most of the facets of Pn do not yield co-facial sets of this form. Since the number of facets appear

to grow exponentially in n, we conclude that most of the co-facial sets do not appear to arise in this fashion.
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× 0

N1,2 ×
× N3,4

0 ×

× 0

N1,2 × 0 0

N3,2 ×
N4,2 ×

× 0 0

N1,2 × 0

×
N4,1 N4,2 ×

× 0 0 0

N1,2 ×
N1,3 ×
N4,1 ×

× 0 0

N1,2 × 0

N1,3 N2,3 ×
×

× 0 0

×
N1,3 × 0

N1,4 N3,4 ×

× 0

× 0

N1,3 N2,3 × 0

N3,4 ×

× N1,2 N1,3 N1,4

0 ×
0 ×
0 ×

× N1,3 N1,4

×
0 × N3,4

0 0 ×

× N1,2 N1,3

0 × N2,3

0 0 ×
×

× N1,3

× N2,3

0 0 × N3,4

0 ×

× N1,2 N1,4

0 × N2,4

×
0 0 ×

× N1,4

× N2,4

× N3,4

0 0 0 ×

× N1,3

× N2,3

0 0 × N3,4

0 ×

× N1,2

0 × 0 0

N2,3 ×
N2,4 ×

×
× 0 0

N2,3 × 0

N2,4 N3,4 ×

× 0

× 0

× 0

N1,4 N2,4 N3,4 ×

× N1,2

0 ×
× 0

N3,4 ×

× 0

× N2,4

N1,3 ×
0 ×

× N1,3

× 0

0 ×
N2,4 ×

× N1,4

× 0

N2,3 ×
0 ×

× 0

× N2,3

0 ×
N1,4 ×

Table 7: All possible co-facial sets for P4 (empty cells indicate any entry values).

3.2 Random Graphs with Nonexistent MLEs

When dealing with the special case of Ni,j = 1 for all i < j, which we showed to be equivalent to a model for

random undirected graphs, points on the boundary of Pn are, by construction, degree sequences and have a
direct graph-theoretical interpretation, as shown in the next result.

Lemma 3.4 (Lemma 3.3.13 in Mahadev and Peled (1996)). Let d be a degree sequence of a graph G that lies

on the boundary of Pn. Then either di = 0, or di = n − 1 for some i, or there exist non-empty and disjoint
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× 0

1 ×
× 1

0 ×

× 0

×
1 × 1

0 ×

× 1

× 0

1 ×
0 ×

× 1

0 ×
× 0

1 ×

× 1

×
0 × 0

1 ×

× 0

× 1

0 ×
1 ×

Table 8: Patterns of zeros and ones yielding random graphs with non-existent MLE (empty cells indicate that
the entry could be a 0 or a 1).

subsets S and T of {1, . . . , n} such that

1. S is clique of G;

2. T is a stable set of G;

3. every vertex in S is adjacent to every vertex in (S ∪ T )c in G;

4. no vertex of T is adjacent to any vertex of (S ∪ T )c in G.

A direct consequence of lemma 3.4 is that the MLE does not exists if the observed network is a split graph,

i.e. a graph whose node sets can be partitioned into a clique S and a stable set T . More generally, Lemma

3.4 can be used to create virtually any example of random graphs with fixed degree sequences for which the

MLE does not exist. Notice that, in particular, having node degrees bounded away from 0 and n− 1 is not a
sufficient condition for the existence of the MLE (though its violation implies nonexistence of the MLE). We

point out that, in order to detect boundary points and the associated co-facial sets, Lemma 3.4 is, however,
of little help.

Below, we provide some examples of co-facial sets for random graphs with fixed degree sequences for

which the MLE does not exist, yet the node degrees are bounded from 0 and n− 1.
For the case n = 4, our computations show that there are 14 distinct co-facial sets associated to the facets

of Pn. Eight of them correspond to degree sequences containing a 0 or a 3, and the remaining six are shown

in Table 8, which we computed numerically using the procedure described in the appendix. Notice that
the three tables on the second row are obtained from the first three tables by switching zeros with ones.

Furthermore, the number of the co-facial sets we found is smaller than the number of facets of Pn, which is
22, as shown in Table 7. This is a consequence of the fact that the only observed counts in the random graph

model are 0’s or 1’s: it is in fact easy to see in Table 7 that any co-facial set containing three zero counts

and three maximal counts Ni,j is equivalent, in the random graph case, to a node having degree zero or 3.
However, as soon as Ni,j ≥ 2, the number of possible co-facial sets matches the number of faces of Pn.

Table 9 shows an observed graph with degrees all larger than 0 and less than 3 but for which the MLE

does not exist. Notice that the co-facial set corresponds to the one shown in the upper left corner of Table 8.
Finally, Tables 9 and 10 show two more examples of random graphs on n = 5 and n = 6 nodes, respectively,

for which the MLE does not exist (by Lemma 3.4), and yet the degrees are such that 0 < di < n− 1 for all i.

4 Existence of the MLE: Asymptotics

In this section we derive sufficient conditions that imply existence of the MLE with large probability as the

size of the network n grows. We will make the simplifying assumption that Ni,j = Nn, for all i and j, where
Nn ≥ 1 could itself depend on n.

11



× 0 1 0

1 × 0 1

0 1 × 1

1 0 0 ×

Table 9: Random graph with node degrees larger than 0 and smaller than 3 exhibiting the same co-facial set

show in the upper left corner of Table 8. In this case, lemma 3.4 applies with S = {3, 4} and T = {1, 2}.

× 1 0 0 0

0 × 1 1 0

1 0 × 1 0

1 0 0 × 1

1 1 1 0 ×

Table 10: Network with n = 5 for which the MLE does not exist and the degrees are bounded away from 0
and 4. In this case, lemma 3.4 applies with S = {2, 3, 4} and T = {1, 5}.

× 1 0 1 1 1

0 × 1 0 0 1

1 0 × 0 0 0

0 1 1 × 0 0

0 1 1 1 × 0

0 0 1 1 1 ×

Table 11: Network with n = 6 for which the MLE does not exist and the degrees are bounded away from 0
and 5. In this case, lemma 3.4 applies with S = {1, 2, 6} and T = {3, 4, 5}.

Recall the random vector d̃, whose coordinate are given in (5) and set d = E[d̃] ∈ R
n. Then

di =
∑

j<i

pj,i +
∑

j>i

pi,j , i = 1 . . . , n.

We formulate sufficient conditions for the existence of the MLE in terms of the entries of the vector d.

Theorem 4.1. Assume that, for all n ≥ max{4, 2
√
cn logn

N + 1}, the vector d satisfies the conditions

(i) minimin
{
di, n− 1− di

}
≥ 2

√
cn logn

N + C,

(ii) min(S,T )∈P g(S, T, d, n) > |S ∪ T |
√
cn logn

N + C,

where c > 1/2 and C ∈
(
0, n−1

2 −
√
cn logn

N

)
. Then, with probability at least 1− 2

n2c−1 , the MLE exists.

When Nn is constant, for instance when Nn = 1, as in the random graph case, the conditions of Theo-
rem 4.1 can be relaxed by requiring condition (ii) to hold only over subsets S and T of cardinality of order

Ω(
√
n logn). While we present this result in greater generality by assuming only n ≥ Nn, we do not expect

it to be sharp in general when Nn grows with n.

Corollary 4.2. Let n ≥ max{N, 4, 2√cn logn + 1}, c > 1 and C ∈
(
0, n−1

2 −
√
cn logn

)
. Assume the vector

d = E[d̃] ∈ R
n satisfies the conditions

12



(i’) minimin
{
di, n− 1− di

}
≥ 2
√
cn logn+ C;

(ii’) min(S,T )∈Pn
g(S, T, d, n) > |S ∪ T |√cn logn+ C,

where

Pn := {(S, T ) ∈ P : min{|S|, |T |} >
√
cn logn+ C},

where the set P was defined before Theorem 3.3. Then, the MLE exists with probability at least 1 − 2
n2c−2 . If

N = 1, it is enough to have c > 1/2, and the MLE exists with probaiblity larger than 1− 2
n2c−1

4.1 Discussion and Comparisons with Previous Works

It is clear that, asymptotically, the value of the constant C in both Theorem 4.1 and Corollary 4.2 becomes
irrelevant, as the constraints on its range will be satisfied by any positive C, for all n large enough.

Since |S ∪ T | ≤ n, one could replace assumption (ii) of Theorem 4.1 with the simpler but stronger
condition

min
(S,T )∈Pn

g(S, T, d, n) > n3/2
√
c logn+ Cn.

Then, assuming for simplicity that Nn is a constant, as in Corollary 4.2, the MLE exists with probability

tending to one at a rate that is polynomial in n whenever

min
i

min
{
di, n− 1− di

}
= Ω

(√
n logn

)

and, for all pairs (S, T ) ∈ P ,

g(S, T, d, n) > Ω
(
n3/2

√
logn

)
.

For the case Nn = 1, Corollary 4.2 should be compared with Theorem 3.1 in Chatterjee et al. (2011),

which also provides sufficient conditions for the existence of the MLE with probability no smaller than
1 − 1

n2c−1 (for all n large enough), but appear to be stronger than ours. In detail, their conditions require

that, for some constant c1, c2 and c3 in (0, 1), c1(n− 1) < di < c2(n− 1) for all i and

|S|(|S| − 1)−
∑

i∈S

di +
∑

i6∈S

min{di, |S|} > c3n
2, (8)

for all sets S such that |S| > (c1)
2n2. It is easy to see that, for any non-empty subsets S ⊂ {1, . . . , n} and

T ⊂ {1, . . . , n} \ S, ∑

i6∈S

min{di, |S|} ≤
∑

i∈T

di + |S||(S ∪ T )c|,

which implies that

|S|(n− 1− |T |)−
∑

i∈S

di +
∑

i∈T

di > |S|(|S| − 1)−
∑

i∈S

di +
∑

i6∈S

min{di|S|},

where we have used the equality n = |S| + |T | + |(S ∪ T )c|. Thus if (8) holds for some non-empty
S ⊂ {1, . . . , n}, it satisfies the facet conditions implied by all the pairs (S, T ), for any non-empty set

T ⊂ {1, . . . , n}\S. As a result, for any subset S, (8) is a stronger condition than any of the facet conditions of

Pn specified by S. In addition, we weakened significantly their requirements that c1(n− 1) < di < c2(n− 1)
for all i to minimin

{
di, n− 1− di

}
≥ 2
√
cn logn + C. As a direct consequence of this weakening, in our

analysis we only need |S| > √cn logn + C as opposed to |S| > (c1)
2n2. Overall, in our setting, the vector

of expected degrees of the sequence of networks is allowed to lye much closer to the boundary of Pn. As

we explain next, such weakening is significant, since the setting of Chatterjee et al. (2011) only allows to

estimate an increasing number of probability parameter (the edge probabilities) that are uniformly bounded
away from 0 and 1, while our assumptions allow for these probabilities to become degenerate as the network

size grows.
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The non-degenerate case

We now briefly discuss the case of sequences of networks for which Nn = 1 and the edge probabilities are
uniformly bounded away from 0 and 1, i.e.

δ < pi,j < 1− δ, ∀i, j, (9)

for some δ ∈ (0, 1) independent of n. In this scenario, the number of probability parameters to be estimated
grows with n, but their values are guaranteed to be non-degenerate. It immediately follows from the non-

degenerate assumption (9) that d ∈ int(Pn) and

δ(n− 1) < di < (1 − δ)(n− 1), i = 1, . . . , n. (10)

Then, the same arguments used in the proof of corollary 4.2 imply that the MLE exists with high probability.

We only provide a sketch of the proof. First, we note that, with high probability, g(S, T, d̃, n) ≥ g(S, T, d, n)−
|S ∪ T |Ω

(√
n logn

)
, for each pair (S, T ) ∈ P . Furthermore, because of (10), it is enough to consider only

pairs (S, T ) of disjoint subsets of {1, . . . , n} of sizes of order Ω(n). For each such pair, the condition on di
further yields that g(S, T, d, n) is of order Ω(n2), and, by Theorem 7 the MLE exists with high probability.

In fact, the boundedness assumption of Chatterjee et al. (2011) that ‖β‖∞ < L, with L independent of

n, is equivalent to the non-degenerate assumption (9), as it can be easily seen from equation (1). Unlike

the analysis of Chatterjee et al. (2011), which focusses on the non-degenerate case, our results hold under
weaker scaling, as we only require for instance that di be of order Ω

(√
n logn

)
for all i.

Finally, we note that the tameness condition of Barvinok and Hartigan (2010) is equivalent to δ < p̂i,j <
1 − δ for all i and j and a fixed δ ∈ (0, 1), where p̂i,j is the MLE of pi,j . Therefore, the tameness condition

is stronger than existence of the MLE. In fact, using again Theorem 1.3 in Chatterjee et al. (2011), for all

n sufficiently large, the tameness condition is equivalent to the boundedness condition of Chatterjee et al.
(2011).

Theorem 1.3 in Chatterjee et al. (2011) shows that, when the MLE exists, maxi |β̂i − βi| = O(
√

logn/n),
with probability at least 1− 2

n2c−1 . Combined with our Corollary 4.2, this implies that the MLE is a consistent
estimator under a growing network size and with edge probabilities approaching the degenerate values of 0
and 1.

5 Computations

The main difficulty in applying the theory presented so far is that the polytope of degree sequences Pn is in

general difficult to handle algorithmically. Indeed, Pn arises a Minkowksi sum and, even though the system of
defining inequalities is given explicitly, its combinatorial complexity grows exponentially in n. Furthermore,

the vertices of Pn are not known explicitly. Algorithms for obtaining the vertices of Pn, such as minksum (see
Weibel, 2005), are computationally expensive and require generating all the points {Ax, x ∈ Gn}, where

|Gn| = 2(
n

2
). In general, when n is as small as 10, this is not feasible. See for instance, Table 6.4 below.

Thus, deciding whether a given degree sequence is a point in the interior of Pn and identifying the facial set

corresponding to an observed degree sequence on the boundary of Pn.
Our strategy to overcome these problems entails re-expressing the beta model as a log-linear model

with
(
n
2

)
product-multinomial sampling constraints. This approach is not new, and it harks back to the

earlier re-expression of the Holland-Leinhardt p1 model and its natural generalizations as log-linear mod-
els (Fienberg and Wasserman, 1981a,b; Fienberg et al., 1985). Though this re-parametrization increases the

dimensionality of the problem, it nonetheless has the crucial computational advantage of reducing the deter-
mination of the facial sets of Pn to the determination of the facial sets of a pointed polyhedral cone spanned

by n(n − 1) vectors, which is a much simpler object to analyze, both theoretically and algorithmically. This

procedure is known as the Cayley embedding in polyhedral geometry, and its use in the analysis of log-linear
models is described in Fienberg and Rinaldo (2011). The advantages of this re-parametrization are two-fold.

First, it allows us to use the highly optimized algorithms available in polymake for listing explicitly all the
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facial sets of Pn. This is how we computed the facial sets in all the examples presented in this article. Sec-

ondly, the general algorithms for detecting nonexistence of the MLE and identifying facial sets proposed in
Fienberg and Rinaldo (2011), which can handle larger dimensional models, can be directly applied to this

problem. This reference is also relevant for dealing with inference under a non-existent MLE.

Due to space limitations, the details of our computations and the associated algorithms are provided in
the appendix. The R routines used to carry out the computations for the results presented in the paper and for

creating the input files for polymake are available at http://www.stat.cmu.edu/~arinaldo/Rinaldo_Petrovic_Fienberg_R

6 Applications and Extensions

The main arguments that we have used to explore nonexistence of the MLE and parameter estimability in

the beta model are rather general, as they pertain to all log-linear models (see, e.g., Fienberg and Rinaldo,
2011). In this section we extend them to different models for networks.

6.1 The Rasch model

Just like in section 3.2, necessary and sufficient conditions for the existence of the MLE of the Rasch model
parameters can also be formulated in geometric terms based on the polytope of degree sequences. In detail,

for a bipartition of the n nodes of the form I = {1, . . . , k} and J = {k + 1, n − 1, n}, where l = n − k,
let Pk,l ⊂ R

n denote the associated polytope of bipartite degree sequences, i.e. the convex hull of all degree

sequences of bipartite undirected simple graphs on n nodes, with the bipartition specified by I and J . Let d(x)
denote the degree sequence associated with the observed bipartite graph x ∈ Rn. Then, a straightforward
application of Theorem 9.13 in Barndorff-Nielsen (1978) yields the following result.

Theorem 6.1. The MLE of the Rasch model parameters exists if and only if d(x) ∈ ri(Pp,q).

The polytope of bipartite degree sequences was introduced by Hammer et al. (1990). We briefly recall
its properties (see Mahadev and Peled, 1996, section 3.4 for more details). Let

FI,J := {y ∈ Pn : g(y, I, J, n) = 0}

be the facet of Pn specified by I and J , where g is given in (7) (the sets I and J can be interchanged). Also,

let c ∈ R
n be the vector with coordinates

ci =

{
k − 1 i = 1, . . . , k
0 i = k + 1, . . . , n.

The polytope of bipartite degree sequences Pk,l is just the translate by c of the facet FI,J , which implies,
in particular, that dim(Pp,q) = n− 1 (this explains why, in Theorem 6.1, we used the correct notation ri(Pl,k)
instead of int(Pp,q)).

Theorem 6.2 (Theorem 3.4.4 in Mahadev and Peled (1996)). Pk,l = {y − c, y ∈ FI,J}.
The previous result is rather useful: in order to determine whether the MLE fails to exist, i.e. whether the

degree sequence of the observed bipartite graph is on the relative boundary of Pk,l, one can use Lemma 3.4

as follows. First add an edge between each pair of nodes in I (so, the graph is no longer bipartite). Then,
check whether there is a pair of sets S and T , different from I and J , for which the conditions of Lemma 3.4

apply. Thus, the MLE does not exists if and only if there exists a partition of the nodes into three non-empty

sets S, T and (S ∪ T )c, such that, with respect to this enlarged graph,

1. S ⊆ I (hence S is complete);

2. T ⊆ J (hence, T is stable);

3. every vertex of S is adjacent to every vertex in (S ∪ T )c;
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4. no vertex in T is adjacent to any vertex in (S ∪ T )c.
In fact, the above conditions are equivalent to the conditions for existence of the MLE in the Rasch model

found independently by Haberman (1977) and Fischer (1981). Indeed, recall that Haberman’s condition are
as follows: the MLE does not exists if there there exists sets A, B , C and D such that

1. A ∪B = I and C ∪D = J , with A ∩B ∩C ∩D = ∅;
2. A 6= ∅ and C 6= ∅ or B 6= ∅ and D 6= ∅;
3. xi,j = 0 for all i ∈ A and j ∈ C;

4. xi,j = 10 for all i ∈ B and j ∈ D,

were x ∈ Rn is the observed graph. Then, to see the equivalence, take S = B, T = C and (S ∪ T )c = A∪D.

6.2 Removing the Sampling Constraint in the Beta Model

We now consider a modified form of the beta model in which the number of observed edges {xi,j : i 6= j}
are assumed to be realizations of n(n− 1) independent Poisson random variables with means {mi,j : i 6= j}.
As a result, the quantities {Ni,j, i 6= j} are now random and can be zero with positive probabilities. Unlike
the beta model described in section 2, in this more general case xj,i is not determined by xi,j , thus we need

to account for all possible quantities {xi,j}i6=j. We index the points of this enlarged set of n(n− 1) numbers

as pairs {(xi,j , xj,i) : i < j} ⊂ N
n(n−1), with the pairs ordered lexicographically based on (i, j).

In this setting, natural generalization of the beta model is to consider a parametrization of the mean edge

counts by points α ∈ R
n and γ ∈ R

n so that

logmi,j = αi + γj , ∀i 6= j. (11)

Some algebra then shows that the probability of observing any point x ∈ N
n(n−1) is

pα,γ(x) = exp




∑

i

αid
out
i +

∑

j

γjd
in
j − φ(α, γ)





∏

i6=j

1

xi,j !
, (12)

where the coordinates of the vectors of minimal sufficient statistics dout = dout(x) and din = din(x) are

douti :=
∑

j 6=i

xi,j and dinj :=
∑

i6=j

xi,j , i = 1, . . . , n,

respectively, and the log-partition function φ : R2n → R is given by (α, γ) 7→∑
i6=j exp{αi+γj}. The sufficient

statistics d = d(x) can be obtained as

d =

(
dout

din

)
= Ax,

where A is a 2n× n(n− 1) matrix whose columns are indexed by the points in the sample space, and whose

rows are indexed by the parameters {α1, . . . , αn, γ1, . . . , γn}. The entries of the row corresponding to αi are
all zeros, except for the coordinates corresponding the columns (i, j) with i < j and (j, i) with i > j, which

are ones. Similarly, the rows corresponding to γj are all zeros, except for the coordinates corresponding the

columns (j, i) with i < j and (i, j) with i > j, which are ones. For instance, when n = 4,

A =




1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0




,
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× 0 0

0 × 0

×
0 0 ×

× 0 0

0 × 0

0 0 ×
×

× 0 0

×
0 × 0

0 0 ×

×
× 0 0

0 × 0

0 0 ×

Table 12: Co-facial sets of the second kind, as specified in theorem 6.3, for the case n = 4. Empty cells refer

to arbitrary entries.

We remark that A is rank-deficient, as its rank is 2n− 1, which reflects the fact that the parametrization in

(11) is non-identifiable (this can be easily fixed by imposing, for instance, the constraint
∑

i αi = 0).

Notice that if the entries of x ∈ {0, 1}n(n−1) are all zeros and ones, then x encodes a directed graph on
n nodes, with an arrow going from node i to node j if and only if xi,j = 1 (thus, there may be two edges

connecting any pair of nodes, directed in opposite ways). In this case, the sufficient statistics dout and din

correspond to the in-degrees and out-degrees of the nodes.
Below we provide necessary and sufficient conditions for the existence of the MLE of (α, γ) or, equiva-

lently, of {mi,j : i 6= j} satisfying equation (11). To this end, let Cn denotes the polyhedral cone spanned by
the columns of A.

Theorem 6.3. Let x ∈ R
n(n−1) be the vector of observed edge counts. Then, the MLE exists if d(x) ∈ int(CA).

The polyhedral cone Cn has 3n facets. The co-facial sets corresponding to the facets of Cn can be classified as
follows:

1. the 2n support sets of the columns of A, each corresponding to a zero entry in the vectors of in-degree or

out-degree statistics;

2. n co-facial sets of the form {(i, j) : i 6= j 6= k}, one for each k = 1, . . . , n.

For instance, when n = 4, there are 12 facial sets, 8 of them associated to a zero value in the 8 dimensional

vector of sufficient statistics. The remaining 4 co-facial sets are shown in Table 12.
The previous Theorem implies that the number of facets of Cn grows only linearly in n, unlike the number

of facets of the polytope of degree sequences Pn. Thus, for this model, nonexistence of the MLE is a much less
frequent phenomenon, at least combinatorially. Note in particular, that the MLE exists even if xi,j + xj,i = 0
for some (in fact many) pairs. Theorem 6.3 can be used to easily show that the MLE exists with probability

tending to one as n increases. Indeed, the probability of a nonexistent MLE is no larger than

n∑

i=1

e−
∑

j 6=imi,j +

n∑

j=1

e−
∑

i6=j mi,j +

n∑

k=1

e−
∑

i6=j 6=k mi,j . (13)

Then, letting m∗ := mini6=jmi,j , the first two terms in equation (13) are each smaller than ne−(n−1)m∗

,

while the last term is bounded from above by

ne−(
n

2
)+2(n−1)m∗ ≤ ne−(n−1)m∗

,

where the last inequality is due to the fact that
(
n
2

)
− 2(n− 1) ≥ n− 1 for all n ≥ 7. Thus, (13) is bounded

from above by 3ne−(n−1)m∗

, which implies that, if m∗ = m∗(n) = c log n
n−1 , the MLE exists with probability at

least 1 − 3
nc . This simple calculation then shows that the MLE exists with overwhelming probability even if

the expected cell counts all tend to zero, as long as these values decay at a rate Ω
(

logn
n

)
.

The results just obtained can be specialized to the Rasch model, in which the nodes are partitioned into
two sets I and J of cardinality k and l = n− k, and edges can only occur between a node i ∈ I and a node

j ∈ J , though the number of edges between any pair of nodes (i, j) is random. The observed set edge counts

takes the form of a k × l contingency table and the sufficient statistics are the k row sums and the l column
sums. As noted by Haberman (1977), in this case the MLE exists if and only if the row and column sums are

all positive.
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6.3 The Bradley-Terry Model

We can specialize the model described in section 6.2 to a directed graph without multiple edges, thus obtain-
ing the Bradley-Terry model for pairwise comparisons. See Bradley and Terry (1952), David (1988), Hunter

(2004) and references therein. In detail, let pi,j denote the probability of a directed edge from i to j and

pj,i the probability of a directed edge from j to i. According to the Bradley-Terry model, the probabilities of
directed edges can be parametrized by vectors β ∈ R

n so that

pi,j =
eβi

eβi + eβj
, ∀i 6= j, (14)

or, equivalently, in terms of log-odd ratios, log
pi,j
pj,i

= βi − βj , ∀i < j. Notice that this parametrization is

redundant, and identifiability is typically enforced by requiring that
∑n

i=1 e
βi = 1. Data are obtained by

recording, for each pair of nodes (i, j) the outcomes of Ni,j pairwise comparisons, where Ni,j are fixed

positive integers, resulting in xi,j instances of node i being preferred to node j and xj,i instances of node j
being preferred to node i, with xi,j + xj,j = Ni,j. The outcomes of the pairwise comparison are assumed

mutually independent. Thus, for i < j, the Bradley-Terry model treats the n(n−1) observed counts {xi,j : i 6=
j} as a realization of mutually independent Bin(Ni,j , pi,j) distributions, where the probability parameters
{pi,j : i 6= j} satisfy (14),

Despite the apparent similarity between equations (1) and (14), the beta model and the Bradley-Terry
model are radically different. Indeed, for the Bradley-Terry model, it is well known that the minimal sufficient

statistics are the row sums (or the column sums) of the observed table, which corresponds to the vector of

our-degrees (or in-degrees, respectively) of the network. Indeed, this model can be alternatively prescribed
as a model of quasi-symmetry and quasi-independence (see, e.g. Fienberg and Larntz, 1976). Necessary and

sufficient conditions for the existence of the MLE are due to Zermelo (1929) and Ford (1957), and can be

expressed in a graph theoretic form as follows: the MLE exists if and only if the observed directed graph is
strongly connected, a property which we can easily check by a depth-first search. According to this condition,

a simple calculation shows that the number of facial sets corresponding to the facets of the associated convex
support (see, e.g., Barndorff-Nielsen, 1978) is

n−1∑

i=1

(
n

i

)
= 2n − 2.

See Simons and Yao (1999) for an analysis of the existence and asymptotic normality of the MLE for the

Bradley-Terry model under the condition that all the terms Ni,j are constant and the number of objects n
increases.

We conclude this section by noting the arguments and algorithms for facial set identification discussed in

the appendix apply to this model as well. In this case, the marginal cone is spanned by a matrix of dimension((
n
2

)
+ n

)
×n(n− 1), the first

(
n
2

)
rows corresponding to the sampling constraints {xi,j + xj,i = Ni,j : i < j},

and the remaining n rows to the row sums.

6.4 p1 Models

Both the beta model and the Bradley-Terry model can be obtained as special cases of the class of p1 models

for directed graphs proposed by Holland and Leinhardt (1981). In fact, existence of the MLE and the identi-
fication of the facial sets for p1 models can be treated using the very same arguments we have presented in

the first part of the article. In this final section we detail these arguments for the more general and challeng-

ing class of p1 models. We remark that the asymptotic properties of p1 models are largely unknown and, as
discussed by Haberman (1981), such an analysis appears to be rather daunting.

Just like in the other network models considered thus far, in p1 models the occurrence of a random edge

between any pair of nodes i and j, or dyad, is modeled independently from all the others edges. We keep
track of four possible edge configurations within each dyad: node i has an outgoing edge into node j (i→ j);
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node i as an incoming edge originating from node j (i← j); nodes i and j are linked by a bi-directed edge

(i ←→ j); and node i and j are not adjacent in the network. Following the notation we established in
Petrović et al. (2010), which is slightly different than the original notation of Holland and Leinhardt (1981),

for every pair of nodes (i, j) we define the probability vector

pi,j = (pi,j(0, 0), pi,j(1, 0), pi,j(0, 1), pi,j(1, 1)) ∈ ∆3 (15)

containing the probabilities of the four possible edge types, where ∆3 is the standard simplex in R
4. The

numbers pi,j(1, 0), pi,j(0, 1) and pij(1, 1) denote the probabilities of the edge configurations i→ j, i← j and

i ←→ j, respectively, and pi,j(0, 0) is the probability that there is no edge between i and j (thus, 1 denotes
the outgoing side of the edge). Notice that, by symmetry pi,j(a, b) = pj,i(b, a), for all a, b ∈ {0, 1} and that

pi,j(0, 0) + pi,j(1, 0) + pi,j(0, 1) + pi,j(1, 1) = 1. (16)

In p1 models, the
(
n
2

)
dyads are modeled as mutually independent draws from multinomial distributions

with class probabilities pi,j , i < j. Specifically, the Holland-Leinhardt p1 model specifies the multinomial
probabilities of each dyad (i, j) in logarithmic form as follows (see Holland and Leinhardt, 1981):

log pi,j(0, 0) = λij
log pi,j(1, 0) = λij + αi + βj + θ
log pi,j(0, 1) = λij + αj + βi + θ
log pi,j(1, 1) = λij + αi + βj + αj + βi + 2θ + ρi,j .

(17)

The parameter αi quantifies the effect of an outgoing edge from node i, the parameter βj instead measures
the effect of an incoming edge into node j, while ρi,j controls the added effect of reciprocated edges (in both

directions). The parameter θ measures the propensity of the network to have edges and, therefore, controls

the “density” of the graph. The parameters {λi,j : i < j} are normalizing constants to ensure that (16) holds
for each each dyad (i, j) and need not be estimated. Note that, in order for the model to be identifiable,

additional linear constraints need to be imposed on its parameters. We refer the interested readers to the

original paper on p1 model by Holland and Leinhardt (1981) for an extensive interpretation of the model
parameters.

As noted in Fienberg and Wasserman (1981a,b), different variants of the p1 model can be obtained by
constraining the model parameters. In Petrović et al. (2010) we consider three special cases of the basic p1
model, which differ in the way the reciprocity parameter is modeled:

1. ρij = 0, no reciprocal effect;

2. ρij = ρ, constant reciprocation;

3. ρij = ρ+ ρi + ρj , edge-dependent reciprocation.

As it is often the case with network data, we assume that data become available in the form of one
observed network. Thus, each dyad (i, j) is observed in only one of its four possible states and this one

observation is a random vector in R
4 with a Multinomial(1, pi,j) distribution. As a result, data are sparse

and, even though the dyadic probabilities are strictly positive according to the defining equations (17), only
some of the model parameters may be estimated from the data. Extension to the case in which the dyads are

observed multiple times are straightforward.
For a network on n nodes, we represent the vector of 2n(n− 1) dyadic probabilities as

p = (p12, p13, . . . , pn−1,n) ∈ R
2n(n−1),

where, for each i < j, pij is given as in (15). The p1 model is the set of all probability distributions that

satisfy the Holland-Leinhardt equations (17). The design matrix associated with a given p1 model can be
constructed as follows (this construction is by no means unique and leads to rank-deficient matrices, though

it is rather simple). The columns of A are indexed by the entries of the vectors pi,j , i < j, where the pi,j ’s
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are ordered lexicographically, and its rows by the model parameters, ordered arbitrarily. The (r, c) entry of

A is equal to the coefficient of the c-th parameter in the logarithmic expansion of the r-the probability as
indicated in (17). In particular, notice that the entries of A can only be 0, 1 or 2. For example, in the case

ρij = ρ+ ρi + ρj , the matrix A has
(
n
2

)
+ 3n+ 2 rows. When n = 3, the design matrix corresponding to this

model is

λ12
λ13
λ23
θ
α1

α2

α3

β1
β2
β3
ρ
ρ1
ρ2
ρ3

p1,2 p1,3 p2,3
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2 0 1 1 2
0 1 0 1 0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1

Let Sn = {xi,j , i 6= j} ⊂ {0, 1}2n(n−1) denote the sample space, i.e. the set of all observable networks on

n nodes. Then, every point x in the sample space X can be written as

x = (x1,2, x1,3, . . . , xn−1,n),

where each of the
(
n
2

)
subvectors xi,j is a vertex of ∆3. Notice that |Xn| = 4n(n−1). This way of representing

a network on n nodes with a highly-constrained 0/1 vector of dimension 2n(n− 1) may appear cumbersome

and redundant. Indeed, as in Holland and Leinhardt (1981), we could more naturally represent an n-node
network using the n × n incidence matrix with 0/1 off-diagonal entries, where the (i, j) entry is 1 is there

is an edge from i to j and 0 otherwise. While this representation is more intuitive and parsimonious (as

it only requires
n(n−1)

2 bits), whenever ρ 6= 0, the sufficient statistics for the reciprocity parameter are not

linear functions of the observed network. As a consequence, the adjacency matrix representation does not
lead directly to a linear exponential family.

The convex support for this family is the polytope obtained as the Minkowski sum

PA :=
∑

i<j

Ai,j ,

where Ai,j is the sub-matrix of A comprised by the four columns referring to the dyad (i, j). Given an
observed network x ∈ Sn the MLE of the parameters exists if and only of Ax ∈ ri(Sn) and, when the MLE

does not exist, the associated facial set provides the non-estimable probability parameters. Like with the

polytope of degree sequences for the beta model, the combinatorial complexity of this object is quite high
and increases very rapidly with n (though, unlike the beta model, the convex supports for these models do

not appear to be a known or well studied polytopes). See table 6.4 and the discussion below.

The arguments and results of section 3 and the Cayley trick described in the appendix apply to the case
of p1 models as well, and yield the following result.

Theorem 6.4. For any p1 model with associated design matrix A, the MLE exists if and only if Ax ∈ ri(CA),
where CA = cone(A), and the facial sets of PA are also facial sets of CA.

As shown in the appendix and further illustrated in Table 6.4, it is algorithmically much simpler do deal

with the cone CA than with the polytope PA.
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n ρi,j = 0 ρi,j = ρ ρ = ρi + ρj 2n(n− 1)

3 62 62 62 12
4 1,862 2,415 3,086 24

5 88,232 158,072 347,032 40

Table 13: Number of vertices for the polytopes PA for different specifications of the p1 model and different
network sizes. Computations carried out using minksum Weibel (2005). The last column indicates the

number of columns of the design matrix A, which correspond to the number of generators of CA.

n ρi,j = 0 ρi,j = ρ ρ = ρi + ρj
Facets Dim. Ambient Dim. Facets Dim. Ambient Dim. Facets Dim. Ambient Dim.

3 30 7 9 56 8 10 15 10 13

4 132 12 14 348 13 15 148 16 19

5 660 18 20 3,032 19 21 1,775 23 26
6 3,181 25 27 94,337 26 28 57,527 31 34

Table 14: Number of facets, dimensions and ambient dimensions of the the cones CA for different specifi-

cations of the p1 model and different network sizes. The number of facets of CA is equal to the number of
facets of PA plus

(
n
2

)
, these additional facets corresponding to the sampling constraints of one observation

per dyad.

Numerical Experiments

We conclude this section by describing some numerical experiments illustrating the reduction in complexity

associated to the Cayley trick described in the appendix for the general p1 model. Table 6.4 displays the
number of vertices of the polytopes PA for the three p1 model specifications we consider and various net-

works sizes. The last column of the table contains the number of columns of the design matrix, which is also

the number of extreme rays of the marginal cone CA. In comparison, the number of vertices of PA, whose
determination is computationally very hard, is very large and grows extremely fast with n.

In Table 6.4 we report the number of facets, dimensions and ambient dimensions of the cones CA for
different values of n and for the three specification of the reciprocity parameters ρi,j we consider here.

Though this only provides and indirect measure of the complexity of these models and of the non-zero

patterns in extended MLEs, it does show how quickly the complexity of p1 models may scale with the network
size n.

Another point of interest is the assessment of how often the existence of the MLE arises. In fact, because of

the product Multinomial sampling constraint, nonexistence of the MLE is quite severe, especially for smaller
networks. Below we report our findings, which are necessarily restricted to networks of small sizes.

The case n = 3. The sample space consists of 43 = 64 possible networks. When ρi,j = 0 for all i and j, there

are 63 different observable sufficient statistics, only one of which belongs to ri(PA). Thus, only one of the 63
observable sufficient statistics leads to the existence of the MLE. This sufficient statistic corresponds to the

two nextworks 

× 0 1
1 × 0

0 1 ×


 and



× 1 0
0 × 1

1 0 ×


 .

In both cases, the associated MLE is the 12-dimensional vector with entries all equal to 0.25. Incidentally, the
polytope PA has 62 vertices and 30 facets. When ρi,j = ρ 6= 0 or ρi,j = ρi + ρj the MLE never exists.

The case n = 4. The sample space contains 4096 observable networks. If ρi,j = 0, there are 2, 656 differ-

ent observable sufficient statistics, only 64 of which yield existent MLEs. Overall, out of the 4096 possible
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networks, only 426 have MLEs. When ρi,j = ρ 6= 0, there are 3, 150 different observable sufficient statistics,

only 48 of which yield existent MLEs. Overall, out of the 4, 096 possible networks, only 96 have MLEs. When
ρi,j = ρi + ρj , there are 3, 150 different observable sufficient statistics and the MLE never exists.

The case n = 5. The sample space consists of 410 = 1, 048, 576 different networks. If ρi,j = 0, there are

225, 025 different sufficient statistics, and the MLE exists for 7, 983. If ρi,j = ρ 6= 0 the number of distinct
possible sufficient statistics is 349, 500, and the MLE exists in 12, 684 cases. Finally, when ρi,j = ρi + ρj , the

number of different sufficient statistics is 583, 346 and the MLE never exists.
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8 Proofs

Proof of Theorem 3.1. Throughout the proof, we will use standard results and terminology from the theory

of exponential families, for which standard references are Brown (1986) and Barndorff-Nielsen (1978). The
polytope

Sn := convhull ({Ax, x ∈ Sn})
is the convex support for the sufficient statistics of the natural exponential family described in section 2.

Furthermore, by a fundamental result in the theory of exponential families (see, e.g., Theorem 9.13 in

Barndorff-Nielsen, 1978), the MLE of the natural parameter β ∈ R
n (or, equivalently of the set probabilities

{pi,j, i < j} ∈ R
(n
2
) satisfying (1)) exists if and only if d ∈ int(Sn). Thus, it is sufficient to show that

d ∈ int(Sn) if and only if d̃ ∈ int(Pn).
Denote with ai,j the column of A corresponding to the ordered pair (i, j), with i < j, and set

Pi,j = convhull{0, ai,j} ⊂ R
n. (18)

Each Pi,j is a line segment between its vertices 0 and ai,j . Then, Pn can be expressed as the zonotope

obtained as the Minkowski sum of the line segments Pi,j :

Pn =
∑

i<j

Pi,j . (19)

This identity can be established as follows. On one hand, Pn is the convex hull of vectors that are Boolean

combinations of the columns of A. Since all such combinations are in
∑
i<j Pi,j , and both Pn and

∑
i<j Pi,j

are closed sets, we obtain Pn ⊆
∑

i<j Pi,j . On the other hand, the vertices of
∑

i<j Pi,j are also Boolean
combinations of the columns of A (see, e.g., corollary 2.2 in Fukuda, 2004), and, therefore,

∑
i<j Pi,j ⊆ Pn.

Equation (19) shows, in particular, that d̃ ∈ Pn. Furthermore, using the same arguments, we see that,

similarly to Pn, Sn too can be expressed as a Minkowski sum:

Sn =
∑

i<j

Si,j ,

where
Si,j := Pi,jNi,j = {xNi,j : x ∈ Pi,j}
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is the rescaling of Pi,j by a factor ofNi,j. In fact, we will prove that Sn and Pn are combinatorially equivalent.

For a polytope P and a vector c, we set F (P ; c) := {x ∈ P : x⊤c ≥ y⊤c, ∀y ∈ P}. Any face F of P can
be written in this way, where is c is any vector in the interior of the normal cone to F . By Proposition 2.1 in

Fukuda (2004), F is a face of Pn with F = F (Pn, c) if and only if it can be written uniquely as

F (Pn, c) =
∑

i<j

F (Pi,j , c),

for any c in the interior of the normal cone to F . It is immediate to see that F (Pi,j , c) is a face of Pi,j if and

only if F (Si,j , c) is a face of Si,j , and that F (Si,j , c) = Ni,jF (Pi,j , c); in fact, Pi,j and Si,j are combinatorially

equivalent. Therefore, invoking again Proposition 2.1 in Fukuda (2004), we conclude that F (Pi,j , c) is a face
of Pn if and only if ∑

i<j

Ni,jF (Pi,j , c)

is a face of Sn (and this representation is unique). From this, we see that Pn and Sn have the same normal

fan and, therefore, are combinatorially equivalent. �

Proof of Lemma 3.2. By Proposition 2.1 in Fukuda (2004),

F = F (Pn, c) =
∑

i<j

F (Pi,j , c), (20)

for any c in the interior of the normal cone to F , where the above representation is unique. Since Pi,j is a
line segment (see (18)), its only proper faces are the vertices 0 and ai,j . Let the set F be the complement

of the set of pairs (i, j) with i < j such that F (Pi,j , c) is either the vector 0 or ai,j . By the uniqueness of

the representation (20), F is unique as well and, in particular, maximal. Furthermore, as it depends on F
only through the interior of its normal cone and since the interiors of the normal cones of Pn are disjoint,

different faces will be associated with different facial sets. �

Proof of Theorem 4.1. Let d̃ = (d̃1, . . . , d̃n) be the random vector defined in (5). We will show that, under
the stated assumptions, d̃ ∈ int(Pn) with probability no smaller than 1− 2

n2c−1 .

Since Nn is constant, we can conveniently re-express the random vector d̃ as an average of independent
and identically distributed graphical degree sequences. In details, we can write

d̃ =
1

N

N∑

k=1

d(k), (21)

where each d(k) is the degree sequence arising from of an independent realization of random graph with
edge probabilities {pi,j : i < j}, for k = 1, . . . , N .

Thus, each d̃i is the sum of N(n − 1) independent random variables taking values in {0, 1
N }. Then, an

application of Hoeffding’s inequality and of the union bound yields that the event

On :=

{
max
i
|d̃i − di| ≤

√
c
n logn

N

}
(22)

occurs with probability at least 1− 2
n2c−1 . Throughout the rest of the proof we will assume that the event On

holds.

By assumption (i), for each i,

0 < C +

√
c
n logn

N
≤ di −

√
c
n logn

N
≤ d̃i ≤ di +

√
c
n logn

N
≤ n− 1− C −

√
c
n logn

N
< n− 1,
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so that

0 < d̃i < n− 1, i = 1, . . . , n. (23)

Notice that the assumed constraint on the range of C guarantees the above inequalities are well defined.

Next, for each pair (S, T ) ∈ P ,

|g(S, T, d̃, n)− g(S, T, d, n)| ≤ |S ∪ T |max
i
|d̃i − di|,

which yields

g(S, T, d̃, n) ≥ g(S, T, d, n)− |S ∪ T |
√
c
n logn

N
.

Using assumption (ii), the previous displays implies that

min
(S,T )∈P

g(S, T, d̃, n) > C > 0. (24)

Thus, we have shown that (23) and (24) hold, provided that the event On is true and assuming (i) and (ii).

Therefore, by Theorem 3.3 the MLE exists.
�

Proof of Corollary 4.2. Using the same setting and notation of Theorem 4.1, we will assume throughout the

proof that the event

O′
n :=

{
max
k

max
i
|d(k)i − di| ≤

√
cn logn

}

holds true. Note that by Hoeffding’s inequality and the union bound,

P(O′c
n ) ≤ 2 exp {−2c logn+ log n+ logN} ≤ 2

n2c−2
,

where we have used the inequality logN ≤ log n. A simple calculation shows that, when O′
n is satisfied, we

also have {
max
i
|d̃i − di| ≤

√
cn logn

}
.

Then, by the same arguments used in the proof of Theorem 4.1, assumption (i’) yields that

0 < d̃i < n− 1, i = 1, . . . , n. (25)

and, for each pair (S, T ) ∈ P ,

g(S, T, d̃, n) ≥ g(S, T, d, n)− |S ∪ T |
√
cn logn. (26)

Now, it is easy to see that, on the event O′
n, assumption (i’) also yields

min
k

min
i

min
{
d
(k)
i , n− 1− d(k)i

}
≥

√
cn logn+ C. (27)

We now show that, when (25) and the previous equation are satisfied, the MLE exists if

min
(S,T )∈Pn

g(S, T, d, n) > C > 0. (28)

Indeed, suppose that (25) is true and that d̃ belongs to the boundary of Pn. Then, by the integrality of the
polytope Pn, there exist non-empty and disjoint subsets T and S of {1, . . . , n} satisfying the conditions of

lemma 3.4 for each of the degree sequences d(1), . . . , d(k). If minkmini d
(k)
i >

√
cn logn+C, then, necessarily,

24



|S| > √cn logn+ C, because |S| is the maximal degree of every node i ∈ T . Similarly, since each i ∈ S has

degree at least |S| − 1 + |(S ∪ T )c|, if maxkmaxi d
(k)
i < n− 1−√cn logn− C, the inequality

|S| − 1 + |(S ∪ T )c| < n− 1−
√
cn logn− C

must hold, implying that |T | = n− |S| − |(S ∪ T )c| > √cn logn+ C. Thus, we have shown that, if (25) and
(27) hold, and d̃ belongs to the boundary of Pn, the cardinalities of the sets S and T defining the facet of Pn
to which d̃ belongs cannot be smaller than

√
cn logn + C. By Theorem 3.3, when (25) and (27) hold, (28)

implies that d̃ ∈ int(Pn), so the MLE exists. However, equation (26) and assumption (ii’) implies (28), so the

proof is complete. �

Proof of Theorem 6.3. The result about existence of the MLE follows from a direct application of Theo-

rem 9.13 in Barndorff-Nielsen (1978) or Theorem 5.5 in Brown (1986), since Cn is the convex support
for the exponential family of equation 12.

As for the claims regarding the facets of Cn, since the row span of A contains the constant vectors, we

study the facets of the polytope P := conv(B) ⊂ R
n × R

n. Denote by xi and x′i the coordinates of the two
spaces, and by ei and e′i the corresponding standard unit vectors in R

n. The polytope P is contained in the

product of simplices ∆n−1 ×∆n−1 := conv{ei × e′j : 1 ≤ i, j ≤ n}, where, for two vectors x and x′ in R
n,

x× x′ :=
(

x
x′

)
∈ R

2n.

The point ei × e′j corresponds to the (i, j)-entry of the n × n incidence table of the network. P is obtained

from the product of simplices by removing the n vertices {ei×e′i : i = 1 . . . , n}. To show that P has 3n facets,
we will use the fact that ∆n−1 × ∆n−1 has 2n facets whose defining inequalities are xi ≥ 0, x′i ≥ 0, for

i = 1 . . . , n. Note that these facets correspond to zero margins in the incidence table: for example, xi = 0
refers to the zero margin corresponding to the i-th row and x′i = 0 to the zero margin for the (i+ n)-th row.

Define a new polytope, P ′, cut out by the following 3n inequalities:

P ′ := {xi ≥ 0, x′i ≥ 0, xi + x′i ≤ 1, for all i}.

We need to show that P = P ′ and that the defining inequalities are all facets. For the first claim, we
already see that P ⊆ P ′. Since ∆n−1 × ∆n−1 is simple, every vertex has dimension many neighbors.

Thus, removing the vertex ei × e′i introduces one new facet, namely, xi + x′i ≤ 1. Since we are removing
n non-adjacent vertices, P = P ′. Next, our arguments so far already imply that the n new inequalities

{xi + x′i ≤ 1: i = 1, . . . , n} define facets, so we need to show that other 2n inequalities, corresponding to

zero row margins, define facets as well. But this follows from the fact that the support sets of each of the
rows of A are facial sets of P and that they are incomparable, in the sense that none of them is contained in

any of the others. Thus, since the lattice of facial sets of P is isomorphic to the face lattice of P , the 2n null

margins each specifies a different facet of P . �

9 Appendix: Computations

In this appendix, we provide details on how to determine whether a given degree sequence belongs to the
interior of the polytope of degree sequences Pn and on how to compute the facial set corresponding to a

degree sequence on the boundary of Pn. We will only deal with the polytope Pn, even though the arguments

below are general and extend, for instance, to the Rasch model, the Bradley-Terry model and p1 models.

Below, we describe the procedure we used to compute the facial sets of Pn. The main difficulties with
working directly with Pn is that this polytope arises a Minkowksi sum and, even though the system of

defining inequalities is given explicitly, its combinatorial complexity grows exponentially in n. Furthermore,
we do not have available a set of vertices for Pn. Algorithms for obtaining the vertices of Pn, such as minksum
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(see Weibel, 2005), are computationally expensive and require generating all the points {Ax, x ∈ Gn}, where

|Gn| = 2(
n

2
). In general, when n is as small as 10, this is not feasible.

Our basic strategy to overcome these problems is quite simple, and entails representing the beta model
as a log-linear model with

(
n
2

)
product-multinomial sampling constraints. Though this re-parametrization

increases the dimensionality of the problem, it nonetheless has the crucial computational advantage of reduc-

ing the determination of the facial sets of Pn to the determination of the facial sets of a pointed polyhedral
cone spanned by n(n−1) vectors, which is a much simpler object to analyze, both theoretically and algorith-

mically. This procedure is known as the Cayley embedding in polyhedral geometry, and its use in the analysis
of log-linear models is described in Fienberg and Rinaldo (2011). The advantages of this re-parametrization

are two-fold. First, it allows us to use the highly optimized algorithms available in polymke for listing ex-

plicitly all the facial sets of Pn, which is the strategy we used. Secondly, the general algorithms for detecting
nonexistence of the MLE and identifying facial sets proposed in Fienberg and Rinaldo (2011), which can

handle larger dimensional models, can be directly applied to this problem. This reference is also relevant for

dealing with inference under a non-existent MLE.
In the interest of space, we do not provide all the details, and instead only sketch the two main steps of

our procedure.

• Step 1: Enlarging the space
In the first step, we switch to a redundant representation of the data by considering all the observed

counts {xi,j , i 6= j} and not just {xi,j , i < j}. We index the points of this enlarged set of n(n − 1)
numbers as pairs S ′n = {(xi,j , xj,i) : i < j} ⊂ N

n(n−1), with the pairs ordered lexicographically based

on (i, j). For instance, when n = 4, any point x′ ∈ S ′4 has coordinates indexed by

(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3).

It is clear that the sets Sn and S ′n are in one-to-one correspondence with each other and that, for each

corresponding pair x ∈ Sn and x′ ∈ S ′n, x′i,j = xi,j for all i < j and x′j,i = Ni,j − xi,j for all j > i.

In this new setting, we construct a new polytope P ′
n ⊂ R

2n that is combinatorially equivalent to Pn but

whose facial sets are easier to interpret. This is achieved by first constructing a new design matrix B
of dimension (2n)× n(n − 1), with the columns indexed according to the order described above. The
matrix B has the form

B =

(
B1

B2

)
(29)

where both B1 and B2 have n rows. For all i < j, the columns of B1 corresponding to the coordinate

(i, j) and the columns of B2 corresponding to the coordinate (j, i) are both equal to ai,j , and all the
other columns are zeros. For instance, when n = 4,

B =




1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 1




.

By construction, d = Ax = B1x
′ for any corresponding pair x ∈ Sn and x′ ∈ S ′n. Furthermore, if we

let d′ = B2x
′, it is easy to see that d′ and d are in one-to-one correspondence with each other. Indeed,

recalling that Ni,j = Nj,i,

d′i =
∑

j<i x
′
i,j +

∑
j>i x

′
j,i

=
∑

j<i(Ni,j − xj,i) +
∑

j>i(Ni,j − xi,j)
=

∑
j 6=iNi,j −

(∑
j<i xj,i +

∑
j>i xi,j

)

=
∑

j 6=iNi,j − di,
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where we used equation (4) in the last step. Thus, Bx′ is also a sufficient statistic, though highly

redundant due to linear dependencies. Next, for any i < j, let

Bi,j = convhull({bi,j , bj,i})

where bi,j is the column of B indexed by (i, j), and set

P ′
n =

∑

i<j

Bi,j .

The polytopes Pn and P ′
n are combinatorially equivalent, even though their ambient dimensions are

different. In fact, using arguments similar to the ones used in the proof of Lemma 33.2, one can

characterize the facial sets of P ′
n as follows.

Lemma 9.1. A point y′ belongs to the interior of some face F ′ of P ′
n if and only if there exists a set

F ′ ⊂ {(i, j), i 6= j} such that

y′ = Bp′, (30)

where p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1− p′j,i} is such that p′i,j = 0 for all (i, j) 6∈ F ′ and p′i,j > 0 for

all (i, j) ∈ F . The set F is uniquely determined by the face F and is a maximal set for which (30) holds.

Because Pn and P ′
n are combinatorially equivalent, their co-facial sets are also in one-to-one corre-

spondence. The advantage of using P ′
n instead of Pn is that its co-facial sets arise by entries of p′ that

are all zeros, as opposed to the more complicated co-facial sets of Pn, which are obtained from entries
of p = {pi,j : i < j} which are both ones and zeros. For instance, the co-facial set of Pn corresponding

to the counts reported in Table 1 is {(1, 2), (3, 4)} with p1,2 = 0 and p3,4 = 1. In contrast, the corre-
sponding co-facial set for P ′

n is {(1, 2), (4, 3)}, with p′1,2 = 0 and p′4,3 = 0. Clearly, they convey the same

information.

• Step 2: Lifting
As we saw, the advantage of the larger polytope P ′

n derived in the first step is that, when searching
for co-facial sets, it is enough to consider points of the form p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1]} with

zero coordinates only. However, P ′
n is still a hard object to deal with computationally, since it is

prescribed as a Minkowski sum of
(
n
2

)
polytopes. In this second step, we lift P ′

n to a polyhedral cone

in dimension 2n +
(
n
2

)
which is simpler to analyze (in fact, as remarked below, this polyhedral cone

has smaller dimension: n +
(
n
2

)
). This cone is spanned by the columns of a matrix C of dimension

(2n+
(
n
2

)
)× n(n− 1) which has the form

C =

(
C1

B

)
,

where the rows of C1 are indexed by the pairs {(i, j) : i < j} ordered lexicographically. Each row (i, j)
of C1 contains all zeroes, except for two ones in the coordinates (i, j) and (j, i). In fact for any x′ ∈ Sn,

the vector C1x
′ is constant, and its (i, j)-the entry is

x′i,j + x′j,i = Ni,j .

27



For instance, when n = 4,

C =




1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 1




.

Let Dn = cone(C) be the polyhedral cone of spanned by the columns of C. The facial sets of Dn are

defined as follows (see, e.g., Geiger et al., 2006). The subset F ⊂ {(i, j) : i 6= j} is a facial set of Dn

when there exists a v ∈ R
2n+(n

2
) such that

〈v, ci,j〉 = 0, ∀i ∈ F and 〈v, ci,j〉 < 0, ∀i 6∈ F ,

where ci,j indicates the column of C indexed by the pair (i, j). It follows that F is face of Dn if and only

if F = cone({ci : i ∈ F}), for some facial set F of Dn, and that there is a one-to-one correspondence
between the facial sets and the faces of Dn. Thus, as before, facial sets form a lattice isomorphic to the

face lattice of Dn. Following Eriksson et al. (2006), we will call Dn the marginal cone.

The following result shows how one can obtain the facial sets of Pn from the facial set of Dn through

the facial sets of P ′
n (see also section 3 in Fienberg and Rinaldo (2011)).

Theorem 9.2. Let p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1 − p′j,i}. Then Bp′ ∈ ri(P ′
n) if and only if

Cp′ ∈ ri(Dn). Furthermore, if F ′ is a facial set of P ′
n, then F ′ is a facial set of Dn.

Proof. We first define a new polytope Qn ⊂ R
2n+(n

2
) which is combinatorially equivalent to P ′

n and,

therefore, to the polytope of degree sequences Pn. Let ci,j be the column of C index by the pair (i, j)
and, for each i < j, set

Ci,j := convhull ({ci,j , cj,i})
and

Qn :=
∑

i<j

Ci,j .

By construction, w ∈ P ′
n if and only if (

1
w

)
∈ Qn,

where 1 ∈ R
(n
2
) is a vector of all ones, which shows that P ′

n and Qn are combinatorially equivalent,

so they have the same facial sets. We make a simple but useful observation: because the first
(
n
2

)

coordinates of any point in Qn are all ones, and given the patter of non-zero entries in the first
(
n
2

)

rows of C, it must be that if y ∈ Qn and y = Cp′, the vector p′ is of the form {p′i,j : i 6= j, p′i,j ∈
[0, 1], p′i,j = 1− p′j,i}.
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Since Qn ⊂ Dn and both sets are closed, y ∈ ri(Qn) implies that y ∈ ri(Dn). As for the converse

statement, suppose y belongs to the interior of a proper face of Qn with facial set F ′. Then, by
Proposition 2.1 in Fukuda (2004), y can be uniquely expressed as

y = y1,2 + y1,3 + . . .+ yn−1,n (31)

where yi,j ∈ ri(Ci,j) if and only if (i, j) and (j, i) are in F ′. Equivalently, yi,j = ci,j or yi,j = cj,i if
and only if (i, j) 6∈ F ′ or (j, i) 6∈ F ′, respectively. Arguing by contradiction, suppose that y ∈ ri(Dn).
Then, there exists a point p∗ = {p∗i,j : i 6= j} with strictly positive entries such that y = Cp∗. By the
observation above, it must be that p∗i,j ∈ (0, 1) and p∗i,j = 1 − p∗j,i, for all i < j. In turn, this implies

that, in equation (31), yi,j ∈ ri(Ci,j) for all i < j, i.e. yi,j 6∈ {ci,j , cj,i} for all i < j. Then, using again

Proposition 2.1 in Fukuda (2004), y ∈ ri(Qn), a contradiction.

To prove the second claim, notice that, the arguments so far yield that, for every proper face F of Qn,
there exists one face G of Dn such that ri(F ) ⊂ ri(G), so that F ′ ⊆ G, where F ′ and G are the facial

sets associated with F and G, respectively. We now show that F ′ = G. To see this, let y ∈ ri(F ) for
some face F of Qn with facial set F ′, so that

y = Cp′

for some p′ = {p′i,j : i 6= j, p′i,j ∈ [0, 1], p′i,j = 1 − p′j,i} such that p′i,j > 0 if and only if (i, j) ∈ F ′. On
the other hand, since y ∈ ri(G),

y = Cp∗,

where p∗ = {p∗i,j : p∗i,j ≥ 0} is such that p∗i,j > 0 if and only if (i, j) ∈ G. However, using the observation

above, it must be that p∗i,j ∈ [0, 1] and p∗i,j = 1 − p∗j,i, for all i < j. By maximality of the facial sets,

F ′ = G, as claimed.

Thus, we have shown that if F ′ is a facial set of Qn and hence of P ′
n, it is also a facial set of Dn. �

In particular, the only facial sets of Dn that are not facial sets of P ′
n are the ones corresponding to

the supports of the first
(
n
2

)
rows of C, so that Dn has

(
n
2

)
more facets than Pn (and P ′

n). Since, by

construction x′i,j + xj,i = Ni,j, Cx
′ will never be a point in the interior of the

(
n
2

)
facets of D whose

facial sets are the supports of the first
(
n
2

)
rows of C.

Theorem 9.2 can be used as follows. The MLE exists if and only if Cx′ ∈ ri(Dn). When the MLE does

not exist, the corresponding facial set of Dn gives the required facial set for P ′
n and, therefore, for Pn.

Finally, it is clear to see that C is rank-deficient due to linear dependencies among the rows, so one

could instead consider the marginal cone spanned by the columns of the matrix

(
C1

B1

)
, (32)

which has full dimension
(
n
2

)
+ n and is combinatorially equivalent to Dn.

The final result of the two-step procedure just outlined is a reparametrization of the beta model in the

form of a log-linear model with full-rank design matrix given in (32) and Poisson sampling scheme. The

constrains on the number of observed edges translate into
(
n
2

)
product-multinomial sampling restrictions for

this log-linear model. However, it is well known that the conditions for existence of the MLE are the same

under Poisson and product-multinomial scheme, so whether we incorporate these constraints or not has no
bearing on parameter estimability. See ?, Chapter 2 and Fienberg and Rinaldo (2011, section 3.4).

The examples of co-facial sets were obtained by first computing the matrix (32) and then using polymake

to compute the facial sets of the resulting marginal cone2 For a detailed description of the connection with

2The R code we used to perform the numerical calculations is available at http://www.stat.cmu.edu/~arinaldo/Rinaldo_Petrovic_Fienberg_Rcode.txt
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log-linear models, and for algorithms to compute the facial sets of this cone that can be used in higher

dimensions, the reader is referred to Fienberg and Rinaldo (2011).
Finally, to deal with the Rasch model, the procedure can be trivially modified by eliminating the columns

of A and, in particular, of C′ corresponding to all the edges between the sets I and J comprising the bipar-

tition of the node set. In particular, the resulting matrix C′ has dimension (kl + k + l) × 2kl and has rank
kl + k + l − 1, where k and l are the cardinalities of I and J , respectively.

Algorithms

We first indicate how the non-existence of the MLE and the determination of the appropriate facial set can be

addressed using simple linear programming. While checking for the existence of the MLE is immediate, the

second task is more demanding.In order to decide whether the MLE exists it is sufficient to establish whether
the observed sufficient statistics Ax belong to the relative interior of Pn, which, by Theorem 9.2, happens if

and only if t := Cx′ belongs to the relative interior of Dn, where for convenience the matrix C can be taken

to be as in (32) (so it has dimension n +
(
n
2

)
× n(n − 1) and is of full rank). In turn, we can decide this by

solving the following simple linear program

max s
s.t. Cx′ = t

x′i,j − s ≥ 0
s ≥ 0,

where the scalar s and vector x′ = {x′i,j , i 6= j} ∈ R
n(n−1) are the variables. At the optimum (s∗, x∗), the MLE

exists if and only if s∗ > 0. Though very simple, the previous algorithm may not be sufficient to compute

the support of p̂ if the MLE does not exist. To this end, we need to resort to a more sophisticated algorithm.
Consider the following n(n− 1) programs, one for each column of C:

max〈ci,j , y〉
s.t. y⊤t = 0

C⊤y ≥ 0
−1 ≤ y ≤ 1,

where the last inequalities are taken element-wise. Let y∗i,j ∈ R
n+(n

2
) denote the solution to the linear

program corresponding to the (i, j)-th column of C.

Lemma 9.3. The MLE does not exist if and only if 〈ci,j , y∗i, j〉 > 0 for some (i, j), in which case the co-facial set

associated with t is given by
{(i, j) : 〈ci,j , y∗i,j〉 > 0}.

Proof. Let F̃ = {(i, j) : 〈ci,j , y∗i,j〉 = 0}. If F̃ = {1, . . . , n}, then there does not exist any vector v ∈ R
n+(n

2
)

such that 〈v, ci,j〉 ≥ 0 with strict inequality for some (i, j). Thus, the normal cone at t is the zero vector,
so t ∈ ri(Dn), and the MLE exists by Theorem 9.2. We now show that the if the MLE does not exist, then

F̃ = F , where F is the facial set associated with the face of Dn whose relative interior contains t. To see

this, let ṽ =
∑

(i,j)∈F̃
y∗i,j . It is clear that F̃ ⊆ F , for otherwise the vector ṽ would produce a strictly larger

facial set, which violates the maximality of F . On the other hand, if (i, j) ∈ F \ F̃ , then there does not exist
any vector y∗i,j in the feasible set of the (i, j)-th program such that 〈y∗i,j , ci,j〉 = 0. However, the vector v
specifying F is clearly in that feasible set and, by definition, 〈v, ci,j〉 = 0, which gives a contradiction. Thus

F̃ = F , as claimed. �

See Fienberg and Rinaldo (2011, section 4.1) for a more refined and efficient implementation of the

above algorithms.
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