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Two different traditions of response-time (RT) modeling are reviewed: the tradition
of distinct models for RTs and responses, and the tradition of model integration in
which RTs are incorporated in response models or the other way around. Several
conceptual issues underlying both traditions are made explicit and analyzed for
their consequences. We then propose a hierarchical modeling framework consistent
with the first tradition but with the integration of their parameter structures as a
second level of modeling. Two examples of the framework are presented. Also, a
fundamental equation is derived which relates the RTs on test items to the speed of
the test taker and the time intensity of the items. The equation serves as the core
of the RT model in the framework. Finally, empirical applications of the framework
demonstrating its practical value are reviewed.

Test theorists have always been intrigued by the relationship between responses to
test items and the time used by a test taker to produce them. Both seem indicative
of the same behavior on test items. Nevertheless, their relationship appears to be
difficult to conceptualize, let alone represent coherently in a statistical model.

Although the computerization of educational tests has been a major impetus to
the current interest in response-time (RT) modeling, it would be wrong to ignore its
historical origins. One early development that has left traces in our current thinking
about RTs was Woodbury’s (1951, 1963) treatment of test scores as the result of
a time-dependent stochastic response process. His theory, which is summarized in
Lord and Novick (1968, chap. 5), has linear axioms and theorems that are entirely
parallel to those of regular classical test theory. But, more important to the scope of
this article, it also lent statistical sophistication to the intuitive idea that total time and
numbers of items completed are equivalent measures of the test taker’s performance
(see the example in Lord & Novick, pp. 104–105).

The same idea was present in Gulliksen’s (1950, chap. 17) treatment of speed
and power tests. He defined a pure speed test as a test with an unlimited number of
items that are easy enough to be answered correctly. Such tests can be scored in two
different ways, as (a) the total time used to complete a fixed number of items, and
(b) the number of items completed in a fixed time interval. On the other hand, a pure
power test was defined by him as a test with unlimited time but a fixed number of
items of varying difficulty. Such tests can be scored only by counting the number of
correct responses.

A fundamental problem exists with respect to the asymmetry between Gulliksen’s
scoring rules for speed and power tests. At a practical level, the problem becomes
manifest when a test taker produces an incorrect answer on a speed test, which is
not very likely for high-ability test takers and easy items but certainly possible. How
should we treat such responses? And would it be fair to treat their RTs as equivalent
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to those for correct responses? Similarly, it seems odd to ignore the time spent on
items in power tests. If two test takers have the same number of items correct but
one took much less time than the other, why should we label their performances as
equal? As discussed later, at a more technical level the problem is due to the neglect
of an important random variable required to describe test behavior as a stochastic
process.

One of the very first to address the relation between responses and RTs from a
perspective now known as item response theory (IRT) was Thurstone (1937). His
main intention was to analyze the notions of ability and speed, which he considered
as the core of educational testing. His analysis was based on the idea of a response
surface for a fixed person and item, which describes the probability of a correct
response to the item as a function of its difficulty and the time for the response.
(It is not quite clear from the article whether this is the time allowed or actually
taken.)

Thurstone’s graphical example of a response surface is reproduced in Figure 1.
(Observe that this surface is for a fixed person over a range of possible difficulties
of the item; it is thus a generalized person response function, not a generalization of
the now more popular item response function.) The main features of the surface are
(a) a decrease of the probability of success with the difficulty of the item but (b) an
increase of the probability with time. Thurstone then defines speed as “the number
of tasks completed in unit time” (p. 250) and the ability of an individual subject as
“the difficulty . . . at which the probability is 1/2 that he will do the task in infinite
time” (p. 251).

These definitions are in a similar vein as Gulliksen’s later treatment of speed and
power tests and Woodbury’s process model of testing. In fact, Thurstone’s defini-
tion of ability as a limit of the probability of success with time going to infinity
was already much more sophisticated than Gulliksen’s unlimited time as a necessary
condition for a pure power test. Also, Thurstone’s approach seems to do better justice
to the hybrid nature of test items; he treats them as tasks that always have a speed
as well as a power aspect. Finally, Thurstone already defined important concepts as
difficulty, speed, ability, and time at the level of the combination of a fixed person
and item. If he had also presented a parametric model for the response surface, it
could already have played the same role in earlier item analysis and test design as
some of the later IRT models.

The response surface in Figure 1 is, however, based on several tacit assumptions
that require explicit reflection. First, it is asymmetric in that it represents the prob-
ability of a response but a direct observation of RT. This is at odds with the fact
that both seem to be indicative of the same cognitive process in the test taker. If
this process should be considered as stochastic, both must be treated as random vari-
ables and the response surface should be for their joint probability rather than the
response probability only. In addition, Thurstone’s treatment has a second asymme-
try in that it explains the response probabilities by an item parameter (difficulty) and
a person parameter (ability) but leaves the RTs unexplained. Should this be taken
to imply that RTs are independent of the features of the item? And that systematic
differences in RT between test takers are impossible? Third, the shape of the re-
sponse surface allows for a tradeoff between time and item difficulty: The probability
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FIGURE 1. Graphical example of Thurstone’s response surface. (Reproduced with
permission from L. L. Thurstone (1937). Ability, motivation, and speed. Psychometrika, 2,
249–254.)

of success on a more difficult item can always be compensated by spending more
time on it. Although results from experimental research of reaction times in psy-
chology show ample evidence of speed-accuracy tradeoffs, they are within-person
phenomena whereas Figure 1 displays the probability of success as a function of
the difficulty of the item. Finally, the response surface also assumes a dependency
of the response probabilities on the RT. Although responses and RTs may corre-
late across test takers, a standard assumption in IRT is conditional independence
between the responses to different items by the same test taker (“local indepen-
dence”). Should the same hold for the responses and RTs? Or should the fact that
both seem to represent different sides of the same behavior be taken to imply inherent
dependence?

These questions illustrate the fact that to develop appropriate statistical models
for RTs, first several conceptual issues have to be resolved. It is the goal of this
article to make these issues explicit. We will do so by analyzing a selection of RT
models that are typical of the different conceptual choices that have been made in the
literature. We then extract a few basic conclusions from the analysis and propose an
alternative modeling framework for responses and RTs on test items consistent with
these conclusions.

Different Types of Modeling

Two different traditions of RT modeling are reviewed: (a) the tradition of dis-
tinct models for RTs and responses, and (b) the tradition of model integration in
which RTs are incorporated in response models or the other way around. Our review
is not exhaustive; from both traditions only a few typical models are selected. For
a more complete review of the history of RT modeling, see Schnipke and Scrams
(2002).
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Distinct Models for Responses and RTs

The prime example of this tradition of modeling is Rasch’s (1960) treatment of
oral reading tests, which involves two different types of models—one for the number
of misreadings in a text, the other for the speed of reading. Both models are derived
from the assumption of reading as a stochastic process; that is, a process in which a
reader produces words that take random time. More specifically, Rasch assumed the
process to be Poisson.

Generally, a Poisson process for an event arises when the probability θ of its oc-
currence in an arbitrary small time interval is constant across time (e.g., Casella &
Berger, 1990). The assumption implies that at any point of time the probability is
independent of the earlier history of the process.

Rasch’s model for misreadings. In this model, the focus is on the occurrence of
misreadings. For text that is homogenous and readers with a constant probability
of making a reading error, the assumption of a Poisson process is plausible. It is a
standard statistical result that the number of misreadings a in a text of N words then
follows a Poisson distribution with probability function

Pr(a | N ) = e−λ λa

a!
, (1)

where λ = Nθ is the expected number of misreadings.
Rasch decomposed the probability θ into parameters for the reader and the text.

Let j be an arbitrary reader and i an arbitrary text. Rasch’s proposal was

θi j = δi

ξ j
, (2)

where δ i was interpreted by him as the difficulty of text i and 1/ξ j as the ability of
the reader j. This simple relation reflects the fact that a more difficult text or a less
able reader should have a greater probability of a misreading.

Rasch’s model for reading speed. This model for reading speed assumes the same
type of Poisson process but this time for the event of completing a unit of text while
reading. The process is realized if the text is homogeneous and the test taker reads at
a constant speed. It then holds that the number of words N read in a given time T by
a reader who reads at speed λ follows the same type of Poisson distribution as in (1).

However, the intended model is not for number of words read in a given time but,
reversely, for the time required to finish the reading of a given number of words.
The two events are related by a simple probability relation, which states that the
probability that reading a words in a given time T exceeds N is equal to that of the
time t needed to read N words not exceeding T . Formally,

Pr(a ≥ N | T ) = Pr(t ≤ T | N ) (3)

(Rasch, 1960, p. 38).
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Again, it is a standard result in statistics that if the probability on the left is Poisson,
the probability on the right follows a gamma distribution with density

p(t | N ) = λe−λt (λt)N−1

(N − 1)!
, (4)

where λ is an “intensity parameter” that characterizes the person’s reading speed
(p. 38). Rasch also refers to this parameter more directly as a “speed parameter” (p.
41). Formally, it is the expected number of words read in a given time unit
(p. 41).

Rasch also suggested decomposing speed parameter λ into separate parameters
for the reader and the text:

λi j = ξ j

δi
, (5)

where δ i is the difficulty of text i and ξ j is the ability of person j.

Discussion. The probability law in (3) must have motivated Gulliksen’s two scoring
rules for speed tests: one of his rules refers to the event in the left-hand side of
(3), the other to the event in the right-hand side. The law shows that the two events
can be treated as equivalent provided both are the result of the same underlying
process.

However, the relationships between the different person and text parameters in the
core equations in (2) and (5) are unclear. The notation for these parameters used by
Rasch, which we have maintained in our presentation of the models, seems to suggest
that they refer to the same empirical variables. In addition, the equations define the
parameters as reciprocals of each other—which is in agreement with the reversal of
the events in (3) and thus seem to point at the assumption of the same parameters for
a single process indeed. Also, Rasch’s use of the term “ability” for ξ j in (2) and (5)
suggests an identical interpretation. Nevertheless, the following quote reveals that he
might have assumed an analogy only and left the actual relationships between these
parameters to further research:

This analogy between the models for misreadings and reading speed does, however,
not indicate that the two pairs of concepts are identical. It seems reasonable that a
text which gives rise to many mistakes—e.g., because it contains many unknown
words or deals with a little known subject-matter—will also be rather slowly read.
But presumably it is not a general rule that a slow reader also makes many mis-
takes. To which extent the two difficulty parameters for each text and the two ability
parameters for each person run parallel is a question to be answered by empirical
research, and at present we shall leave it open. (Rasch, 1960, p. 42)

It is not exactly clear what is meant by the phrase “parameters. . .[that] run paral-
lel” in this quote. Later in this article, we will take it to imply a positive correlation
between parameters across different persons or items.

Others have followed the tradition begun by Rasch and modeled the responses
and RTs distinctly. Jansen (1986, 1997a, 1997b), Jansen and van Duijn (1992),
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Oosterloo (1975), and Scheiblechner (1979) used the same models as Rasch in vari-
ous studies, improved their statistical treatment, and provided such extensions as the
incorporation of manifest covariates or structural parameters for the person param-
eter in the models. Pieters and van der Ven (1982) used the same gamma model to
decompose RTs into problem solving and distraction times, whereas Maris (1993)
assessed its consistency with different stage models of problem solving from psy-
chology. Distinct RT models from other families of statistical distributions are the
Weibull model by Tatsuoka and Tatsuoka (1980) and the lognormal model by van
der Linden (2006).

Response Models That Incorporate RT

This alternative type of modeling follows the Thurstonian (1937) tradition and in-
corporates RTs (or their parameters) in response models. The result is a single model
for responses and RTs rather than two distinct models. The models are interesting
because they can be viewed as attempts to answer Rasch’s question about the rela-
tionship between the two types of parameters in the quote above.

Roskam’s model. One of the first attempts to build RTs in response models was
Roskam’s (1987; see also Roskam, 1997). His model is the regular Rasch or one-
parameter logistic (1PL) response model with the ability parameter replaced by
an “effective ability parameter” defined as “mental speed times processing time.”
On an exponential scale, the product of mental speed and time is the sum θ j +
ln tij. (Roskam uses the traditional notation for the ability parameter also for the
speed parameter; only his interpretation changes.) Thus, the model can be written
as

pi (θ j ) = {1 + exp[−(θ j + ln ti j − bi )]}−1. (6)

Observe that the presence of the difference ln tij − bi in the model is in agreement
with Thurstone’s response surface in Figure 1: An increase in the difficulty of the
item can always be compensated by spending more time on it. Also, the model seems
to capture a speed-accuracy tradeoff in that an increase in time implies an increase
in probability of success on the item. In fact, this tradeoff—more precisely known as
an increasing conditional accuracy function (Luce, 1986, sect. 6.5)—was the main
motivation for this model (Roskam, 1997, pp. 188–190).

Verhelst, Verstralen, and Jansen (1997) have presented a model identical to (6) but
with tij replaced by a parameter τ j , which they interpret as a speed parameter for
person j:

pi (θ j ) = {1 + exp[−(θ j + τ j − bi )]}−πi (7)

The model also has a shape parameter π i , which is further ignored here. Interestingly,
these authors derived their model from a different set of assumptions than Roskam’s,
namely, that of a combination of a generalized extreme-value distribution for a latent
response variable conditional on the time spent on the item and a gamma distribution
for the marginal distribution of the time.
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Wang & Hanson’s model. Wang and Hanson (2005) offer a model that incorporates
RTs in the 3PL response model instead of the 1PL model. The result is the response
function

pi (θ j ) = ci + (1 − ci ){1 + exp[−ai (θ j − ρ j di/ti j − bi )]}−1, (8)

where ai and ci are the usual discrimination and guessing parameters for item i. Ex-
cept for the more general parameter structure of the 3PL model, the main difference
between this and Roskam’s model is the replacement of ln tij by

−ρ j di/ti j . (9)

In addition to the time tij, this expression contains parameters ρ j and di referred to
as “slowness parameters” for the person and the item by the authors. Their name is
motivated by the fact that less time on an item has the same effect on the probability
of success as an increase of either of these parameters.

Further, the model shows a structural difference with respect to the speed-accuracy
tradeoff in Roskam’s model: with increasing time, the probability of success in (8)
approaches that of the regular 3PL model whereas for (6) it goes to one. According
to the authors, the difference qualifies Roskam’s model as a model for speed tests but
theirs as one for hybrid tests (Wang & Hanson, 2005, p. 336).

RT Models That Incorporate Responses

The reverse type of modeling incorporates responses (or response parameters) into
a model for the distribution of the RT on an item. Models of this type entail different
conditional RT distributions given a correct and an incorrect response. This feature
seems to be supported by several empirical studies that found substantial differences
between average RTs for correct and incorrect responses across test takers. A discus-
sion of these findings follows later in this article.

Gaviria’s model. A recent example of this type of modeling is a model by Gaviria
(2005). For uij = 1, this author posits the equation

ln

(
ti j − T0

A

)
= −ai (θ j − bi ) + εi j , (10)

with A a scaling constant, T 0 the time taken by the person on an infinitely easy item,
and ai(θ j − bi) the usual parameter structure from the 2PL response model. For the
residual, a lognormal distribution is chosen:

εi j ∼ L N
(
0, σ 2

i

)
. (11)

The model thus specifies a double lognormal distribution for a rescaled time,
(tij − T 0)/A, with mean −ai(θ j − bi) and item-dependent variance σ 2

i . The scal-
ing constants T 0 and A are to be estimated from testing data.
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The representation in (10)–(11) is not Gaviria’s; it has been rewritten here to show
an analogy with Thissen’s model in the next section. The original representation
(Gaviria, 2005, eq. 2) yields a tautology for the substitution of uij = 0, which means
that the conditional distribution of the RT given an incorrect response is left unspeci-
fied. This omission reveals a basic problem for attempts to incorporate responses into
RT models: It is generally difficult to specify conditional RT distributions that offer
a plausible explanation of the difference between the impact of correct and incorrect
responses on RTs.

Thissen’s model. Thissen’s (1983) well-known model belongs to the same category
of RT modeling. But rather than specifying different RT distributions for correct and
incorrect responses, it regresses the RT directly on the usual parameter structure for
response models. In addition, it introduces parameters for an extra person and item
effect on the RT. Formally, the model is

ln Ti j = μ + τ j + βi − ρ(aiθ j − bi ) + εi j , (12)

with
εi j ∼ N (0, σ 2). (13)

Parameter μ in the model is a general level parameter for the population of per-
sons and domain of test items. Parameters τ j and β i are interpreted as the “slow-
ness parameters” for the person and item by Thissen (1983, p. 181), whereas ρ is a
slope parameter in the regression of the logRT on the response parameter structure
aiθ j − bi. The combination of the logarithmic transformation of the RT with a normal
distribution for ε i j yields a lognormal model for the RT.

Ferrando and Lorenzo-Seva (2007) present a version of the model in (12)–(13) for
items in personality tests with the regression of the RT on

√
a2

i (θ j − bi )2. (14)

instead of aiθ j − bi; otherwise, their model is identical. The choice of (14) is moti-
vated by a distance-difficulty hypotheses, which has gained some support in the field
of personality measurement and predicts that the RT on a personality item increases
with the distance between the test taker’s trait level θ j and the difficulty of the item
bi.

Both models can be specified to represent a tradeoff between speed and accuracy.
For ρ < 0, (12) implies a tendency for tij to increase with an increase of θ j whereas
for (14) the same tendency exists for an increase in the distance between θ j and bi.
On the other hand, for ρ > 0 the relation in (12) reverses. In addition, the models rep-
resent an interaction between slowness τ j and accuracy θ j on tij that is more difficult
to interpret.

Basic Issues

We now discuss some of the basic issues that have emerged in our review of these
different types of modeling. Our conclusions from these issues suggest an alternative
type of modeling which is presented later.
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Fixed or Random RTs

It is a common experience in reaction-time experiments that the times taken by
subjects on replications of simple tasks vary randomly from one observation to an-
other. The same randomness can be assumed to hold for RTs on test items. In fact,
we even expect a greater role of randomness: Test items are much more complex
and involve more uncertainty than the typical tasks in these psychological exper-
iments. Besides, it seems inconsistent to assume random responses—a basic as-
sumption of IRT—but fixed RTs. Although the assumption of randomness seems
obvious, it is generally difficult to verify empirically through replicated admin-
istrations of the same item to the same person because of learning and memory
effects.

Some of the previous models do treat RTs as random variables; others, for in-
stance those in (6) and (8), treat them as fixed values in a response model. The only
way to reconcile the random nature of RTs with the presence of fixed values tij in
a response model is to view the latter as specifications of the conditional distribu-
tion of Uij given Tij = tij. However, a full model for Tij and Uij would be for their
joint distribution; the part that is missing is thus a model for the marginal distribution
of Tij.

Alternatively, the fixed values tij could be replaced by RT parameters, as in the
model in (7). However, as will be argued later, RT parameters make sense in models
for a RT distribution but not in models for the distribution of responses.

Conclusion 1: RTs on test items should be treated as realizations of random variables
Tij.

Item Completion, Responses, and RTs

Rasch’s (1960) models of misreadings and reading speed were derived from an
underlying Poisson process. The notation used by Rasch, as well as the reversal of
the probabilities of total time and the number of responses in (3), seems to point at a
single process. But his earlier quote, in which he entertains the possibility of different
empirical behavior of the ability and difficulty parameters in the two models, con-
tradicts the assumption. On the other hand, in the earlier literature about speed tests,
the idea that total time and the number of responses are equivalent measures was
ingrained deeply. Examples discussed earlier are Gulliksen’s claim of equivalence of
his two rules for the scoring of speed tests and Woodbury’s theory of time-dependent
test scores.

Where does this ambiguity come from? The answer lies in the neglect of an extra
random variable required to describe the response behavior as a stochastic process.
In all, three different types of random variables are necessary: one variable for the
response time on the items (Tij) and two variables for response-related events (Uij

and Dij). Formally, the latter can be defined as

Ui j =
{

1, j answers item i correctly,

0, otherwise,
(15)
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and

Di j =
{

1, j completes item i,

0, otherwise,
(16)

respectively. Variables Uij are the regular response variables modeled in IRT; vari-
ables Dij are design or indicator variables that show which items the test taker com-
pletes.

The distinction between response and design variables was not common in the
early history of test theory; it was introduced only when problems with missing data
became manifest, such as in large-scale educational assessments and adaptive test-
ing. It is important to distinguish between (15) and (16) because they have different
probability distributions. One obvious difference is that the variables Uij can be as-
sumed to be independent for a given test taker j whereas the variables Dij are always
dependent (e.g., Dij = 1 has a nonzero probability only if j has completed the pre-
ceding item).

Using these variables, two different total scores can be defined

Nj =
∑

i

Di j (17)

and

Nj =
∑

i

Ui j . (18)

The first total score tells us how far the test taker has proceeded through the test; the
second is the regular number-correct score. The two total scores have different prob-
ability distributions because their constituent variables have. (Actually, as explained
later, it even makes sense to think of them as independent variables.)

In Rasch’s (1960) description of his models, because of a common notation, the
two total scores are easily confounded. But the reversal of probabilities for N and
T in (3) that leads to the gamma model for reading speed holds only for total score
Dj. On the other hand, the model of misreadings is for number-correct score Nj.
Thus, although each model has an underlying Poisson process, the processes are not
identical: the process for the misreadings generates values for the response variables
Uij but that for the speed of reading generates values for the design variables Dij.

One condition exists for which the distinction between response and design
variables can be ignored. When the probability distribution of Uij degenerates to
Pr (Uij = 1) = 1, the two variables become exchangeable. More formally,

Pr (Ui j = 1) = 1 −→ Di j = Ui j . (19)

Under this condition, it holds that Dj = N j . Consequently, we can use the total score
Nj (given a fixed time interval) and the total time Tj (given a fixed value of Dj) as
equivalent measures of speed.
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FIGURE 2. Example of two arithmetic
items differing in time intensity.

The condition in (19) is implied by Gulliksen’s definition of a pure speed test
as a test with items easy enough to be answered correctly. However, for all re-
sponse models currently in use for educational testing, the condition can only be
met for a test taker of infinitely high ability and/or items of infinitely low diffi-
culty. The equivalence of Gulliksen’s two rules for scoring speed tests is thus an
ideal that is never met in practice. Similarly, the notion of a pure power test seems
superfluous. As opposed to (19), there exists no special condition on the distribu-
tions of the three variables that permits us to ignore Tij (or Dij) and focus on Uij

only. Therefore, it seems more realistic to treat every real-world test as a hybrid test
with both a speed and a power aspect captured by the variables Tij (or Dij) and Uij,
respectively.

Conclusion 2: For any type of test, RTs, item completions, and responses should be
treated as realizations of distinct random variables Tij, Dij, and Uij. The probability
distributions of Tij and Dij are different from the distribution of Uij but related through
the inverse relation in (3). As a consequence, except for continuity, and provided the
other is fixed, the total time Tj spent on the test and the sum of design variables Dj

are measures with the same information, but Tj and Nj are not.

RT and Speed

It is not unusual to find the notions of RT and speed treated as equivalent in the
psychometric literature on RT models. The idea is also common in reaction-time
research in psychology, where speed is invariably measured as the average reac-
tion time on a task; for example, speed-accuracy tradeoffs are usually presented by
a plot of the average correct response as a function of the average reaction time
in this research (see the schematic of the general tradeoff relation in Luce, 1986,
Fig. 6.13). The presence of tij in (6) was motivated by the idea to build this type of
speed-accuracy tradeoff in a RT model (Roskam, 1997, pp. 188–190).

However, a moment’s reflection shows that RT and speed are not equivalent. A
simple counterexample is the case of the two arithmetic items in Figure 2. Suppose
one examinee answers item 1 in 9 seconds whereas another takes 13 seconds for
item 2. It would be wrong to conclude that the second examinee worked slower than
the first: item 2 involves a longer series of operations than item 1 and, in spite of
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a longer RT, the second examinee might have worked much faster through it. The
example thus shows that it is generally impossible to relate RT to speed unless we
have a measure of the amount of labor required by the items.

A fundamental equation. Notions of speed are found not only in test theory but have
permeated every area of science. It is quite common, for instance, to speak of the
speed of inflation in economics, the speed at which a rumor spreads in sociology, or
the speed of recovery in medicine. The definitions of all of these notions share the
format of a rate of change of some measure with respect to time.

The prototypical definition of speed is that of speed of motion in physics. Let d(t)
be the distance traveled from a given point of reference as a function of time and t1

and t2 the two end points of a time interval. The textbook definition of the average
speed in the interval is

average speed = d(t2) − d(t1)

t2 − t1
. (20)

Any other definition of speed has the same format but with a different measure in the
numerator.

The appropriate notion of speed on test items is that of speed of labor. Hence, its
definition is that in (20) with the numerator replaced by a measure of the amount of
labor required by the items. Let β∗

i denote the (unknown) amount of labor required to
solve item i. As the clock is reset at the beginning of every item, the point of reference
in (20) becomes t 1 = 0 and response time tij can be taken as its denominator. The
(average) speed τ ∗

j of test taker j on item i, is then defined as

τ ∗
j = β∗

i

ti j
. (21)

Alternatively, we can write

ti j = β∗
i

τ ∗
j

, (22)

which shows that the definition of speed involves the decomposition of the RT into
two unknown parameters: one parameter for the speed of the person and the other
for the labor intensity of the item. As parameter β∗

i represents an effect on time, we
will mainly refer to it as the time-intensity parameter for item i.

RTs are bounded from below and it is always possible to spend more time on an
item. Hence, their distributions tend to be positively skewed. A standard transforma-
tion to get a more symmetric distribution is the logarithmic, which gives

ln ti j = βi − τ j , (23)

where β i and τ j are now parameters on a logarithmic scale. Finally, RT is a ran-
dom variable but the right-hand side of the equation is fixed. Hence, (23) should be
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conceived of as an equation for the expected logtime on the item,

E(ln ti j ) = βi − τ j . (24)

We will therefore refer to the equation as the fundamental equation of RT mod-
eling. Each RT model with a person parameter that is interpreted as speed should
be based on this equation and have a time-intensity parameter for the items as well.
Indeed, the equation plays exactly this role in some of the models reviewed above. It
also helps to clarify some of the interpretations associated with the other models.

For example, the model by Thissen in (12) has the equation as its core (with speed
parameter τ j replaced by its negative as a slowness parameter). The same holds for
the model by Ferrando and Lorenzo-Seva in (14). On the other hand, these models
also have “slowness” parameters for the items whereas the equation above suggests
that an interpretation of these parameters as parameters for the time intensity of the
items would be more consistent with the notion of speed.

Exactly the same holds for the interpretation of parameter di in the model in (8)
by Wang and Hanson. More importantly, this model has a formal problem because
of (9), which is not an equation relating RT to item and person parameters but just
an expression based on these quantities. It is hard to find a satisfactory interpretation
for the effect of this expression on the response probability in (8).

The differences between (22) and the core equation in the Rasch model for reading
speed in (5) are subtle. Parameter λi j in the model is equal to the expected number
of words read in a given time unit; see directly below (23). Hence, its reciprocal
is the expected time on a unit of text, and Rasch’s equation in (5) is thus formally
identical to the fundamental equation. However, the two have important interpretative
differences. Unlike Rasch’s interpretation of λi j as a speed parameter, it is just the
expected time by the reader on the text, i.e., the left-hand side of (22); ξ j is not
an ability parameter but a parameter for the speed of the reader; and δ i is not the
difficulty of a text but the amount of labor it involves, just as “ability” is a term more
appropriate for the description of the distribution of reading errors.

Conclusion 3: Time and speed are different concepts but are related through the
equation in (22). RT models with speed as a person parameter should also have an
item parameter for their time intensity.

Speed and Ability

The idea that speed and ability have a tradeoff relation, which motivated several
of the models reviewed earlier, certainly makes sense. In reaction-time research in
psychology, a speed-accuracy tradeoff is typically presented as a positive relation
between the proportion of correct tasks and the average time on the tasks (e.g.,
Luce, 1986, Fig. 6.13). However, the time spent on an item is driven by the test
taker’s speed parameter whereas the ability parameter plays this role with respect
to the correctness of the response. The equivalent of the speed-accuracy tradeoff
in reaction-time research is therefore a speed-ability tradeoff in testing. (Note the
steps from two different observations to parameters for their distributions. Unlike the
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FIGURE 3. Examples of ability as a monotonically decreasing function of speed τ

(left panel), ability functions for a more and a less able test taker (middle panel), and
effective speed and ability of a test taker during the administration of a test (right panel).

observations, these parameters are adjusted for the structural differences between the
items.)

A fictitious example of a speed-ability tradeoff is given in Figure 3 (left panel).
The shape of the curve is entirely arbitrary; the only thing implied by the tradeoff
is a monotonically decreasing relation between speed and ability. In the example,
speed is chosen to be an independent variable and ability a dependent variable. This
has been done intentionally because it seems plausible that a test taker has some
control of speed but has to accept the probability of success that is the result of it. If
this view is correct, we may think of ability as a function of speed; that is, adopt a
function θ = θ (τ ).

It is important to note that this function is for one fixed test taker; the tradeoff
between speed and ability is entirely a within-person phenomenon. Its existence can
only be demonstrated by forcing a test taker to speed up or slow down and checking
the rate of success—not otherwise, particularly not by plotting the speed and ability
estimates of different test takers against each other, which is exactly what happens
for a typical reaction-time experiment in psychology!

How about the case of two test takers, where one is more able than the other?
Intuitively, when they work at the same speed, it seems obvious to assume a higher
rate of success for the more able test taker. Reversely, if the two have the same rate
of success, the more able test taker can realize this at a higher speed. The case is
represented by the two fictitious curves in the middle panel of Figure 3, with the
dominating curve for the more able test taker.

When individuals take tests, they choose a certain level of speed based on such
factors as their understanding of the test instructions, perception of the time limit,
and style of work. We will refer to the result as the test taker’s effective speed during
the test. As illustrated in the right panel of Figure 3, the result is an effective abil-
ity. (Roskam’s model discussed earlier was also based on the notion of an effective
ability but this was taken to be equal to mental speed times processing time.)

At first sight, the assumption of constancy of speed during a test may seem gratu-
itous. But it is confirmed by a whole history of successful applications of IRT models
to real-world tests: From the speed-ability tradeoff, it follows that response models
with a single ability parameter for each test taker can fit only when they operate at
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constant speed during the test. Of course, in the real world speed will always fluctuate
somewhat during the test. But a recent empirical study (van der Linden, Breithaupt,
Chuah, & Zhang, 2007) found such changes to be negligible. Also, it is common to
view larger changes in ability or speed as aberrances due to design flaws in the test
or misbehavior by the test taker (see the examples below). The standard approach is
to assume constancy and then check for possible violations of the assumption due to
such aberrances.

Figure 3 implies a ranking of the test takers according to their ability functions—
that is, according to their points of intersection with a line through the origin—and
not along the vertical ability axis. Thus, even when we account for random error,
test scores do not automatically reflect the rank order of the test takers’ abilities.
They do so only when test takers operate at the same speed; otherwise, the scores are
confounded with their decisions on speed. This point becomes an issue of fairness
when different test forms are involved and some of them force their test takers to
work faster than the others.

The view of ability as a function θ = θ (τ ) is different from the usual conception
of θ as a single point on an ability scale in IRT. Actually, the view is still not entirely
correct. A more appropriate concept would be that of an ability area constrained from
above by the curves θ = θ (τ ) in Figure 3. These curves then represent the limit of
what a test taker can achieve. It is always possible for a test taker to become less
than optimally motivated and realize a combination of speed and ability somewhere
below the curve but the combinations above it are out of reach. However, when the
stakes are high and there are no motivation problems, we can just focus on the upper
side of the area and ignore the rest of it.

Conclusion 4: Speed and ability are related through a distinct function θ = θ (τ ) for
each test taker. The function itself need not be incorporated in models for RTs and
responses on achievement test items. But these models do require fixed parameters
for the effective speed and ability of the test takers.

Item Difficulty and Time Intensity

As stated in Conclusion 3, RT models with a speed parameter also need a pa-
rameter for the time intensity of the items. Some of the earlier models do have a
parameter with this interpretation but in combination with the traditional item dif-
ficulty parameter from IRT; for example, (8), (12), and (14). Also, Rasch’s model
for reading speed has a text parameter that was interpreted by him as a difficulty
parameter. The intuition behind these models thus points at an assumed impact of
the difficulty of the item on its RT distribution. The intuition seems to receive sup-
port from several empirical studies that report a positive correlation between RT
and item difficulty; see, e.g., Masters (2005), Smith (2000), Swanson, Featherman,
Case, Luecht, and Nungester (1999), Swanson, Case, Ripkey, Clauser, and Holtman
(2001), and Zenisky and Baldwin (2006). (The nature of such studies is discussed in
the next section.)

The two arithmetic items in Figure 2 were chosen with this question in mind.
Item 2 involves a longer series of cognitive operations and requires more time than
item 1. However, we expect the two items to show hardly any difference in difficulty.
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A test taker able to add three-digit numbers (the common part of the two items) will
not have much problem adding the extra two-digit numbers in item 2.

This example illustrates our view of the relation between the time intensity and
difficulty of an item. The former refers to the amount of processing that has to be
done; the latter summarizes how the test taker’s ability is challenged by the nature of
the operations involved in it. For the items in Figure 2, the difficulty is expected to
be determined mainly by the operation with the greatest challenge. For other types
of items, a different summary of the challenges may be necessary to define item
difficulty.

A more fundamental argument, however, is based on the distinction between man-
ifest and latent parameters. The former are measured directly (e.g., word counts for
items) and can therefore be included in different models without any change of mean-
ing. But item difficulty and time intensity are latent parameters that derive their
meaning entirely from the fact that they represent the effects of the items on their
probability of success and the time spent on it, respectively. Because these are dif-
ferent quantities, the two types of effects are different (although they may correlate
across items). In fact, if a “difficulty parameter” would be included in a RT model, it
would immediately lose its interpretation as a difficulty parameter and just become a
second parameter for the effect of the item on the RT.

Conclusion 5: RT models require item parameters for their time intensity but diffi-
culty parameters belong in response models.

Dependences between RTs and Responses

The issue of possible dependencies between RTs and responses is complicated.
On the one hand, descriptive studies of the relationship between RTs and responses
show substantial correlations between them. For example, Bergstrom, Gershon, and
Lunz (1994) found that correct responses were generally produced faster than in-
correct responses. The same results were found by Hornke (2000) and in a rather
comprehensive study by Röhling (2006). These results seem to be at odds with the
experimental confirmation of the speed-accuracy tradeoff in reaction-time research
in psychology, where more time has invariably been shown to lead to a larger propor-
tion of correct responses (see the review of this research in Luce, 1986, chap. 6). The
same holds for the earlier models with a positive dependency of the probability of a
correct response on RT (e.g., those by Roskam, 1997, and Wang & Hanson, 2005).

On the other hand, empirical studies of the dependencies between RTs and re-
sponses in operational testing always involve some kind of data aggregation. For
each item-person combination, only one RT and response are observed, and it is im-
possible to estimate their correlation at this level. In the typical descriptive study,
therefore, these observations are correlated across test takers or items. But such data
aggregation can be dangerous and easily leads to spurious correlations because of
hidden covariates.

An example of a similar spurious correlation is between the responses Uij and
Ui ′ j on two different items i and i ′ for a population of test takers. The correla-
tion vanishes as soon as ability is kept constant, a phenomenon known as “local
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TABLE 1
Response and RT Vectors of Two Arbitrary Subjects on a Test of Quantitative and Scientific
Proficiency for College Students

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subject 1
Response 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1
RT 22 19 40 43 27 27 45 23 14 47 12 5 3 4 16

Subject 2
Response 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0
RT 26 38 101 57 37 21 116 44 10 117 18 9 25 16 34

independence.” Similarly, the assumption of conditional independence between Tij

and Ti ′ j on different items i and i ′ seems natural. In fact, it would be difficult to think
of conditionally independent responses but dependent RTs. As long as a test taker’s
speed on the items is constant, the variation in RTs about their expected values is just
random. But when they are aggregated over test takers operating at different speeds,
they begin to correlate.

It seems natural to consider the issue of possible dependencies between RTs and
responses on a single item along the same lines: For a single test taker, when both
speed and ability are constant, we should assume conditional independence between
Tij and Uij for every item i. But as soon as we aggregate responses and RTs across
different test takers (as was done in the empirical studies above), the correlation
between their speed and ability parameters serves as a potential source of variation.
If more able test takers also work more quickly, Tij and Uij correlate positively. If
they work more slowly, the correlation becomes negative.

The same happens if we correlate Tij and Uij across items and their difficulties
and time intensities correlate. An example of spurious correlations due to this hidden
source of covariation is given in Table 1, which shows the responses and RTs for two
test takers on the first 15 items of a test of quantitative and scientific proficiencies
for college students from Wise, Kong, and Pastor (2007). Because the two subjects
were arbitrarily selected from a much larger data set, communication between them
during the test can be excluded and both their responses and RTs are independent.
Nevertheless, the two response vectors show a positive correlation across the items
(r = .20). The only possible explanation of this is variation in difficulty from one
item to the next. The correlation between the RTs is even stronger (r = .89), so we
expect the variation in time intensity between the items to have a relatively greater
impact. More surprisingly, the responses by one test taker even correlate with the
RTs by the other (r = .27 and .21). These correlations are also spurious; the only
meaningful explanation is a positive correlation between the difficulties and time
intensities of the items (which we have typically found in our empirical studies; see
the review below).

Our analysis has thus revealed three different assumptions of conditional or lo-
cal independence relevant to the modeling of the relationship between responses
and RTs: (a) independence between responses to different items, (b) independence
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between RTs on different items, and (c) independence between responses and RTs
on the same items.

The dependences are closely related to the more fundamental assumption of con-
stancy of speed and ability during the test discussed earlier. As long as they are con-
stant, speed and ability cannot serve as common covariates. Of course, in real-world
test administrations, speed and ability will always fluctuate somewhat during the test
and, as a result, minor violations of the conditional independence assumptions will
be observed. When the violations are random and minor indeed, there is no problem.
But when they become larger and more systematic, they may point at a warming up
effect as the result of inadequate instructions to the test, fatigue due to the length of
the test, or the impact of a time limit that was set too tight. In such cases, it is better
to redesign the test than to replace the model by a more complicated version to allow
for conditional dependence.

Conclusion 6: In addition to the usual assumption of conditional independence be-
tween responses to different items, it seems reasonable to assume conditional inde-
pendence between RTs and responses on the same items as well as between RTs on
different items.

Modeling Framework

Our six conclusions confirm Rasch’s idea of different models for the distributions
of responses and RTs on test items. Both models should have distinct person and
item parameters. The parameter structure of the response model can be that of a reg-
ular IRT model with a person parameter for the effective ability of the test taker and
the usual item parameters. The parameter structure of the RT model should be con-
sistent with the fundamental equation derived in this article—a requirement leading
to the postulate of a parameter for the time intensity of an item in addition to one
for the effective speed of the test taker. Although speed and ability are two person
parameters with a tradeoff relation for each test taker, it is not necessary to represent
the relationship by the parameter structure of either model as long as the test tak-
ers operate at (approximately) constant speed. Conditional independence between
responses and RTs seems a plausible assumption. But in order to explain observed
correlations between responses and RTs across persons and items, it is necessary
to extend the models with a structure that allows for dependencies between their
parameters.

A graphical representation of the framework for modeling responses and RTs
emerging from these conclusions is given in Figure 4. The framework is hierarchical
in that it has two lower-level models for the responses and RTs by a fixed person as
well as two higher-level models for the joint distributions of their parameters. The
two lower-level models have ability and speed parameters for the test takers as well
as difficulty and time-intensity parameters for the items. The two higher-level mod-
els are for the distributions of the person parameters in the population of test takers
and the item parameters in the domain of test items. The correlations between these
parameters are to be inferred from these distributions.

The framework does not prescribe any specific component models. It only de-
fines the general nature of these models as well as the relevant relationships between
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FIGURE 4. Graphical illustration of a hierarchical framework for
the modeling of responses and RTs on test items.

their parameters. For different types of applications, different component models or
different parameterizations may be required. For example, the response model should
be chosen to support the response format of the items (e.g., a dichotomous or a graded
format). To illustrate the possibilities, we discuss two different choices of component
models.

Dichotomous Items and Lognormal RTs

The lower-level models are the regular 3PL model for dichotomously scored items
and a lognormal model for the RTs. The higher-level models are multivariate normal
distributions for the person and item parameters. This choice of component models
was examined in van der Linden (2007).

Lower-level models. The 3PL model postulates a probability of success on item i
that can be written as

pi (θ j ) ≡ ci + (1 − ci )�[ai (θ j − bi )], (25)

where �(·) is the logistic function, θ j ∈ [−∞,∞] is the ability parameter of test
taker j, and ai ∈ [0,∞], bi [−∞,∞], and ci ∈ [0, 1] are the usual discrimination,
difficulty, and guessing parameters for item i, respectively.

The lognormal RT model follows directly from the fundamental relation in (23);
the only extension is the assumption of a normal distribution of the RTs around their
expected values β i − τ j . The result is

ln Ti j ≡ βi − τ j + εi , εi ∼ N
(
0, α−2

i

)
. (26)
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Equivalently, the model can be written as a lognormal density for the distribution of
Tij:

f (ti j ; τ j , αi , βi ) = αi

ti j

√
2π

exp

{
−1

2

[
αi (ln ti j − {βi − τ j })

]2
}

. (27)

Item parameter α i is the reciprocal of the standard deviation of the RTs on item i and
can therefore be interpreted as its discrimination parameter.

This lognormal model was proposed earlier just as a flexible model for skewed RT
distributions (van der Linden, 2006) but appears to follow directly from the funda-
mental equation derived earlier in this article.

Higher-level models. Let μ = (μθ , μτ ) and σ = (σ θ , σ τ ) be vectors with the means
and standard deviations of the ability and speed parameters in the population of test
takers and ρθτ their correlation. The population model is a bivariate normal distribu-
tion for the person parameters with density function

f (θ, τ ; μ, σ, ρθτ ) = 1

2πσθστ

√
1 − ρ2

θτ

exp

[
− 1

2
(
1 − ρ2

θτ

)(
z2
θ − 2ρθτ zθ zτ + z2

τ

)]
,

(28)

with zθ = (θ − μθ )/σ θ and zτ = (τ − μτ )/σ τ .
Similarly, the item-domain model is a multivariate normal distribution for all item

parameters in the response and RT models. Let ξ i = (ai, bi, ci, α i , β i ) be the (col-
umn) vector with the item parameters in (25)–(27). It is assumed to have a normal
distribution with density function

f (ξi ; μ,�) = |�−1|1/2

(2π )5/2
exp

[
−1

2
(ξi − μ)T �−1(ξi − μ)

]
, (29)

where μ = (μa , μb, μc, μα , μβ ) is the (column) vector of the means and � is the
covariance matrix for the item parameters.

The framework needs to be extended by a few additional restrictions to fix the
scale of some of its parameters. Bayesian methods for estimating the parameters
and checking the fit of the component models are available. However, the statistical
treatment of response and RT models is beyond the scope of this article; for technical
details, we refer to Fox, Klein Entink, and van der Linden (2007); Klein Entink, Fox,
and van der Linden (2009); and van der Linden (2006, 2007).

Hierarchical Version of Rasch’s Models for Oral Reading Tests

The second example is a straightforward extension of the two earlier models for
oral reading tests by Rasch. First, we replace the equations for Poisson parameter θi j

in (2) and gamma parameter λi j in (5) by their logarithmic versions

κi j = bi − θ j (30)
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and

λi j = τ j − βi , (31)

respectively. The only step left is to adopt the normal distribution in (28) for param-
eters θ and τ in (30) and a bivariate version of the distribution in (29) for parameters
b and β in (31).

The statistical treatment of this framework is also omitted here; for technical de-
tails and an empirical application, see van der Linden (2008b).

Empirical Applications

In Figure 4, there are no direct arrows between the response and RT; neither are
there any from one kind of observation to a parameter for the other. The absence
of such arrows reflects the assumptions of conditional independence and constancy
of speed and ability. However, as already illustrated using the data in Table 1, the
possibility of a nonzero correlation between the observed responses and RTs in a
sample of test takers and/or test items arises because of second-level correlations.
The size and sign of these observed correlations in a sample of test takers or items
depend entirely on the pattern of these higher-level correlations.

In an application of the hierarchical model (25)–(29), the second-level correla-
tions are estimated directly from the observed responses and RTs. For the sake of
illustration, we focus on the correlations ρθτ and ρbβ . In a recent series of appli-
cations, different patterns of correlations were found. For an arithmetic test in the
adaptive version of the Armed Services Vocational Aptitude Battery (ASVAB), the
correlations were estimated to be ρθτ = .04 and ρbβ = .65 (van der Linden, Scrams,
& Schnipke, 1999). In another study, for the computerized Uniform CPA Exam, the
correlations were found to be ρθτ = .30 and ρbβ = .30 (van der Linden et al., 2007)
whereas they were estimated to be ρθτ = −.25 and ρbβ = −.33 for the Quantitative
section of the Graduate Management Admission Test (GMAT) (van der Linden &
Guo, 2008). For a test of Dutch as a foreign language, Klein Entink et al. (2009)
found ρθτ = .25 and ρbβ = .51. Two other studies by these authors addressed the
person parameters only and showed estimates equal to ρθτ = −.65 for a Natural
World Assessment Test (NAW-8) and ρθτ = .30 for a neurosis scale in a personality
questionnaire.

The impression emerging from these analyses is a strong tendency to a substantial
positive correlation between the difficulties and time intensities of the items (with
the GMAT test as the only exception), but correlations between speed and ability
may be positive or negative. Our explanation of the wider range of correlations be-
tween speed and ability is better time-management skills among the more able test
takers. When the time limit is tight, they know how to speed up to finish in time and
distribute their time correspondingly, implying a positive correlation between speed
and ability. But when there is ample time, they slow down to maximally profit from
it (negative correlation).

In each of these applications, the fit of the model was checked carefully. Because
the items were from an operational test and had already been shown to fit the 3PL
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model, we focus on the loglinear RT model. The shape of the loglinear distribution
was checked using plots with the cumulative distributions of the posterior predictive
p-values across all person-item combinations (for examples of these plots, see van
der Linden, 2006). The plots tended to show quite a satisfactory fit, except for a
tendency for some of the items to have a slightly thinner lower tail than predicted by
the model. But even for the worst items, the fit was still satisfactory enough for all
practical purposes.

The assumption of constant speed was checked for the data set from the Uniform
CPA Exam above (van der Linden et al., 2007). This exam has a randomized order
of the items across the examinees. Hence, it was possible to study the effect of item
order without any confounding with item content. Plots of the residual RTs as a
function of the item position showed quite constant speed except for a warming-up
effect at the beginning of the test. The effect was practically negligible, though; the
maximum average residual among the earlier items in the test was only +1.3 seconds
relative to an average RTs for the whole test close to one minute.

The same data set was used to check the three different assumptions of conditional
independence using formal statistical tests derived for this purpose by van der Linden
and Glas (in press). Due to the power of these tests and the large number of test tak-
ers, several statistically significant violations of the assumptions were obtained but
their sizes were all negligible again and no systematic pattern could be detected. For
instance, the average effect of the violations of conditional independence between
responses and RTs was estimated to amount to a shift of only .47 seconds for the RT
distribution on the items. Similarly, the average residual correlation between the RTs
on the pairs of items was .06.

Of course, other types of tests may induce RTs that are more difficult to model.
One obvious example is a reading comprehension test with items grouped in sets
around common passages. This structure may lead to different strategies in the pop-
ulation of test takers, which the current RT model cannot accommodate (e.g., reading
the entire passage carefully and then answering all items vs. going back and forth be-
tween the passage and each of the items). On the other hand, although all items in the
studies above were dichotomous, we believe the case of polytomous items will only
require the substitution of an appropriate response model into the hierarchical frame-
work in (25)–(29). We do not see why the change of response format should have
any other effects on the RTs distribution other than on their location and variance.
For both effects, the model in (27) does have parameters. But, of course, empirical
research will have to prove this claim.

The extension of regular response modeling with models for RTs may help us
solve several existing practical testing problems. For instance, so far, the problem of
assessing the degree of speededness of a new test form has been difficult. But the
presence of RT models with an explicit parameter for the speed of the test takers
solves it. For example, it is now possible to fit a RT model and check the resid-
ual RTs for any changes in speed during the test (van der Linden et al., 2007). A
more effective approach is to entirely prevent the problem of speededness by as-
sembling test forms to satisfy a target level of speed using the time parameters for
the items. For adaptive tests, this has been demonstrated to be possible by con-
straining item selection in real time (van der Linden, 2005, sect. 9.5; 2009). RTs
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are also a valuable source of collateral information on IRT parameters. This infor-
mation was demonstrated to substantially improve small-sample item calibration in
van der Linden, Klein Entink, and Fox (2008). The same type of information im-
proves item selection in adaptive testing (van der Linden, 2008a). Another useful
application of RTs is to detect aberrant behavior of test takers, for example, due to
preknowledge of some of the items or attempts to memorize items during the tests
(van der Linden & Guo, 2008). A bivariate version of the lognormal RT model for
the detection of collusion between test takers has been proposed in van der Linden
(in press).

These applications of RTs are only the first that have been addressed. Many others
are on the horizon, for instance, improvement of item analysis or adjustment for
differences in speededness between test forms in test equating. In fact, we should
rethink all of educational measurement because nearly every aspect of it has a time
dimension.

Concluding Remarks

The two different traditions of RT and response modeling reviewed in this article
were the tradition of distinct models for the RTs and responses and that of the in-
corporation of RT parameters into response models (or the reverse). The models in
the first tradition do not suggest any relationship between responses and RTs. The
second tradition typically conceives of the relationship as a speed-accuracy tradeoff
and tries to build this into one of the models.

The third type of modeling in this article maintains the idea of distinct models but
adopts relationships between their parameters at a second level of modeling. Our mo-
tivation for this hierarchical approach was the realization that speed-accuracy trade-
offs are within-person phenomena that need no representation in response and RT
models when the test takers can be assumed to operate at (approximately) constant
speed during the test. On the other hand, to account for the correlations between ob-
served responses and RTs among test takers and/or items, the second-level structure
with the distributions of their parameters is required.

A fourth type of modeling, on which we have touched only occasionally in this ar-
ticle, exists in mathematical psychology. Its models are for observations in reaction-
time experiments with groups of subjects, considered as exchangeable, replicating a
standardized task under different conditions. For these models, which have neither
item nor person parameters, see Luce (1986). A recent example in the psychomet-
ric literature is Rouder, Sun, Speckman, Lu, & Zhou, 2003). For educational testing
these parameters are key because they enable us to adjust RTs for item effects when
measuring the speed at which test takers operate or for person effects when the inter-
est is in the time required by the cognitive labor the items involve.
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