

36-463/663: Hierarchical Linear Models

Fall 2016

HW08 – Due Thu 03 Nov 2016

Announcements

- Homework due as a pdf on Blackboard as usual.
- Reading:
 - Please make sure you are familiar with the material in G&H, Chapters 12 & 13.
 - Chapters 2 and 3 of Lynch provide a gentle review/introduction to mathematical statistics, maximum likelihood and Bayesian inference. has a quick, gentle introduction to Bayesian inference.
 - G&H, Ch 18 gives a more brisk introduction, oriented toward hierarchical and multilevel modeling.

Exercises

1. *MLE for Poisson data.* In this problem, I want you to derive the maximum likelihood estimator (MLE) and its standard error, using ideas like those presented in class. Suppose the data x_1, x_2, \dots, x_n is iid Poisson with parameter λ ; then

$$L(\lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum_{i=1}^n x_i}}{x_1! x_2! \cdots x_n!} = \frac{e^{-n\lambda} \lambda^{n\bar{x}}}{x_1! x_2! \cdots x_n!} \quad (*)$$

- (a) Maximize the log-likelihood to find the MLE $\hat{\lambda}$. *Hints: Take the logarithm of $L(\lambda)$ in (*), simplify, differentiate, set equal to zero, solve for λ .*
 - (b) Now find $SE(\hat{\lambda})$, as one over the square root of the Fisher information $I(\lambda)$ (we used observed information in class; if you prefer to use expected information, that is fine, just say that that is what you are doing in your solutions).
2. Find and plot the posterior distribution for a binomial likelihood with $x = 5$ successes out of $n = 10$ trials, using at least three different beta prior distributions. Make appropriate graphs of the posterior distributions (densities) you find. Does the prior make a large difference in the outcome? When? *Hints:*
 - The *likelihood* is going to be $L(p) = \text{Binom}(x|n, p) \propto p^x (1-p)^{n-x}$, with n and x as specified in the problem. The *prior distribution* for p is going to be $f(p) = \text{Beta}(p|\alpha, \beta) \propto p^{\alpha-1} (1-p)^{\beta-1}$. The *posterior distribution* for p will also be $\text{Beta}(p|\alpha^*, \beta^*)$. Figure out what the new parameters α^* and β^* are, as functions of α, β, n and k .
 - To answer the question, first try some values for α and β that move the mean of the (prior) Beta distribution away from $k/n = 5/10 = 1/2$. Then try to keep the mean of the prior distribution constant but increase $\alpha + \beta$ (this will reduce the (prior) variance).
 - For graphing, note that there are a couple examples of graphing beta densities using the `dbeta()` function, in the R handout to go along with lectures in class.
3. *Bayes for Poisson data.* Recall from problem #1 that the pmf for the Poisson distribution is

$$f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

for $x = 0, 1, 2, \dots$

(a) Show that the Gamma distribution

$$f(\lambda|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda}$$

is the conjugate prior distribution for the Poisson distribution above, and give the parameters of the posterior distribution, in terms of α , β , and x .

(b) Now suppose we have n independent counts x_1, x_2, \dots, x_n from a Poisson distribution with parameter λ .
 (i) Write the likelihood for this data; (ii) show that the Gamma distribution is still the conjugate prior distribution; and (iii) give the parameters of the posterior distribution, in terms of α , β , the x_i 's and n . *Hint:* You worked with the likelihood function for problem #1 above.

(c) There is a certain intersection in town that has many accidents, even though the city installed a traffic light. Some students watched activity at that intersection during the noon hour on each of 16 successive days. They found that the number of cars that ran a red light at the intersection on each day was:

3, 7, 1, 7, 6, 1, 5, 4, 6, 2, 11, 3, 1, 6, 4, 4

Note that $\lambda = E[X]$, the expected number of cars to run a red light during each noon hour at that intersection. Find a point estimate and approximate 95% CI for λ , four different ways:

- i. By calculating the sample average and sd from the data above, and applying the Central Limit Theorem to make a confidence interval for the mean.
- ii. By calculating the MLE and SE for the MLE, as derived in problem #1 above.
- iii. By fitting the model `glm(x ~ 1, family=poisson)` and making an appropriate transformation for a confidence interval for the intercept.
- iv. Using a Gamma prior on λ with parameters $\alpha = 1$ and $\beta = 1$, find the posterior distribution and compute a suitable point estimate and 95% credible interval from the posterior.

(d) Comment on similarities and differences between the four methods above.