36-463 / 36-663: Multilevel & Hierarchical Models
HWO04 Solution

September 30, 2016

Exercise 1a

Part a-d

The following from left to right is for a-d part plots. to do it by hand please refer to page 80 in the textbook
for instructions.
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Exercise 1b)

asian <- rodents$race==5 | rodents$race==6 | rodents$race==7
black <- rodents$race==
hisp <- rodents$race==3 | rodents$race==

object <- glm(rodent2 ~ asian + black + hisp, family = binomial(link

data = rodents)

"logit") s

summary (object)

Call:
glm(formula = rodent2 ~ asian + black + hisp, family
data = rodents)

binomial(link = "logit"),

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9922 -0.9293 -0.4690 -0.4690 2.1270

Coefficients:

Estimate Std. Error z value Pr(>lz])
(Intercept) -2.1521 0.1281 -16.798 <2e-16 ***
asianTRUE 0.5518 0.2665 2.070 0.0384 *
blackTRUE 1.5361 0.1687 9.108 <2e-16 ***
hispTRUE 1.6995 0.1664 10.212 <2e-16 ***

Signif. codes: 0 ***x 0.001 *x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1672.2 on 1521 degrees of freedom
Residual deviance: 1526.3 on 1518 degrees of freedom
(225 observations deleted due to missingness)
AIC: 1534.3

Number of Fisher Scoring iterations: 4

From the regression output above you can see that the white race is used as a reference level. Now if we
divide the coefficients for asian, black and hisp by 4 we get 0.138,0.384,0.425. For example, we can say that
asian people on average have a 13.8 % more in probability of having rodents compare to white people. Now,
for the intercept, we can say that white people on average have a 10 % probability of getting rodents.

Exercise 1b part b)

object <- glm(rodent2 ~ asian + black + hisp + inthole2 +intcrack2 + inthole2:intcrack2,
family = binomial(link = "logit"),data = rodents)
summary (object)
Call:
glm(formula = rodent2 ~ asian + black + hisp + inthole2 + intcrack2 +
inthole2:intcrack2, family = binomial(link = "logit"), data = rodents)



Deviance Residuals:
Min 1Q Median 3Q Max
-1.8929 -0.7809 -0.4119 -0.4119 2.2401

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -2.4242 0.1420 -17.072 < 2e-16 **x*
asianTRUE 0.6269 0.2800 2.239 0.025167 *
blackTRUE 1.3929 0.1804 7.719 1.17e-14 *x*x
hispTRUE 1.6065 0.1782 9.015 < 2e-16 *x*x
inthole2 1.4109 0.3847  3.667 0.000245 *x*x
intcrack?2 1.2956 0.2074  6.245 4.23e-10 *xx
inthole2:intcrack2 -0.2795 0.5154 -0.542 0.587666

Signif. codes: O *%x 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1604.3 on 1456 degrees of freedom
Residual deviance: 1353.4 on 1450 degrees of freedom
(290 observations deleted due to missingness)
AIC: 1367.4

Number of Fisher Scoring iterations: 4

There are many models you can try for this question, here is one example. Notice that by including the
inthole2 and intcrack?2 variables and their interaction the AIC values went down from 1534.3 to 1367.4. In
this particular model, the race indicator variables significance did not change. It is also interesting to see
that in this model inthole2 and intcrack2 are independent.

Exercise 2a)

object <- glm(round(fupacts) ~ factor(women_alone) + factor(couples),

family = poisson,data= risky[risky$sex == "woman",])

summary (object)

Call:

glm(formula = round(fupacts) ~ factor(women_alone) + factor(couples),
family = poisson, data = risky[risky$sex == "woman", ])

Deviance Residuals:
Min 1Q Median 3Q Max
-6.6380 -4.8878 -3.5695 0.5786 27.4059

Coefficients:

Estimate Std. Error z value Pr(>lz])
(Intercept) 3.09248 0.02684 115.213 < 2e-16 *x*
factor(women_alone)1l -0.61215 0.04321 -14.167 < 2e-16 **x*



factor(couples)1 -0.22360 0.03770 -5.931 3.01e-09 **x*
Signif. codes: 0 *** 0.001 *x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 7354.4 on 216 degrees of freedom
Residual deviance: 7144.3 on 214 degrees of freedom
AIC: 7796.3
Number of Fisher Scoring iterations: 6

yhat <- predict(object,type = "response")

z <~ (risky$fupacts - yhat)/sqrt(yhat)

n <- nrow(riskyl[risky$sex == "woman",])

k <- 3

cat("overdispersion ratio is ", sum(z"2)/(n-k),"\n")

overdispersion ratio is 86.1367

cat("p-value of overdispersion test is ", 1- pchisq(sum(z~2), n-k),"\n")

p-value of overdispersion test is O

library(lmtest)
waldtest(object,test = "Chisq")
Wald test

Model 1: round(fupacts) ~ factor(women_alone) + factor(couples)
Model 2: round(fupacts) ~ 1
Res.Df Df Chisq Pr(>Chisq)
1 214
2 216 -2 200.83 < 2.2e-16 **x*

Signif. codes: O *xx 0.001 **x 0.01 * 0.05 . 0.1 1

So there is significant dispersion in the model which is reflected by the chisq test above. this model is
better than the null model with only the intercept.

part b

> object <- glm(round(fupacts) ~ factor(women_alone) + factor(couples)+ factor(bs_hiv),
offset = log(bupacts),family = poisson,data= risky[risky$sex == "woman",],

subset = bupacts >0)

> summary (object)

Call:

glm(formula = round(fupacts) ~ factor(women_alone) + factor(couples) +
factor(bs_hiv), family = poisson, data = risky[risky$sex ==
"woman", ], subset = bupacts > 0, offset = log(bupacts))

Deviance Residuals:
Min 1Q Median 3Q Max



-11.161 -3.328 -1.385 1.955 19.503

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.04182 0.02730 -1.532 0.126
factor(women_alone)1 -0.61974 0.04333 -14.303 < 2e-16 *xx
factor(couples)1 -0.32625 0.03827 -8.525 < 2e-16 **x*
factor(bs_hiv)positive -0.34982 0.04841 -7.227 4.95e-13 **x*

Signif. codes: O ***x 0.001 *x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5004.6 on 212 degrees of freedom
Residual deviance: 4724.9 on 209 degrees of freedom
AIC: 5372.4

Number of Fisher Scoring iterations: 6

yhat <- predict(object,type = "response")

z <~ (risky[risky$sex == "woman" & risky$bupacts >0,]$fupacts - yhat)/sqrt(yhat)
cat("overdispersion ratio is ", sum(z"2)/(n-k),"\n")

overdispersion ratio is 32.9315

k <-4
cat("p-value of overdispersion test is ", 1- pchisq(sum(z~2), n-k),"\n")
p-value of overdispersion test is O

there is still evidence of overdispersion. The model fits better including the pre-treatment variables.

part c)

> object <- glm(round(fupacts) ~ factor(women_alone) + factor(couples)+
factor(bs_hiv), offset = log(bupacts),family = quasipoisson,

data= riskyl[risky$sex == "woman",],subset = bupacts >0)

> summary (object)

Call:

glm(formula = round(fupacts) ~ factor(women_alone) + factor(couples) +
factor(bs_hiv), family = quasipoisson, data = risky[risky$sex ==
"woman", ], subset = bupacts > 0, offset = log(bupacts))

Deviance Residuals:
Min 1Q Median 3Q Max
-11.161 -3.328 -1.385 1.955 19.503

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.04182 0.15865 -0.264 0.7923
factor(women_alone)1 -0.61974 0.25177 -2.462 0.0146 *
factor(couples)1 -0.32625 0.22236 -1.467 0.1438



factor(bs_hiv)positive -0.34982 0.28126 -1.244  0.2150

Signif. codes: 0 *** 0.001 *x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 33.76132)

Null deviance: 5004.6 on 212 degrees of freedom
Residual deviance: 4724.9 on 209 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

The model seems to suggest that the group in which just the woman participated is effective compared
to control.

part d

I ran my model with only women subjects included. Including men and women in the model is not consistent
with the second treatment assignment that only woman participant are allowed.

exercise 2b

Consider the “nes” data set and fit logistic regression and probit regression using the following variables.

> mi<-glm(vote~income+south+cd,family=binomial (1ink="logit"))
> summary (m1)

Call:
glm(formula = vote ~ income + south + cd, family = binomial(link = "logit"))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.9521 -1.3223 0.6631 0.8105 1.1656

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1795551 0.0383996 4.676 2.93e-06 *x**

income 0.3055781 0.0114665 26.650 < 2e-16 **x
south -0.4580166 0.0287844 -15.912 < 2e-16 **x*
cd 0.0008552 0.0014971 0.571 0.568

Signif. codes: 0 *** 0.001 *x 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 36122 on 30316 degrees of freedom

Residual deviance: 35003 on 30313 degrees of freedom

AIC: 35011

Number of Fisher Scoring iterations: 4



> m2<-glm(vote~income+south+cd,family=binomial (1ink="probit"))
> summary (m2)

Call:
glm(formula = vote ~ income + south + cd, family = binomial(link = "probit"))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.9667 -1.3235 0.6617 0.8137 1.1594

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1189543 0.0232770 5.110 3.22e-07 **x*

income 0.1835891 0.0068519 26.794 < 2e-16 *x*x
south -0.2764158 0.0174754 -15.817 < 2e-16 *x*x
cd 0.0005363 0.0008855 0.606 0.545

Signif. codes: 0 *** 0.001 *x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 36122 on 30316 degrees of freedom
Residual deviance: 35002 on 30313 degrees of freedom
AIC: 35010

Number of Fisher Scoring iterations: 4

mi$coefficient/1.6

(Intercept) income south cd
0.1122219125 0.1909862822 -0.2862603662 0.0005344688
> m2$coefficient

(Intercept) income south cd
0.1189543271 0.1835890776 -0.2764158031 0.0005362871

It is seen that the coefficients of logistic regression divided by 1.6 is almost the same as the coefficients of
probit regression.

exercise 2c¢

The following code is used to preprocess the data.

votel1986<-read.table("1986.txt")
names (votel1986) [1]="district"
names (votel1986) [2]="1location"
names (vote1986) [3]="incumbency86"
names (vote1986) [4]="dem86"

names (vote1986) [6]="rep86"
vote1988<-read.table("1988.txt")
names (vote1988) [1]="district"
names (vote1988) [2]="1location"
names (vote1988) [3]="incumbency88"
names (vote1988) [4]="dem88"



names (vote1988) [6]="rep88"

data<-merge(votel1986, votel988,by=c("district","location"))

new.data=subset (data, incumbency88!=-9&incumbency86!=-9&dem88!=-9&dem86!=-9)
attach(new.data)

Now we fit the model and summarize the linear model and t-model:

> m1<-1m(dem88~dem86+rep86+as.factor (incumbency88))
> summary(ml)

Call:
Im(formula = dem88 ~ dem86 + rep86 + as.factor (incumbency88))

Residuals:
Min 1Q Median 3Q Max
-84542 -10982 202 12455 67635

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.924e+04 4.733e+03 4.065 5.78e-05 ***
dem86 8.014e-01 .119e-02 19.455 < 2e-16 **x*
rep86 4.854e-02 .888e-02  1.249 0.212550

.570e+03  3.401 0.000738 **x*
.7T76e+03  8.989 < 2e-16 *xx

as.factor(incumbency88)0 1.554e+04
as.factor(incumbency88)1 3.394e+04

Signif. codes: O *xx 0.001 **x 0.01 * 0.05 . 0.1 1

W WA

Residual standard error: 20760 on 407 degrees of freedom
Multiple R-squared: 0.7718,Adjusted R-squared: 0.7695
F-statistic: 344.1 on 4 and 407 DF, p-value: < 2.2e-16

> library(hett)

> m2<-tlm(dem88~dem86+rep86+as.factor (incumbency88))
> summary (m2)

Location model :

Call:
tlm(lform = dem88 ~ dem86 + rep86 + as.factor(incumbency88))

Residuals:

Min 1Q Median 3Q Max
-87422.2 -11232.8 -249.4 12071.1 68164.8
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.877e+04 4.050e+03 4.636 4.79e-06 **x*
dem86 8.002e-01 .525e-02 22.701 < 2e-16 **x
rep86 7.041e-02 .327e-02 2.116 0.0349 *

.910e+03  4.366 1.60e-05 **x
.231e+03 10.183 < 2e-16 **x

as.factor(incumbency88)0 1.707e+04
as.factor(incumbency88)1 3.290e+04

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1

w w ww



(Scale parameter(s) as estimated below)

Scale Model

Call:
tlm(lform = dem88 ~ dem86 + rep86 + as.factor(incumbency88))

Residuals:
Min 1Q Median 3Q Max
-2.0000 -1.6622 -0.5862 1.3134 5.3897

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 19.16455 0.09853 194.5 <2e-16 **x

Signif. codes: O *xx 0.001 **x 0.01 * 0.05 . 0.1 1

(Scale parameter taken to be 2 )

Est. degrees of freedom parameter: 3
Standard error for d.o.f: NA

No. of iterations of model : 6 in 0.007
Heteroscedastic t Likelihood : -4662.917

The residual plot for the linear regression is as follows:

Im:Residuals vs. Fitted Values

50000
|

Residuals
A)
3

-50000
|

T T T T
50000 100000 150000 200000

Fitted Value

The residual plot for the linear regression is as follows:
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t-model:Residuals vs. Fitted Values
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From the result we see that the coefficients for t-model are all significant, but it is not true for the linear
model. The residual plots also show insignificant difference between two methods.

11



