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1 Why Use Clustering?

After stratification the most natural extension to simple random sampling involves the use of clus-
ters of the population of interest. In stratified sampling, we divide the population into distinct
subpopulations calledstrata, and within each stratum we select a separate sample. In cluster sam-
pling, we divide the population up into clusters, and we select a sample of clusters and include all
of the elements from these clusters in the sample. Figure 1, reproduced from Lohr (1999), indicates
some similarities and differences between these approaches.

There are two primary reasons for clustering:

1. A reliable list of elements of the population may be unavailable and it may be unreasonably
expensive to try to compile such a list.We can, however, make a list of clusters and thus it is
sensible to use them as the sampling units. For example:

• This is often the case when we sample human populations and the clusters are house-
holds. This is because it is relatively easy to prepare and maintain a list of household
locations, whereas it is virtually impossible to maintain alist of individuals in identifi-
able locations.

• You could also imagine doing this on-campus. C-Book is a flawed frame for CMU
undergraduates, but the Hub has an exhaustive list of classes and their locations, so you
could take an SRS of classes from the Hub’s list, rather than an SRS of students: the
clusters are the classes.

2. Even if a reliable list of population elements is available,it may be difficult, expensive or
disruptive to take an SRS of individuals.On the other hand, and SRS of clusters may be
easier. For example:

• The travel costs associated in going from one housing unit toanother for a random
sample of individuals may be substantial. Further, when thecluster consists of a house-
hold, one individual (e.g. “head of household”) can provideinformation on all the other
members.

• In the National Assessment of Educational Progress, the survey form is an achievement
test in math, science, or some other subject. While it would be possible to pull out
individual students from a class and send them to a special room for testing, it is much
easier and less disruptive to sample classrooms (so the classrooms are the clusters) and
give the test to all eligible students in the class.

A key reference is Lohr’s (1999) textbook [recommended textfor the class], Chapter 5.
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Figure 1: Similarities and Differences Between Cluster Sampling and Stratified Sampling. From
Lohr (1999).
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2 Some Basic Elements of Cluster Sampling

2.1 Clustering vs. Stratification

You might remember that stratification usually increases the precision of our sample (reduces stan-
dard errors), relative to an SRS.Clustering has the opposite effect: it tends to decrease the precision
of the sample (increase the standard errors). This is because individuals in the same cluster tend to
be more alike than different, and this causes their responses to be positively correlated. One does
not have to choose either clustering or stratification, and in large scale surveys the two methods
are often combined, to achieve the advantages in cost from clustering while preserving some of the
precision that stratification confers.

It is simpler to introduce the ideas when all the clusters have the same size (all families have
exactly 4 members, all classes have exactly 30 students, etc.). The same ideas also work in the
more realistic situation of clusters of differing sizes, and we will look briefly at that situation as
well.

2.2 Example 1: Using Family Clusters to Estimate the Proportion Eligible
for Medicare

Suppose we have a population of size 2N composed ofN families of size 2, a husband and wife.
We say that the families are clusters of sizeM = 2. Further suppose that the husband and wife
in any given pair are exactly the same age. We are interested in the proportion of the population
eligible for Medicare corresponding to those over the age of65, and we take a sample ofn families.
Since both members of each family have the same age we in effect have redundant information and
instead of ending up with an overall sample of size 2n individuals, our effective sample size is only
n.

Now suppose that husbands and wives don’t have identical ages, but on average older husbands
have older wives and younger husbands have younger wives. This positive association or correla-
tion between the age of the husband and the age of the wife in a pair again reduces the “effective
sample size” associated with our cluster sample ofn families. We get an estimate that is more
accurate than a simple random sample ofn individuals from the population, but still less than a
simple random sample of size 2n.

This example illustrates the basic impact of clustering that we will tend to observe in the sam-
pling of human populations. In general we consider a population of NM elements subdivided into
N clusters of sizeM. We take a sample ofn of these clusters and incorporate into our sample
information on allM elements in each of the selected clusters. Thus we record information on
nM units. If the information from individuals within a clusteris positively related, then there is
less variation among individuals within a cluster than for the same number of individuals drawn
from different clusters. Thus we expect that our cluster sample will be less accurate than a simple
random sample of the same size,nM.
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After introducing some terminology and notation we will turn to the actual formulas for the
variance of an estimate for a proportion or for a mean from a cluster sample, which involve mea-
sures of variation within and between clusters.

3 Terminology and Notation

In cluster sampling the notation is a little bit messier thanin SRS or even stratified sampling,
because of the need to keep track of which observations come from which clusters, and the need
to keep track of posive correlations between elements from the same cluster.

• In a clustered sample, the clusters are sometimes calledprimary sampling unitsor psu’s.
The individuals within a cluster are calledsecondary sampling unitsor ssu’s.

• In one-stage cluster sampling, we first take an SRS of psu’s (clusters). Thenall of the ssu’s
(individuals) within each cluster are included in the sample. This is the situation we will
focus on in these notes.

• In two-stage cluster sampling, we first take an SRS of psu’s. Then within each psu, we take
an SRS of ssu’s.

For example in a survey of a school district we might take an SRS of schools (psu’s, or clus-
ters) and then take another SRS of students (ssu’s, or individuals) because it is too expensive
to go to every student in every sampled school.

I will try to stick with “clusters” and “individuals” or “clusters” and “units”, but keep in mind that
psu= cluster, and ssu= an individual or unit within a cluster.

In SRS, we talked of a population ofN units. NowN will refer to the clusters or psu’s. Within
each cluster there are ssu’s. The basic data we observe on each observation is

yi j = measure forj th element ofi th cluster

= measure forj th ssu in thei th psu

So,yi j might be 0 or 1 depending on which candidate thej th member of householdi supports, or
yi j might be the GPA of thej th member of classroomi, etc.

• Some population quantities for psu’s are:

N = number of psu’s (clusters) in the population

Mi = number of ssu’s (individuals) in clusteri

K =

N
∑

i=1

Mi = total number of ssu’s in the population
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• Some population quantities for ssu’s are:

ypop =
1
K

N
∑

i=1

Mi
∑

j=1

yi j = t/K = the population mean

yi,pop =
1
Mi

Mi
∑

j=1

yi j = population mean in thei th psu

S2
=

1
K − 1

N
∑

i=1

Mi
∑

j=1

(y− ypop)
2
= population variance of ssu’s

S2
i =

1
Mi − 1

Mi
∑

j=1

(y− yi,pop)
2
= population variance of ssu’s within a single psu

• Some sample quantities of interest are:

S = set ofi’s (psu’s; clusters) sampled

Si = set of j’s (ssu’s; individuals) sampled ini th psu = set of all ssu’s in the sample

n = number of psu’s in sample (size ofS)

mi = number of ssu’s in the sample from thei th psu (size ofSi)

yi =
1
mi

∑

j∈Si

yi j = sample mean for thei th ssu

4 Basic Ideas for Estimating Means

From theN clusters in the population we take an SRS without replacement of n of them. LetS be
the set of clustersi sampled, so thatS hasn elements.

• The size of each cluster isMi. For simplicity we assumeequal cluster sizes: Mi ≡ M ∀ i.

• We also will assume that every individual in the cluster is inour sample; this isone-stage
cluster sampling.

For example, we could consider all two-person households (M = 2 for all clusters) in a survey to
estimate mean income.yi j is the income of thej th person in thei th household.

For each clusteri in S, we can calculate the cluster mean

yi =
1
M

M
∑

j=1

yi j
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In our example,yi =
1
2(yi1 + yi2), the average of the two person’s incomes in thei th household.

Since we have an SRS of clusters, we can apply our formulas forSRS’s to estimate population
quantities, but now we think of an SRS ofclusters, where the measurement on eachclusteris yi:

ycl =
1
n

∑

i∈S
yi

The standard error (SE) needed for constructing confidence intervals is thesquare root of

Var (ycl) = (1− f )S2
cl,pop/n

= (1− f )
1
n















1
N − 1

N
∑

i=1

(yi − ypop)
2















≈ (1− f )
1
n















1
n− 1

∑

i∈S
(yi − ycl)

2















=

(

1− n
N

) 1
n















1
n− 1

∑

i∈S
(yi − ycl)

2















=

(

1− n
N

) 1
n

s2
yi

Note that the cluster sample size isn but the individual sample size isM · n = 2n. We might
compare our SE here with the SE we would calculate if this werean SRS without replacementof
individuals. So let

ysrs =
1

Mn

∑

i, j

yi j =
1

Mn

∑

j∈S

M
∑

i=1

yi j

(Note that

ysrs =
1
n

∑

j∈S

1
M

M
∑

i=1

yi j

=
1
n

∑

i∈S
yi

= ycl

so that cluster sampling with equal cluster sizes isself-weighting: the complex estimatorycl equals
the simpler estimatorysrs.)

The variance under SRS would be

Var (ysrs) = (1− f )S2
pop/(Mn)
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= (1− f )
1

Mn

















1
MN − 1

N
∑

i=1

M
∑

j=1

(yi j − ypop)
2

















≈ (1− f )
1

Mn

















1
Mn− 1

∑

i∈S

M
∑

j=1

(yi j − ysrs)
2

















=

(

1− Mn
MN

) 1
Mn

s2
yi j

4.1 Design Effect

As with stratified sampling we can calculate adesign effect

DEFF =
Var (ycl)
Var (ysrs)

=

(

1− n
N

)

1
n

[

1
n−1

∑

i∈S(yi − ycl)
2
]

(

1− Mn
MN

)

1
Mn

[

1
Mn−1

∑

i∈S
∑M

j=1(yi j − ysrs)2
] =

M 1
n−1

∑

i∈S(yi − ycl)
2

1
Mn−1

∑

i∈S
∑M

j=1(yi j − ysrs)2
=

Ms2
yi

s2
yi j

to see what the effect on precision of clustering is. In stratified sampling, wealso calculated a
design effectDEFF (it has a different formula).

• In stratified sampling we usually getDEFF < 1 if we design the strata carefully.

• In clustered sampling, we usually getDEFF > 1.

We will see more about the design effect below.

4.2 Example 2: Estimating Average GPA (Lohr, 1999)

A student wants to estimate the average GPA in his dormitory.There areN = 100 suites that hold
M = 4 students each. There are three random sampling schemes he could use:

• SRS without replacement:From a list (frame) of all 400 students in the dorm, take an SRS
without replacement of, say, 20 students.

• Stratified sample:From each of the 100 suites he could take an SRS without replacement of,
say, 2 students (for a total sample size of 2× 100= 200). Here,the suites are strata.

• Clustered sample:He could take an SRS of, say,n = 5 suites from the list of suites, and then
take all four students in each suite. Again the sample size isMn = 4 × 5 = 20. Here,the
suites are clusters.

In this case, the least effort is probably the clustered sample, so that is what the student does. The
results are contained in Table 1 (page 9).
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Person Suite (Cluster) (i)
Number (j) 1 2 3 4 5

1 3.08 2.36 2.00 3.00 2.68
2 2.60 3.04 2.56 2.88 1.92
3 3.44 3.28 2.52 3.44 3.28
4 3.04 2.68 1.88 3.64 3.20
yi 3.04 2.84 2.24 3.24 2.77

Table 1: GPA data from a clustered random sample of dorm suites.

For the clustered sample we have

ycl =
1
5

5
∑

i=1

yi =
1
5

(3.04+ 2.84+ 2.24+ 3.24+ 2.77)= 2.826

and the sample variance of theyi ’s is

s2
yi
=

1
5− 1

[

(3.04− 2.826)2 + · · · + (2.77− 2.826)2
]

= 0.14098

Therefore

Var (ycl) =
(

1− n
N

) 1
n

s2
yi
=

(

1− 5
100

)

1
5

(0.14098)= 0.0268

SoS E=
√

0.0268= 0.164, and a 95% CI for the mean GPA in the dorm would be

(2.826− (1.96) · (0.164), 2.826+ (1.96) · (0.164))

which runs from about 2.51 to about 3.15.
If the data had been collected as an SRS of sizen = 20 we would have gotten

ysrs = 2.862

(same answer, since the cluster sample was self-weighted!), with sample variance1 s2
yi j
= 0.2648,

so that

Var (ysrs) =
(

1− Mn
MN

) 1
Mn

s2
yi j
= (1− 20/400)

1
20

(0.2648)= 0.01258

We can see that the design effect in this case is

DEFF =
Var (ycl)
Var (ysrs)

=

Ms2
yi

s2
yi j

=
(4)(0.14098)

(0.2648)
= 2.13

1Lohr (1999, p. 142) points out that the simple sample variance 0.2648 is an underestimate because the data was
in fact collected as a clustered sample. She proposes a less biased estimator based on ANOVA sums of squares, but
we will use the simpler estimate for our purposes.
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So we would need a little over twice2 as many observations in a clustered sample, in this case, to
get the same precision as an SRS.

It turns out that

DEFF =
Var (ycl)
Var (ysrs)

≈ 1+ (M − 1)ρ

whereρ (“rho”) is the intracluster correlation (ICC). The ICC is the correlation between all pairs of
observations within each cluster (remember that observations within a cluster tend to be positively
correlated).

We can use this formula to see how correlated the observations are in this example, by solving
for ρ:

ρ ≈ (DEFF − 1)/(M − 1) = (2.13− 1)/3 = 0.38

That is to say, there is a correlation of abotu 0.38 between any two people’s GPA in the same dorm
suite, in this survey!
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