36-303: Sampling, Surveys and Society

Ethics in Survey Work; Statistics in Survey Work Brian Junker 132E Baker Hall brian@stat.cmu.edu

Handouts In Class & Online

- In Class:
 - Appendix B of Lohr (review of probability)
 - [just a few copies; I handed most out last week]
 - Lecture Notes
- Online Later Today:
 - HW 03 [Due Tues Feb 14]
- Project Assignment I.3:
 - Due Thur Feb 16 (hopefully I won't let things fall further behind than this)
 - □ (remember, I.2 due this Thurs more below)

Outline

A few words about Team Projects I.2 due Thu Feb 9 I.3 due Thu Feb 16

Ethics (Groves Ch 11, and HW02 #2) HW02 due Thu Feb 9

Statistics (Lohr handout) You'll see this in HW03

Team Project Part I.2 Due Thursday

- The projects should to be interesting enough to make an impact (what can someone do about it?)
- For *each* project you proposed:
 - Revise A, B, C: Interesting topic? General research questions? Articles about past research in the area?
 - Add D, E, F, G: Target population? Sampling Frame? Mode of Data Collection? Major Variables?
- I will email feedback on Friday or Saturday

Pointers for I.2

- <u>E. Target population</u> What are the individual units that give you information?
 - students? buses? faculty members? times of day? locations? events ("the bus is late" or "10 students walked by", etc.)
- D. Sampling Frame In most (but not all) cases there will be a real or hypothetical list of units that you could sample from. E.g.:
 - Numbers in the phone book (which one? or maybe random digit dialling? which exchanges? etc)
 - Email addresses in C-Book
 - In some cases there will be no natural sampling frame. E.g.:
 - Interview people as they pass by the fence
 - Wait for instances of late buses
 - In these cases give a very specific description of <u>what</u> <u>kinds of units</u> you will be looking for, and <u>how you</u> <u>will find them.</u>

Pointers for I.2

- F. Mode of Data Collection How will you get the data?
 - Invite people to website with online SAQ, using email, postcards, etc.
 - Approach people on the street/sidewalk/etc. and use P&P SAQ, CAPI, etc.
 - Go to a certain intersection at a certain time and observe buses, people, accidents, or other events of interest.
 - Go to a school and interview some/all students
 - Give a sense of how many intersections, times, schools, students, etc. might be needed to "represent" the population.
- <u>G. Variables to Measure</u> List (and define) two to five variables that you must measure to have a successful survey.

Ethics (Groves Ch 11)

- Survey researchers, like all scientific researchers, are held to high ethical standards
- <u>http://www.aapor.org</u> lists a Code of Ethics and acceptable behaviors for survey researchers
- Federal Department of Health and Human Services funds most human subjects research and enforces ethics through its <u>Office of Research Integrity</u>
- Researchers at Carnegie Mellon take Research on Human Subjects ethics training, at <u>http://www.citiprogram.org/</u>
 - [You must do this for HW02 (and for many class projects!).]

Some Obvious Ethical Issues

- Fabrication making up data or results and recording or reporting them
- Falsification Manipulating equipment or materials, or miscoding/changing/omitting results so that the reported research does not reflect the raw research data.
- <u>Plagiarism</u> theft, misappropriation, unauthorized use of intellectual work. *Does not include* well-marked, credited quotation.

Ethical Issues

- Fabrication, Falsification, Plagiarism are obvious issues for the Researcher
- They are also issues for Interviewer training and quality control!

Survey	Pct of Interviewers Falsifying
Current Population Survey	0.4%
National Crime Victimization Survey	0.4%
New York City Housing Survey	6.5%
(Source: Schreiner, Pennie & Newbrough, 1988, as	reported in Groves Ch 11

Standards for Dealing with Clients

- Undertake only research that can reasonably be carried out in the given time & budget
- Report fully the conditions, and limitations, of your study
- If you discover serious errors in methodology, disclose, and if possible, correct them

Roper poll for American Jewish Committee

- "Does it seem possible... that the Nazi extermination of the Jews never happened?" 22% agreed.
- Redid survey at own expense, reworded question, now only 1% agreed.

Standards for Dealing with the Public

Table 11.3. Elements of Minimal Disclosure (AAPOR Code)

- 1. Who sponsored the survey, and who conducted it
- 2. The exact wording of questions asked, including any preceding instruction or explanation that might reasonably be expected to affect the response
- 3. A definition of the population under study and a description of the sampling frame
- 4. A description of the sample selection procedure
- 5. Size of sample and, if applicable, completion rates and information on eligibility criteria and screening procedures
- 6. The precision of the findings, including, if appropriate, estimates of sampling error and a description of any weighting or estimating procedure used
- 7. Which results, if any, are based on parts of the sample rather than the entire sample
- 8. Method, location, and dates of data collection

Source: http://www.aapor.org

Standards for Dealing with Respondents

Legal Obligations

Institutional Review Board (IRB)

- Ensure that the possible <u>benefits</u> of the research are <u>balanced against risks</u> to research subjects.
- Ensure that research subjects have opportunity to provide informed consent to be studied.
- Risks are obvious in medical studies
 - New treatment/placebo for AIDS, cancer, etc.
 - Tuskegee Study: placebo for syphilis w/o informed consent
- Risks less obvious but still present in social research
 - Milgram "obedience" experiments subjects were told to "shock" fake patients who acted out the pain.
 - The psychological effects on the subjects persisted long after the experiment.

Standards for Dealing with Respondents

Ethical Obligations

- Beneficence: Protecting Respondents from Harm
- Justice: Balance between those who bear the burdens of research vs. those who benefit from the research.
- <u>Respect for persons</u>: The human right to selfdetermination (life, liberty, pursuit of happiness, other significant decisions, ...)
- Informed consent: Each respondent should be fully informed about the nature of the study, and have an unencumbered opportunity to consent—or refuse—to be studied.
- These issues may need to be revisited throughout the life of a survey or other research study

Standards for Dealing with Respondents

Table 11.4. Essential Elements of Informed Consent

- 1. A statement that the study involves research, and explanation of the purposes of the research and the expected duration of the subject's participation, a description of the procedures, and identification of any procedures that are experimental
- 2. A description of any foreseeable risks or discomfort
- 3. A description of any benefits to the subject or others that may reasonably be expected
- 4. A disclosure of appropriate alternative procedures or courses of treatment
- 5. A statement describing the extent, if any, to which confidentiality of records identifying the subject will be maintained
- 6. For research involving more than minimal risk, an explanation of whether and what kind of compensation or treatment are available if injury occurs
- 7. An explanation of whom to contact with further questions about the research, subjects' rights, and research-related injury
- 8. A statement that participation is voluntary and the subject may discontinue participation at any time without penalty or loss of benefits.

Confidentiality and Statistical Disclosure

- Most research situations, surveys included, include a commitment to maintain confidentiality of results
 - This is part of respect for persons
 - Confidentiality can also help with sensitive questions
- Threats to Confidentiality
 - Carelessness & Negligence
 - Legal Demands for Identified Data
 - Freedom of Information Act; exceptions for sensitive research
 - 2002 "Confidential Information and Statistical Efficiency Act"
 - Homeland Security, USA PATRIOT Act
 - Statistical Disclosure
 - Using matching between data bases together with statistical modeling to de-anonymize "anonymous" data bases

Statistical Disclosure: Netflix Database

- 2007: Netflix released anonymized data base of movie rentals as public challenge for better *recommendation* or *collaborative filtering* systems.
- Researchers immediately found ways to "hack" the database to reveal identities (and rental habits) of individual Netflix users
 - One method: Cross-matching with signed interviews on IMDb
 - More generally: after you eliminate approximately the top 100 most-watched movies, our viewing habits are highly individual!
- Similar with other data releases (AOL, US Census, ...)

IRB Approval in 36-303

- Historically IRB has been more focused on medical research than social research
- In recent years, liability concerns (risk/benefit, confidentiality, etc.) have spread IRB review to most social and survey style research
 - Studies conducted for research must undergo IRB review
 - Studies done for commercial clients, done in the process of consulting, or done for class credit, often do not require IRB approval
- In this class:
 - □ You must take & pass the CITI training (part of HW02).
 - If your survey involves human respondents: You must complete an IRB application for your project, which I will review (team project schedule I.3 & I.6).

Pause...

Statistics of Surveys (Lohr Handout)

- Survey Statistics is different from other kinds of Statistics
 - Sampling from a finite population is <u>different</u>
 - Design features (stratification, clustering, weights) increase information at the cost of more complex analysis
- We will get there, in occasional smallish steps
 - Today:
 - Partial Review of Probability Tools
 - Application: Sample Size Calculations
 - Application: Randomized Response
 - Future:
 - Urn models
 - What is random about finite population sampling?
 - Accounting for complex survey designs

Partial Review of Probability Tools

Discrete Random Variables

- Expected Value, Mean, Variance
- More than One Random Variable
 - Covariances, Independence, Linear Combinations, Normal Approximation (CLT)
 - Application: Sample Size Calculations
- Conditioning
 - Conditional Probability, Conditional Distribution, Conditional Expectation
 - Application: Randomized Response

Discrete Random Variable

- A <u>discrete</u> random variable X has a sample space that you can "count" (1, 2, 3, …)
 - □ Toss a die, let *X* be the side that comes "up"
 - Toss a coin until "heads" comes up, let X be the number of "Tails" until first "Heads"
 - Spin a spinner, let X be the exact angle in degrees at which the spinner comes to rest.
- A <u>continuous</u> random variable X has a sample space that includes a continuous interval (so there are uncountably many outcomes)
 - Which of the above X's is discrete, which is continuous?

Discrete Random Variable

- For us, X usually has a <u>finite sample space</u>
 - □ X can take on only the values $x_1, x_2, ..., x_K$, with probability $p_1, p_2, ..., p_K$
- Examples:
 - □ Biased coin, X=1 for "Heads", O for "Tails"
 - (this is a ______ random variable!)
 - P[X=1] = p, P[X=0] = 1-p
 - □ Flip a coin n times, let X be the number of "Heads"
 - (this is a _____ random variable!)
 - *P*[*X*=*k*] = _____, *k*=0, 1, 2, ..., *n*
 - Consider a population of 1,000 adults, and let x_k be each adult's annual income, k=1, ..., 1000. Pick one adult at random and let X be that person's income.

•
$$P[X=x_k] =$$
_____, $k=1, 2, ..., 1000$

Expected Value, Mean, Variance

- Let X be a discrete random variable taking on the values x₁, ..., x_K with probabilities p₁, ..., p_K:
 - The probabilities *must* add to 1:

$$\sum_{i=1}^{K} p_i = 1,$$

• The <u>mean</u> of X is defined to be

$$\mu_X = E[X] = \sum_{i=1}^K x_i P(X = x_i) = \sum_{i=1}^K x_i p_i$$

• The *variance* of *X* is defined to be

$$\sigma_X^2 = Var[X] = E[(X - \mu_X)^2] = \sum_{i=1}^K (x_i - E[X])^2 P(X = x_i) = \sum_{i=1}^K (x_i - \mu_X)^2 p_i.$$

• More generally, for any function g(x), the *expected value* of g(X) is

$$E[g(X)] = \sum_{x} g(x)P(X = x).$$

7 February 2012

Expected Value Example

Let X be a Bernoulli random variable, P[X=1]=.2, and suppose I pay you \$50 if X=1 and you pay me \$10 if X=0. What is the expected value of your income?

g(x) = 50 if x = 1, and g(x) = -10 if x = 0.

$$E[g(X)] = 50 \times p - 10 \times (1 - p)$$

= 50(0.2) - 10(0.8)
= 2
$$Var(g(X)) = (50 - 2)^{2}(0.2) + (-10 - 2)^{2}(0.8)$$

= 2304(0.2) + 144(0.8)
= 576
$$SD(g(X)) = \sqrt{576} = 24$$

More Than One Random Variable

x	У	xy	P[X = x, Y = y]
1	2	2	$\frac{1}{4}$
2	8	16	$\frac{1}{4}$
4	8	32	$\frac{1}{4}$
3	6	18	$\frac{1}{4}$

Note that

Г

 $E[X]E[Y] = (6)(2.5) = 15 \neq 17 = E[XY]$

thus X and Y cannot be independent.

if

$$E[X] = \frac{1}{4}(1+2+4+3) = 2.5$$

$$E[Y] = \frac{1}{4}(2+8+8+6) = 6$$

$$E[XY] = \frac{1}{4}(2+16+32+18) = 17$$

More generally X and Y are independent
if and only if

$$P[X = x, Y = y] = P[X = x]P[Y = y]$$

for all x and y.

7 February 2012

Covariance & Independence

Recall that Var(X) = E[(X-μ_X)²]
 Similarly, Cov(X,Y) = E[(X-μ_X)(Y-μ_Y)]

$$Cov(X,Y) = \frac{1}{4} \left\{ (1-2.5)(2-6) + (2-2.5)(8-6) + (3-2.5)(6-6) + (4-2.5)(8-6) \right\}$$

= 2

If X and Y are independent, Cov(X,Y) = 0 $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$ $= E[(X - \mu_X)]E[(Y - \mu_Y)] = 0 \cdot 0 = 0$

Linear Combinations

Exercise: Use the definitions so far to show

E[aX + bY + c] = aE[X] + bE[Y] + c

 <u>Exercise</u>: Use this fact to show that for any set of random variables X₁, X₂, ... X_n that all have the same mean μ,

$$E\left[\overline{X}\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \mu$$
(Definition of \overline{X}) (This is the part to show!)

Mean and Variance of Sample Average

• Let X₁, ..., X_n all have the same mean μ , and let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

We know E[X] = µ, what about Var(X)?
 □ Use the definitions to show:

 $Var(aX + bY + c) = a^{2}Var(X) + 2abCov(X,Y) + b^{2}Var(Y)$

We use this on the next page to work out $Var(\overline{X})$.

Mean and Variance of Sample Average

From

$$Var(aX + bY + c) = a^{2}Var(X) + 2abCov(X, Y) + b^{2}Var(Y)$$

we can calulate

$$Var\left[\frac{1}{n}(X_{1}+X_{2})\right] = \frac{1}{n^{2}}\left(Var(X_{1}) + 2Cov(X_{1},X_{2}) + Var(X_{2})\right)$$

and applying this to *n* terms instead of 2 terms (induction!), we get the following mess

$$Var\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\left\{\sum_{i=1}^{n}Var(X_{i}) + 2\sum_{i=1}^{n}\sum_{j=1}^{i-1}Cov(X_{i},X_{j})\right\}$$

We now assume $X_1, X_2, ..., X_n$ have the same mean μ , the same variance σ^2 , and covariance $Cov(X_i, X_j) = 0$ whenever $i \neq j$. Then the "mess" reduces to the more familiar:

$$Var(\overline{X}) = \frac{1}{n^2} \left\{ n\sigma^2 + 2 \cdot \binom{n}{2} \cdot 0 \right\} = \frac{1}{n}\sigma^2$$

7 February 2012

Central Limit Theorem

We have shown: If X₁, ..., X_n are independent, identically distributed (iid) with E[X_i]=µ and Var(X_i)=σ², then

$$E[\overline{X}] = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$

- The Central Limit Theorem then tells us $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$
- σ is the SD of X_i; σ/\sqrt{n} is the SE of \overline{X}

Application: Sample Size Calculation

- Let X_1 , ..., X_n be an iid sample of people's heights, with a common mean μ =5.75 ft and SD σ =0.5ft.
- Then $E[\overline{X}] = 5.75$, with SE $0.5/\sqrt{n}$
- CLT: Approx 95% confidence interval for μ : $\left(\overline{X} - (1.96)(0.5)/\sqrt{n}, \overline{X} + (1.96)(0.5)/\sqrt{n}\right)$
- How large n to have 95% confidence that X is within 0.1 of $\mu?$

• Roughly, need 0.1 > $1/\sqrt{n}$ or n > 100.

Foreshadowing: Survey Statistics is Different!

- In real <u>Survey Sampling</u> work, Cov(X_i,X_j) is usually not zero!
- Hence

$$E[\overline{X}] = \mu$$

but

$$Var(\overline{X}) \neq \sigma^2/n$$

The CLT is not quite true, as stated, either!

But the basic CLT calculation is often a reasonable "crude guess"…

Conditioning

• The conditional probability of event A, given event B, is

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$

It is often useful to write this as a formula for $P[A \cap B]$:

 $P[A \cap B] = P[A|B]P[B]$

• The <u>conditional distribution</u> of X given Y = y is

$$P[X = x|Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]} \quad [comma means "and"!]$$

• The *conditional expected value* of X given Y = y is the expected value with respect to the conditional distribution:

$$E[X|Y = y] = \sum_{x} xP[X = x|Y = y]$$

Conditioning

x	У	xy	P[X = x, Y = y]
1	2	2	$\frac{1}{4}$
2	8	16	$\frac{1}{4}$
4	8	32	$\frac{1}{4}$
3	6	18	$\frac{1}{4}$

$$E[X] = 2.5$$

$$Var(X) = \frac{1}{4}[(1-2.5)^{2} + (2-2.5)^{2} + (3-2.5)^{2} + (3-2.5)^{2} + (4-2.5)^{2}]$$

$$= 1.25$$

$$E[X|Y = 8] = \frac{1}{2}(2+4) = 3$$

$$Var(X|Y = 8) = \frac{1}{2}[(2-3)^{2} + (4-3)^{2}]$$

$$= 1$$

<u>*Exercise:*</u> Show that if X and Y are independent, then E[X|Y = y] = E[X], for any y.

$$P[X = 2|Y = 8] = \frac{P[X = 2, Y = 8]}{P[Y = 8]}$$
$$= \frac{1/4}{1/2} = \frac{1}{2}$$
$$P[X = 4|Y = 8] = \cdots = \frac{1}{2}$$

Application: Randomized Response

- "Flip a coin, but don't tell me whether it's heads or tails.
 - "If heads, answer truthfully: have you ever cheated in a CMU class?
 - "If tails, answer truthfully: is the last digit of your SSN odd?"
- Let p=P[Heads], π =P[Cheat], λ =P[Yes]. Then

$$\lambda = P[Yes \cap Heads] + P[Yes \cap Tails]$$

= $P[Yes|Heads]P[Heads] + P[Yes|Tails]P[Tails]$

$$= \pi \cdot p + (1/2) \cdot (1-p)$$

Therefore

$$\pi = \frac{\lambda - (1/2) \cdot (1-p)}{p}$$

Application: Randomized Response

$$\pi = \frac{\lambda - \frac{1}{2}(1-p)}{p}$$

Suppose the coin is fair $(p = \frac{1}{2})$ and in our survey we get a fraction $\hat{\lambda}$ of people answering "yes". Then

$$\hat{\pi} = 2(\hat{\lambda} - 1/4)$$

$$E[\hat{\pi}] = 2(E[\hat{\lambda}] - 1/4)$$

$$= 2(\lambda - 1/4) = \pi \quad (\underline{Exercise!})$$

So $\hat{\pi}$ is an <u>unbiased</u> estimator of π ; and

$$Var(\hat{\pi}) = Var[2(\hat{\lambda} - 1/4)]$$
$$= 4Var(\hat{\lambda})$$

so $Var(\hat{\pi})$ is *inflated*, relative to $Var(\hat{\lambda})$: $\hat{\pi}$ is statistically *inefficient*. <u>Exercise</u>: The closer p = P[Answer Cheating Question] is to 1, the closer $Var(\hat{\pi})$ is to $Var(\hat{\lambda})$.

Review

A few words about Team Projects I.2 due Thu Feb 9 I.3 due Thu Feb 16

Ethics (Groves Ch 11, and HW02 #2) HW02 due Thu Feb 9

Statistics (Lohr handout) You'll see this in HW03