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I Survey weights are not inverse probabilities of selection

I Simple theoretical example

I CBS/New York Times pre-election polls

I NYC Social Indicators Survey
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Simple theoretical example

I Survey of a population with 52% women, 48% men
I Simple random sampling, n = 100

I SRS 1: 52 women, 48 men. Weights are wi = 1 for everyone
I SRS 2: 60 women, 40 men. Weights are wi = 52

60 for women,
40
48 for men

I We know the population proportions, so the selection
probabilities are irrelevant

I Weights depend on the entire survey; the (yi ,wi ) paradigm is
inappropriate
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CBS/New York Times pre-election polls

id org y state edu age adults weight
6140 cbsnyt NA 7 3 1 2 923
6141 cbsnyt 1 39 4 2 2 558
6142 cbsnyt 0 31 2 4 1 448
6143 cbsnyt 0 7 3 1 2 923
6144 cbsnyt 1 33 2 2 1 403

I The weight is listed as just another survey variable

I But they are actually constructed after the survey
I Weights wi = g(Xi , θ):

I Xi are sex, age, education, . . .
I θ are parameters depending on the entire survey and on

Census population info

I Goal is to estimate national and statewide averages
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Social Indicators Survey

I Telephone survey every 2 years of NYC families

I Administered by Columbia Univ School of Social Work

I Questions such as, “Do you rate the schools as poor, fair,
good, or very good?”

I Weighting to match Current Population Survey: #adults and
children in family, marital status, ethnicity, age, education

I Goal is to estimate changes over time
I Bias-variance tradeoff in constructing weights:

I Weights adjust for potential confounders
I But we want weighted estimates to be stable
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Summary so far

Estimating state-by-state opinion trends

I Goal: estimating time series within each state

I One poll at a time: small-area estimation

I It works! Validated for pre-election polls

I Combining surveys: hierarchical model for parallel time series

I Straightforward hierarchical modeling + poststratification
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I Hierarchical model for the data
I Pr(yi = 1) = logit−1((Xβ)i )
I X includes demographic and geographic predictors

I Implied inference for θj = logit−1(Xβ) in each of 3264
poststratification cells j

I Poststratification
I Within each state s, average over 64 cells:∑
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CBS/New York Times polls
Social Indicators Survey
Summary so far

Estimating time trends in NYC

I Compare 1999 and 2001 Social Indicators Surveys

I Goal is to estimate Ȳ 2001 − Ȳ 1999, for various survey
responses y

I Estimate from weighted average, ȳ2001
w − ȳ1999

w

I Or, estimate using regression:
I Combine two surveys into a single data matrix
I Add an indicator that is 1 for 2001 and 0 for 1999
I Fit regression, look at coefficient for the “2001” indicator
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w − ȳ1999

w

I Or, estimate using regression:
I Combine two surveys into a single data matrix
I Add an indicator that is 1 for 2001 and 0 for 1999
I Fit regression, look at coefficient for the “2001” indicator

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

CBS/New York Times polls
Social Indicators Survey
Summary so far

Estimating time trends in NYC

I Compare 1999 and 2001 Social Indicators Surveys
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responses y

I Estimate from weighted average, ȳ2001
w − ȳ1999
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CBS/New York Times polls
Social Indicators Survey
Summary so far

Comparing estimates from weighting and regression

(a) time (b) linear
weighted change regression
averages in coefficient

Question 1999 2001 percent of time

Adult in good/excellent health 75% 78% 3.4% (2.4%) 6.6% (1.4%)
Child in good/excellent health 82% 84% 1.7% (1.5%) 1.2% (1.3%)
Neighborhood is safe/very safe 77% 81% 4.5% (2.3%) 4.1% (1.5%)

I The estimates can be very different!

I Which to believe?

I Same pattern with logistic regression
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Summary so far

I Hierarchical modeling + poststratification works well for
estimating state-level opinions from national polls

I We’re not sure what to do with the Social Indicators Survey
I Tangle of regression coefficients
I No simple structure (as in the hierarchical model for 50 states)

I Larger goal:
I Believable estimates using regression
I “Backward compatibility” to simple weighted averages
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Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Regression models and implied weights

I Fit a regression and poststratify:

I θ̂ =
∑J

j=1 Nj θ̂j

/ ∑J
j=1 Nj

I From regression, θ̂j ’s are linear combinations of the data y
I We can write θ̂ = 1

n

∑n
i=1 wiyi

I wi ’s are implied weights

I Classical regression

I Hierarchical regression
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Where to go next?

Classical models
Hierarchical models

Weights corresponding to trivial classical regressions

I Full poststratification, θ̂ =
∑J

j=1 Nj ȳj

/ ∑J
j=1 Nj

I Classical regression on indicators for all J cells
I Equivalent weights: wi ∝ Nj/nj

I No weighting, θ̂ = ȳ
I Classical regression with just a constant term
I Equivalent weights: wi = 1
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Weights corresponding to classical regressions

I Regression y = Xβ + ε followed by poststratification
I β̂ is a linear combination of data y
I Vector of equivalent weights: n

N (Npop)tX pop(X tX )−1X t

I These depend on population N’s and sample X ’s but not on
sample y ’s

I Equivalent weights sum to n
I Proof uses translation-invariance of linear regression
I θ̂ is thus a weighted average, not just a linear combination
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Classical models
Hierarchical models

Classical regression for CBS polls

I Illustration with a sequence of regressions:
I male/female
I also black/white
I also male/female × black/white
I also 4 age categories
I also 4 education categories
I also age × education
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Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Weights corresponding to hierarchical regressions

I Same algebra as in classical regression

I Augment with “prior distribution”

I Vector of equivalent weights now depends on the hierarchical
variance parameters (and thus indirectly on the data)

I Different vector of weights for different choices of y

I With noninformative prior distribution, the equivalent weights
still sum to n

I Illustration with CBS polls

I Shrinkage of weights
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Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Hierarchical models and smoothing of weights

I Exchangeable normal model on J categories
I Raw weights wi ∝ Nj/nj in cell j
I Pooled weights wi = 1
I Equivalent weights are approximately partially pooled by the

“shrinkage factor” τ 2
/(

σ2

nj
+ τ 2

)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Hierarchical models and smoothing of weights

I Exchangeable normal model on J categories
I Raw weights wi ∝ Nj/nj in cell j
I Pooled weights wi = 1
I Equivalent weights are approximately partially pooled by the

“shrinkage factor” τ 2
/(

σ2

nj
+ τ 2

)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Hierarchical models and smoothing of weights

I Exchangeable normal model on J categories
I Raw weights wi ∝ Nj/nj in cell j
I Pooled weights wi = 1
I Equivalent weights are approximately partially pooled by the

“shrinkage factor” τ 2
/(

σ2

nj
+ τ 2

)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Hierarchical models and smoothing of weights

I Exchangeable normal model on J categories
I Raw weights wi ∝ Nj/nj in cell j
I Pooled weights wi = 1
I Equivalent weights are approximately partially pooled by the

“shrinkage factor” τ 2
/(

σ2

nj
+ τ 2

)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Hierarchical models and smoothing of weights

I Exchangeable normal model on J categories
I Raw weights wi ∝ Nj/nj in cell j
I Pooled weights wi = 1
I Equivalent weights are approximately partially pooled by the

“shrinkage factor” τ 2
/(

σ2

nj
+ τ 2

)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Classical models
Hierarchical models

Hierarchical models and smoothing of weights

I Exchangeable normal model on J categories
I Raw weights wi ∝ Nj/nj in cell j
I Pooled weights wi = 1
I Equivalent weights are approximately partially pooled by the

“shrinkage factor” τ 2
/(

σ2

nj
+ τ 2

)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”

Andrew Gelman Survey weighting and hierarchical regression



Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Where do we stand?

I Practical limitations of weighting

I Practical limitations of modeling

I Putting it all together using hierarchical models and
poststratification
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Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Practical limitations of weighting

Simple estimates for population averages and ratios, but . . .

I Not clear how to apply to regression coefs, other complicated
estimands

I Standard errors are tricky
I A “quick and dirty” method? Not necessarily so quick!

I Arbitrary choices about which variables and interactions to
include

I Pooling of weighting cells and truncation of weights
I X ’s, y ’s, and “canary variables”
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Overview
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?

Practical limitations of modeling

Easy to do (even hierarchical models), but . . .

I Theoretically must condition on all poststratification cells

I Models with potentially thousands of coefficients

I Lack of trust in results
I But sometimes we do trust highly-parameterized models

I State-level estimates from national polls
I Small-area estimation + poststratification

I ??
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Where to go next?

Our research plan

I Figuring out where the 2 estimates diverge for the Social
Indicators Survey

I Goal: believable estimates for time trends
I Goal: a good set of weights for simple estimands

I Related problems in statistical modeling
I Hierarchical regressions with complex interactions
I Iterative proportional fitting, etc., using population margins

I No “conclusions”
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