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1 Key ldeas

1.1 Why stratify?

Strata are just subgroups of the target population that $mwve feature in common (gender, major,
region, income, ...) Reasons to stratify include:

e We need to make a separate inference for each stratum (e\gamtdo estimate mens and
womens incomes separately);

¢ Different sampling schemes would be used in each stratum (PAsviotd’A [telephone
survey?], vs PA voters in Irag [mail or email?]);

e Population is geographically diverse (Minnesota, lllsy@ddhio, Pennsylvania, .. .);

¢ Reduce variance of estimates (and reduce sample size) ytexgsimilarity among mem-
bers of the same stratum.

1.2 Notation and Basic Facts
We assume there aké strata. Within each stratum, we will use the following natat

Nh = population size in each stratum

n, = sample size in each stratum

f, = np/Ny = sampling fraction, each stratum
Wi = Ny/N = stratum weights, each stratum
N = 3{', N, = total population size

n= Y, n, = total sample size

We also assume throughout that within each stratum we airggtaksimple random sample (SRS)
without replacement, of sizg, from the stratum population of si2é,.

Lety be some attribute of interest.could be numerical, like a person’s income, or it could be
Bernoulli, likey = 1 if the person rides PAT buses, ané 0 otherwise.

1.2.1 Means

The population average fgris

1N 1 H My HNthh HNh H
ypOp:NZ NZthlth;WN_h i:lyhlzhzz;ﬁ hpop:hZ;Whyhpop (1)
whereyi, .o, = 1 Zity i and Wo = NN )
h = Np/IN.
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So we can see thgt,, is a weighted sum of the population averages in each straty, where
the weight3A, in (2) are proportional to the size of the stratum.
To make an estimate from stratified sample data we can mimicdisa in (1) with sample

averages:
l n H Nh H
Yst:ﬁ;M:hZ:;W h:ZWth (3)

wherey}, = n—lh > Yhi. and theW, are as in (2).
It is important to realize that the stratified sample aveliagambiased for the population aver-
age:

H
E[V = E[thvh] (by (3))
h=1
H

= ) WhE[Y]
h=1
H

= Z Whyh,pop (E[yh,srs] = yh,pop in each stratunm)
h=1

= ypop (by (1)).

1.2.2 Variances

Within each stratum, since we are doing SRS without replacgémve have
Varg) = (1~ )2 where sﬁ=ii(y-—7)2 (4)
h h N Ny — 1 - hi h

as usual. Note that for Bernoulli data, there is a simpler@sgion for the within-cluster standard
error:

_ pn(1-pn)
ﬁ/nh = ﬁ %)

To obtain an overall variance estimate jorwe have:

Var(ys)

|
<
e

—
M=

=

<
~———

H
Var(Wy,) = ) Wvar(y,)
1 h=1

S

Ny

ﬁTMI

W2(1 - fr) (6)

M=
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2 Self-weighting Samples, and Proportionate Sampling

2.1 Self-weighting samples

In general,
H
yst = Z Whyh
h=1
need not be the same as )
_ 1
Ysrs = ﬁ ; Vi

When we are lucky enough to hayg, = Y the stratification is said to be “self-weighting”.

2.2 Proportionate sampling

One case of a self-weighing stratification is called “prdjpmate sampling”. We get proportionate
sampling when we force the sampling fractifto be the same in every stratum,

fo= f, ¥h (7)
Sincef, = ny/N; itis easy to see that if every, /Ny, = f then alscn/N = f, and so
Mh/N = (Nh/Nh)(Nn/N)(N/n) = f(Nn/N)(1/f) = Ni/N

Therefore,

H H H

H Nh n
Vo= 2 WeF = > (Na/N)y = D (nn/n)¥ = Z(nh/n)n—lh > Y = %Zyi =Vos  (8)
h=1 i=1 i=1

h=1 h=1 h=1

2.3 Design Hfect

The nice part about self-weighting samples is that anybedig, no statistical training, can calcu-
latey,, and it will be the right number foy,, as well. The only dierence is that instead of

&
Var(Yss = (1 - f)ﬁ 9)
we will have

Nh

'
Var(yy) = > Wil - fi) 5 (10)
h=1
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The “art” of stratified sampling is making sure thaar(y,,) is smaller tharVar(y,,). Thedesign
gffectis defined to be

,_ Varg) _ ShiWEa- )3
S Varled 0 (1-H)E

and we have succeeded in the art of stratified sampling wihen 1. Cochran (1961) did some
experiments with stratification and showed tak 1 when

(11)

e 2—6 strata are used (more strata tend to redtady,,) further, but there are diminishing
returns a#H grows);

¢ Elements are more similar to each other within strata thamden (e.g., substantively mean-
ingful strata);

e Proportionate sampling is used.

3 Examples

3.1 Confidence Intervals for SRS and Proportionate Stratifid Samples
3.1.1 Proportion pyep
Consider the three urns we played with in class:

e Urn 1: N; = 100 balls; 10 yellow, 90 blugy; = 0.1

e Urn 2: N, = 100 balls; 20 yellow, 80 blugy, = 0.2

e Urn 3: N3 = 100 balls; 30 yellow, 70 blugy; = 0.3

e Combined urnsN = 300, 60 yellow, 240 blug = 0.2.

We want to compare = 30 SRS without replacement from the combined urns, withatiad
sample o, = 10 balls each from the three urns.

n = 30 SRS: Using formula (9) (and the adjustment in equation (5)),

R & p(1-p) 0.2(1-0.2)
Var(pse) = (1 - f)ﬁ =(1-f) o (1-30/300 -1 - 0.00497
so, if we draw 30 balls and 8 of them are yellow, thea 8/30 = 0.27 and we get a 95% CI

that is
0.27 + (1.96) V0.00497= 0.27 + 0.1381

5
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n, = 10 stratified SRS’s from each urn: Using formula (10), and noting thdt = 10/100= 0.1
for all strata (proportionate sampling) awg, = 100/300= 1/3 for all strata,

Var(pS‘)‘ZWz(l‘fﬁ ZWz(l—”ph(l b 2(1/3)2(1 0p)Piz=P

_ (1/3)2(0.9)
B 9
If 2 of the 10 balls from Urn 1 are yellow, 2 from Urn 2 are yelloand 3 from Urn 3 are

yellow, we can use the fact that we are doprgportionate samplingo obtainp = 8/30 =
0.27 (otherwise we have to use formula (3)). We get a 95% CI

[(0.1)(0.9) + (0.2)(0.8) + (0.3)(0.7)] = 0.00511

0.27 + (1.96)V0.00511= 0.27 + 0.1401

Note that in this casestratification was not as good as a plain old SR&though the dference
wasn’t enormous. The problem is that the three strata atdeatbo much like the combined urn.
It is better when the strata have much less internal vaitgltiilan the combined population would
have. For example:

Setup: Same setup but now suppose the three urns have proportigeat p, = 0.1, p, = 0.5
andps = 0.9. The combined population will now have a proportjps: 0.5 of yellow balls.
We’'ll continue to haveN, = 100,n, = 10.

SRS CI: The margin of error for a 95% Cl is going to be

(0.5)(1- 0.5)

p(l p)
(1.96) x \/(1 1 = (1.96) x \/(1 30/300)T 0.1726

Stratified CI:  The margin of error for a 95% CI is going to be

8 » Pr(1 - pn)
(1.96) x Z WA(1 - fh)ﬁ
h=1

\/ (1/3)%(1 — 10/100)
9

— (1.96)x [(0.1)(0.9) + (0.5)(0.5) + (0.9)(0.1)] = 0.1355

Now the stratified Cl wins, because stratum 1 and 3 have so teaslinternal variability than the
combined population does. In this case also, the dedigntas

o _ Var(ps) _ (0.13551.96)
Var(pss)  (0.1726/1.96)

so the stratified variance f@ris only 61% of the SRS variance!

=0.616

6
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Taxpayer No. | Actual Income ($ thousands)| Reported Income
1 60 50
2 72 56
3 68 66
4 94 76
5 90 90
6 102 100
7 116 112
8 130 110
9 200 175

Table 1: Sampling frame for Williams (1978) example.

3.1.2  Numericaly,,

This example is a little contrived, in order to make all of fyeats “visible”. But the underlying
principle, that stratification reduces variance, stilldsl

Williams (1978) gives a simple illustration of gains fromagification for a small population of
measurements on the income (in thousands of dollars) fopalation ofN = 9 taxpayers, shown
in Table 1.

SRS: For the complete population we hae= 9, and for the actual incomg,,, = 10356 and

Shop = 162114. The variance for an SRS of siae- 3 is
_ & 162114
Var(yg == (1~ f)— = (1-3/9)—5— = 36025
(if we didn’t know s, to plug in for s> we would plug in a sample variance instead), so the

95% margin of error for estimatirig,,, would be

(1.96)x V36025 = 37.20

Stratified: Now suppose we use the values of the reported income in arcratify the popula-
tion into two subpopulations consisting of the first eighsetvations and the ninth observa-
tion:

Ni = 8,4 pop = 9150 ands?

pop = 51575;N, =1, Y2.pop = 200 and%,pop =0.
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We now take a sample of size= 3, with n; = 2 from stratum 1 ana, = N, = 1 from
stratum 2 (note that this is not a proportionate sample!)e Variance for this stratified
sample is

S 51575
n, ~ @9)(1-3/8)—5

H
Var@y) = ) Wi(l-fy) +(1/9)(1- 1/9)2 - 3582+0 = 3582
h=1

and the 95% margin of error for estimatipg,, will be

(1.96)x V35.82= 1173

The design #ect in this case is

@ Var(yy) 3582

= _ = 0.0994
Vary.) ~ 36032~ 0%

so in this case the variance for the stratified sampless than 10%f the variance from an
SRS.

Note especially in the Variance calcualtion above the esgom “35.82+ 0”. The zero comes
because there is no variability in stratum 2, just the oneofagion. Low within stratum variability
causes low variance, which causes low sample size (seeutesédion!). This is a good thing.

3.2 Sample Size Calculations for SRS and Proportionate Sttdied Samples
3.2.1 Proportion pyep

We will illustrate calculating a sample size to get a 0.10gimapof error for a 95% CI. We will
assume a population of 300 units.

SRS: We've done this a few times before. We first calculate the SRB mgplacement sample
size
0 s (2*(SD? _ (1.96)(0.5)
°="(ME)2 ~ ~ (0.10¥
(where we takes D = 0.5 as a worst case), and then apply the correction for SRS wtitho
replacement.

= 96.04

. N,  (300)(9604)
“N+n, 300+96.04

=7275

Stratified: Let us suppose that our population breaks into three stnatta,N; = 50, N, = 100,
andNs; = 150 units per stratum. Here are two possible approachegé¢ontieing sample
sizes for the three strata:
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e Trial and error with proportionate samplingone might imagine a table like this:

f n,=f xN, Pn ME =1.96x EQ. (10) n=n;+ny+n3
0.10 ( 5,10,15) (0.5,0.5,0.5) 0.18 30
0.20 (10,20,30) (0.5,0.5,0.5) 0.12 60
0.30 (15,30,45) (0.5,0.5,0.5) 0.09 90
0.25 (13,25,37) (0.5,0.5,0.5) 0.10 75

Note that here we have used just about the worst possiblenasisun, namely that
p: = P2 = P3, SO we get no advantage (and actually probably a slight disddage)
for stratifying.

On the other hand if we knew something abputp,, ps (perhaps from a pilot study?),
then things look better:

f N, = f x N P pilot ME = 1.96x +/EQ. (10) n=n;+ N+ ng

0.100 ( 5,10,15) (0.1,0.5,0.9) 0.14 30
0.200 (10, 20,30) (0.1, 0.5,0.9) 0.09 60
0.150 ( 8,15,22) (0.1,0.5,0.9) 0.11 45
0.175 ( 9,17,26) (0.1,0.5,0.9) 0.10 53

n = 53 is more #icient thann = 72 or 73 that would be needed for SRS. Note that we
have used the additional information in thgi:'s to get this better sample size!

e Optimal Allocation.It turns out that we can achieve greater gains from stratiibiody
choosing our sampling fractions to be proportional to tlemdard deviations in each
stratum. The idea is

Nh = CK
wherec is a constant, and, is the (population) SD for stratumm For fixed overall
sample sizen, we also need

H
Znh =n, Ie. chn: n
h=1

and so, clearly,
n

- Zthl Sh

_ Sh

Zlil S
We can apply this to our sample size problem for a margin ofrerir0.10 with another
'trial and error table’, this time for the overall sampleesiz

C

and therefore

Np Xn
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fh = Nn/Np

ME = 1.96x +/Eq. (10)

N Mh=S/2k

33 (11,11,11) (0.22,0.11,0.07) 0.18
66 (22,22,22) (0.44,0.22,0.15) 0.12
99 (33,33,33) (0.66,0.33,0.22) 0.09
90 (30,30,30) (0.60, 0.30, 0.20) 0.10

Note that this isrota proportionate allocation scheme; th&s are not all equal.

Note also that we have takgn= 0.5 again, so that every, is 0.5, and so we are really
just doing 13-1/3-1/3 allocation. This is probably why the result is not so great ©0
suggested here, vs. the best so-fan ef 53 above.

As before we can improve things by using pilot estimatespgfoNow if we use our
fictional pilot estimatepyio: = (0.1, 0.5,0.9), we discover that

s1 = (0.1)(0.9) = 0.3; s, = /(0.5)(0.5) = 0.5; s3 = +/(0.9)(0.1) = 0.3
and so the proportions ofallocated to each stratum would be
Ny = $1/2n% = (0.27)n; Mz = S/ Y hsh = (0.45)N; ng = s3/Xpsh = (0.27)n;

Note that most of the sample is being spent on the stratumtivthargest variance;
that is why this method works. Our new trial and error tablasgollows:

N m=%/ 2k fn = nn/Nj ME = 1.96x /Eq. (10)

33 (9,15 9) (0.18,0.15, 0.06) 0.13
66 (18,30,18) (0.36,0.30,0.12) 0.09
45 (12,21,13) (0.25,0.20,0.08) 0.11
54  (14,25,15) (0.30, 0.25, 0.10) 0.10

Once again this is not a proportionate allocation schemis. dtso worth noting that
the Ni's don’t seem to matter much: smaller samples are taken ifirgteand third

strata, because that's where the variance, and hence tleetainty, is the lowest —
even though strata 1 and 3 are the smallest and largest strata

Our answer here is comparable to the answer we got with ptiopate sampling;
indeedn = 53 also produces a 10% margin of error here.

3.2.2  Numericaly,,

To illustrate sample size calculations for a numericalalae, | will consider the problem of esti-
mating average income for a population of size 300, that edorbken up into three strata:

Stratum f) N Yh, pop Sﬁ,pop
1 50 140 2000
2 100 85 415
3 150 50 200

10
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Note: ¥, pop IS the stratum mean income, in
1,000’s of dollars.sﬁ pop is the stratum vari-
ance in income.

From this table one can easily calculate that

_ (50)(2000)+ (100)(415) (150)(200)_ . -

Sﬁop - 300
so that the population SD i§57267 = 23.91 (if we didn’t know this we could estimate it from
pilot data, for example).

We want to know the sample size needed to estimate the paputaean income with a 95%
margin of error oft 5 thousand dollars.

SRS This is our old familiar friend. It proceeds pretty much agobbe. We first calculate the SRS
with replacement sample size

_ @SD? _ (1.96f(2391y

02 ey T ep - 888

and then apply the correction for SRS without replacement.

Nrp _ (300)(8785)

> = = 67.
Nz N7 h = 300+8785 O

Stratified We try the same two approaches that we tried for proportions:

e Trial and error with proportionate samplingdere is our trial and error table:

f n, = f x Ny S ME = 1.96x +/EQ. (10) n=ny+ny+n3
0.10 ( 5,10,15) (44.72,12.04,14.14) 7.45 30
0.20 (10, 20,30) (44.72,12.04,14.14) 4.96 60

So, in this case, stratification with proportionate allamatequires only a sample of
sizen = 60, which is already beating SRS’s sample size requirenfemt068.

e Optimal Allocation.Reacalling from above that our standard deviationsare44.72,
s, = 1204, ands; = 14.14 As in the previous subsection, the idea is to take

Ny = S1/30S = (0.63)N; Nz = /2 hS = (0.17)n; N3 = S3/3 5 = (0.20)n;

Again we build a trial-and-error table for various sampleesn:

11
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n m=s/ 2k fn = nn/Ny ME = 1.96x +/Eq. (10)

30 (19,5,6) (0.37,0.05, 0.04) 7.03
60 (38,10,12) (0.76,0.10,0.08) 4.64
45 (28, 8, 9) (0.57,0.08,0.06) 5.55
54 (34, 9, 11) (0.68,0.09,0.07) 4.97

Once again this isota proportionate allocation scheme; thé are not all equal. For
this problem, the “optimal” scheme produces a somewhaebstmple size require-
ment,n = 54 than the proportionate allocation scheme, 60.

4 Proportionate vs. Non-Proportionate Stratified Samples

Proportionate samplingchemes are easy to explain: the formulayfe the same under propor-
tionate stratified sampling as it is under SRS (because piopate sampling is self-weighting);
moreover it is easy to explain to someone that you sampleeé fnam the bigger strata, and that
is what proportionate sampling does.

In some ways taking a bigger sample from the bigger stratuaolsng at the problem wrong.
The things that are hard to estimate are not things in bigastkat rather things that vary a lot
within their stratum. Optimal samplingakes account of this by allocating sample size to each
stratum, proportionate to that stratum’s SD, rather thap@rtionate to that stratum’s size. As we
saw above, optimal sampling can produce lower sample degsgroportionate sampling. You
pay for this greaterféiciency by not being able to uge as your estimator anymore (instead, use
the weightedy,, from equation (3)).

Proportionate sampling gets you most of the benefits ofiécisampling, in getting you a
reduced sample size. Optimal sampling reduces the sanzgedittle bit more, but sometimes
not much more.

If you are only interested in estimating overall populatgurantities, then once you have as-
signed sample sizes to each stratum by one of these methmdsrg done. However, you may
want to estimate some quantities separately in a stratuneths w
Example:

If you were doing a survey of satisfaction with sports fai@B at Carnegie Mellon, your strata
might be: sté&, faculty, student-athletes, and other students. You nbglgpsecially interested in
the proportion of student athletes who are satisfied. Butisha small stratum, so proportionate
sampling will allocate only a few observations to that stnat

You could do a separate, plain-vanilla SRS calculation at time stratum, to see how many
student athletes you need to just estimate their satisfactrhis will probably lead to a larger
sample size in that stratum than proportionate samplingestg. If so, go ahead and increase
the sample size for the student-athletes stratum. It widMalyou to make a better estimate for
student-athletes, and it will not wreck anything else in slievey (in fact it should help your
overall estimates just a little bit).

12
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5 Pro’s and Con’s of Stratified Samples
Pro’s:

e Can make your sample “more representative” of the popuidtyomaking sure you get some
observations from each stratum.

e Can “oversample” some strata because you want really gdodages for those strata.

e Can generally design a set of strata so that the margin afisrsmaller for stratified samples
than for nonstratified.

Con’s:
e Figuring out what strata to use, largely a trial-and-errame.
e Figuring out the sample size for each stratum, largely &ama-error game.
e Need to know

— The population sizes of the stratd,
— The overall population size of your sampling framg,
— Rough guesses about the varians#fgnof andor the proportiongn pit, often from a
pilot study or other background information about yourtsira
in order to make stratification work for you to reduce sampe.s

e Once you have committed to stratified sampling, now you havenake the extraféort
necessary to reach your target sample Bizeach stratumlt will make for a better survey,
but it is also more work for you.

13



