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Outline / Announcements

Project Proposals (Team Project Part |.1)
Team Project Part 1.2 Due Next Tues
o | will email detailed feedback tonight or tomorrow

o Revise A,B,C, and add D,E,F,G for each project
proposal you made

Statistics of Surveys

o Part | of an occasional series in the class!

o Partial review of basic tools

o Examples related to surveys

o Foreshadowing: Survey Statistics is Different!

Review: Lohr's Appendix B
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Project Proposals

| looked at them all; | will email feedback to each
team later today.

Grades (50/project x 2 projects = 100 pts)
o A: Is this interesting? 20 pts
o B: General questions/research questions 20 pts
o C: One article with description from each
team member 10 pts

Revise everything — especially the parts where you
got less than full credit!

Each team proposed at least one doable project!

o The project we decide for your team may or may not be the
high-scoring project! Depends on feasibility, my interest, etc.
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Team Project Part 1.2 Due Next Tues

The projects should to be interesting
enough to make an impact (what can
someone do about it?)

| will email detailed feedback tonight or
tomorrow

For each project you proposed:

o Revise A, B, C: Interesting topic? General research
questions? Articles about past research in the area?

o AddD,E, F, G: Target population? Sampling
Frame? Mode of Data Collection? Major Variables?
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Pointers for 1.2

E. Target population — \What are the individual units
that give you information?

o students? buses? faculty members? times of day? locations? events
(“the bus is late” or “10 students walked by”, etc.)

D. Sampling Frame — In most (but not all) cases there
will be a real or hypothetical list of units that you could
sample from. E.g.:

o Numbers in the phone book (which one? or maybe random digit
dialling? which exchanges? etc)

o Email addresses in C-Book

In some cases there will be no natural sampling frame.
E.g.:

o Interview people as they pass by the fence

o Wait for instances of late buses

In these cases give a very specific description of what
kinds of units you will be looking for, and how you
will find them.
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Pointers for 1.2

F. Mode of Data Collection — How will you get the
data?

o Invite people to website with online SAQ, using email,
postcards, etc.

o Approach people on the street/sidewalk/etc. and use P&P
SAQ, CAPI, etc.

o Go to a certain intersection at a certain time and observe
buses, people, accidents, or other events of interest.

o Go to a school and interview some/all students

Give a sense of how many intersections, times, schools,
students, etc. might be needed to “represent” the
population.

G. Variables to Measure — List (and define) two to

five variables that you must measure to have a

successful survey.
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Statistics ot Surveys

Survey Statistics is different from other kinds of
Statistics

o Sampling from a finite population is different

o Design features (stratification, clustering, weights) increase
information at the cost of more complex analysis

We will get there, in occasional smallish steps

o Today:
Partial Review of Probability Tools
Application: Sample Size Calculations
Application: Randomized Response

o Future:
Urn models
What is random about finite population sampling?
Accounting for complex survey designs
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Partial Review of Probability Tools

Discrete Random Variables
Expected Value, Mean, Variance

More than One Random Variable

o Covariances, Independence, Linear
Combinations, Normal Approximation (CLT)

o Application: Sample Size Calculations
Conditioning

o Conditional Probability, Conditional Distribution,
Conditional Expectation

0 Application: Randomized Response
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Discrete Random Variable

A discrete random variable X has a sample space
that you can “count” (1, 2, 3, ...)
o Toss a die, let X be the side that comes “up”

o Toss a coin until “heads” comes up, let X be the number of
“Tails” until first “Heads”

o Spin a spinner, let X be the exact angle in degrees at
which the spinner comes to rest.

A continuous random variable X has a sample

space that includes a continuous interval (so there

are uncountably many outcomes)

o Which of the above X’s is discrete, which is continuous?
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Discrete Random Variable

For us, X usually has a finite sample space
o X can take on only the values x4, X,, ..., Xk, wWith probability

D4 Pos ---» Pk
Examples:
o Biased coin, X=1 for “Heads”, 0 for “Tails”
(this is a random variable!)

PIX=1]=p, PIX=0]=1-p
o Flip a coin n times, let X be the number of “Heads”

(this is a random variable!)
P[X=k] =  k=0,1,2,...,n
o Consider a population of 1,000 adults, and let x, be each
adult’s annual income, k=1, ..., 1000. Pick one adult at

random and let X be that person’s income.
P[X:ijz , k=1, 2, . 71000
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Expected Value, Mean, Variance

Let X be a discrete random variable taking on the

values x., ..., X, with probabilities p,, ..., px:
e The probabilities must add to 1:
ZP;‘ =1,

e The mean of X is defined to be

K K
px = EIX1= Y xiP(X = x) = ) xip,
i=1 i=1

1 1

e The variance of X is defined to be

K K
0% = VarlX] = E[(X - pux)*] = Y (i — EIX?P(X = x) = > (x; — tx)*p.
i=1 i=1

e More generally, for any function g(x), the expected value of g(X) is

E[g(X)] = > g(OP(X = x).
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Expected Value Example

Let X be a Bernoulli random variable, P[X=1]=.2, and
suppose | pay you $50 if X=1 and you pay me $10 if
X=0. What is the expected value of your income?

g(x)=501f x=1,and g(x) = -101f x = 0.

Elg(X)] = S0xp-10x(1- p)
= 50(0.2) — 10(0.8)
= 2

Var(g(X)) = (50 —2)*(0.2) + (=10 — 2)*(0.8)
= 2304(0.2) + 144(0.8)
= 576

SD(g(X)) = V576 =124
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More Than One Random Variable

x y xy PX=xY=y] Note that
1 2 2 !
2 8 16 i E[X]E[Y] = (6)(2.5) = 15 # 17 = E[XY]
4 8 32 !
i
3 6 18 4 thus X and Y cannot be independent.
1 B More generally X and Y are independent
E[X] = Z(l +2+4+3) =25 if and only if
1
ElY] = Z(2+8+8+6):6 P[X:x,Y:y]:P[X:x]P[Y:y]
1
EIXY] = Z(2+16+32+18) = 17 f()ra]]xandy.
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Covariance & Independence

Recall that Var(X) = E[(X-1y)?]
Similarly, Cov(X,Y) = E[(X-1y )(Y-piy)]

Cov(X,Y) = %{(1—2.5)(2—6)+(2—2.5)(8—6)+(3—2.5)(6—6)+(4—2.5)(8—6)}
= )
If Xand Y are independent, Cov(X,Y) =0

Cov(X,Y) = E[X—ux)(Y —puy)l
= ElX—-pu)IE[(Y —puy)] = 0-0=0
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ILinear Combinations

Exercise: Use the definitions so far to show

ElaX + bY + c]

aE|X] + bE[Y] + c

Exercise: Use this fact to show that for any
set of random variables X,, X, ... X that all
have the same mean ,

E[X]/:E

(Definition of X) —
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Mean and Variance ot Sample Average

Let X,, ..., X, all have the same mean p, and

let 1 n
X=-)X
1 =1
We know E[)_(] = 1, what about Var()_()?
o Use the definitions to show:

Var(aX + bY + ¢) = a?Var(X) + 2abCov(X,Y) + b?Var(Y)

We use this on the next page to work out Var(y).
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Mean and Variance ot Sample Average

From
Var(aX + bY + ¢) = a*Var(X) + 2abCov(X, Y) + b*Var(Y)

we can calulate

1
Var [—(Xl + Xg)
n

1
= = (Var(Xl) +2Cov(X, Xo) + Var(Xz))
n

and applying this to n terms instead of 2 terms (induction!), we get the following mess

1 n 1 n n i—-1
Var |~ ZX] = 1) VarX) + 2 ) Cov(X;. X))
o O e i=1 j=1
We now assume Xi, Xs, . .., X, have the same mean u, the same variance o, and co-

variance Cov(X;, X;) = 0 whenever i # j. Then the “mess” reduces to the more famil-

1ar:
- 1 1
Var(X) = — {I”LO'z +2- (n) - O} = —o°
n 2 n
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Central Limit Theorem

We have shown: If X,, ..., X are
independent, identically distributed (iid) with
E[X]=un and Var(X)=02, then

2

— — o
ElX] = pu, Var(X) = —
n

The Central Limit Theorem then tells us

—H
~ N(O, 1

o/ \n oD

o is the SD of X; o/+n is the SE of X
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Application: Sample Size Calculation

Let X,, ..., X, be an iid sample of people’s
heights, with a common mean ;=5.75 ft and
SD 0=0.5ft.

Then E[X] = 5.75, with SE 0.5/ Vn
CLT: Approx 95% confidence interval for 1 :
(Y —(1.96)(0.5)/ Vn, X+ (1.96)(0.5)/ «/E)

How large n to have 95% confidence that X is
within 0.1 of u?

2 Roughly, need 0.1>1/4/n or n>100.
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Foreshadowing: Survey Statistics is
Ditterent!

In real Survey Sampling work, Cov(X;,X)) is
usually not zero!

Hence

E[X] = u

but _ ,
Var(X) + o°/n

The CLT is not quite true, as stated, either!

But the basic CLT calculation is often a
reasonable “crude guess’...
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Conditioning

e The conditional probability of event A, given event B, is

P[A N B]

P[A|B] = E]

It 1s often useful to write this as a formula for P[A N B]:

P[A N B] = P[A|B]P[B]

e The conditional distribution of X given Y = y is

P[X=xY =
PIX =x|Y =y] = [ ad /) [comma means “and”!]
PLY =]

e The conditional expected value of X given Y = y is the expected value with
respect to the conditional distribution:

E[X|Y =yl = > xP[X = x|Y = y]

X
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Conditioning

E[X] = 25
x vy xy PX=xY=y] 1 ) )
573 % Var(X) = Z[(l—Z.S) +(2-2.5)
2 8 16 % +(3-25)72+4-25)7]
4 8 32 =
4 = 1.25
3 6 18 I
1
E[X|]Y =8] = 5(2+4) =3
PlX=2y=8 = LX=2Y=8 ]
P[Y = 8] Var(X|Y =8) = =[(2-3)>+ (4 —-3)]
2
B 1/4_1 -
12 2 -
PIX =4y =8] = - — 1 Exercise: Show that if X and Y are
2 independent, then E[X|Y = y]| =

E[X], for any y.
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Application: Randomized Response

“Flip a coin, but don’t tell me whether it's heads or
tails.

o “If heads, answer truthfully: have you ever cheated in a
CMU class?

o “If tails, answer truthfully: is the last digit of your SSN odd?”
Let p=P[Heads], 7=P[Cheat], A=P[Yes]. Then

A = Pl|YesN Heads] + P[Yes N Tails]
= P|Yes|Heads|P[Heads]| + P[Yes|T ails|P|[T ails]
= n-p+1/2)-(1-p)
Therefore
o A—-(1/2)-(1 -p)
D
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Application: Randomized Response

_ A—3(1-p)
p

T

Suppose the coin is fair (p = %) and in our survey we get a fraction A of people
answering “yes”. Then

£ o= 21-1/4)
E[f] = 2E[A]-1/4)
= 2(1-1/4) = n© (Exercise!)

So 7 1s an unbiased estimator of m; and

Var() = Var[2(1 - 1/4)]
= 4Var(d)
so Var(n) is inflated, relative to Var(l): # is statistically inefficient.

Exercise: The closer p = P|Answer Cheating Question] is to 1, the closer Var(#) is to
Var().
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Foreshadowing: Survey Statistics is
Ditterent!

In a regular statistics course we would go on
to say A = Y/n where Y is the number of
“Yes™s among a sample of size n.

Therefore

o ElA] = 4, the true proportion of “Yes”s.

0 SE() = VA(1 — A)/n, because Y is a
binomial random variable.

In Survey Sampling

0 The expected value part is OK

o The variance will be different; Y is not quite
binomial!
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Review

Feedback on Project Proposals

Team Project part |.2 (target pop, frame,
mode of data collection) Due Next Tuesday

o HWO02 due next Tues also!

Statistics of Surveys (Part | of Occasional
Series)

Read Lohr Appx B (handout today)
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