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1 Key Ideas

1.1 Why stratify?

Strata are just subgroups of the target population that havesome feature in common (gender, major,
region, income, . . . ) Reasons to stratify include:

• We need to make a separate inference for each stratum (e.g. wewant to estimate mens and
womens incomes separately);

• Different sampling schemes would be used in each stratum (PA voters in PA [telephone
survey?], vs PA voters in Iraq [mail or email?]);

• Population is geographically diverse (Minnesota, Illinois, Ohio, Pennsylvania, . . . );

• Reduce variance of estimates (and reduce sample size) by exploiting similarity among mem-
bers of the same stratum.

1.2 Notation and Basic Facts

We assume there areH strata. Within each stratum, we will use the following notation:

• Nh = population size in each stratum
• nh = sample size in each stratum
• fh = nh/Nh = sampling fraction, each stratum
• Wh = Nh/N = stratum weights, each stratum
• N =

∑H
h=1 Nh = total population size

• n =
∑H

h=1 nh = total sample size

We also assume throughout that within each stratum we are taking a simple random sample (SRS)
without replacement, of sizenh from the stratum population of sizeNh.

Let y be some attribute of interest.y could be numerical, like a person’s income, or it could be
Bernoulli, likey = 1 if the person rides PAT buses, andy = 0 otherwise.

1.2.1 Means

The population average fory is

ypop =
1
N

N
∑

i=1

yi =
1
N

H
∑

h=1

Nh
∑

i=1

yhi =

H
∑

h=1

Nh

N
1
Nh

Nh
∑

i=1

yhi =

H
∑

h=1

Nh

N
yh,pop =

H
∑

h=1

Whyh,pop (1)

whereyh,pop =
1

Nh

∑Nh
i=1 yi and

Wh = Nn/N. (2)
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So we can see thatypop is a weighted sum of the population averages in each stratum,yh,pop, where
the weightsWh in (2) are proportional to the size of the stratum.

To make an estimate from stratified sample data we can mimic the idea in (1) with sample
averages:

yst =
1
n

n
∑

i=1

yi =

H
∑

h=1

Nh

N
yh =

H
∑

h=1

Whyh (3)

whereyh =
1
nh

∑nh
i=1 yhi. and theWh are as in (2).

It is important to realize that the stratified sample averageis unbiased for the population aver-
age:

E[yst] = E















H
∑

h=1

Whyh















(by (3))

=

H
∑

h=1

WhE[yh]

=

H
∑

h=1

Whyh,pop (E[yh,srs] = yh,pop in each stratumh)

= ypop (by (1)).

1.2.2 Variances

Within each stratum, since we are doing SRS without replacement, we have

Var(yh) = (1− fh)
s2

h

nh
where s2

h =
1

nh − 1

nh
∑

i=1

(yhi − yh)
2 (4)

as usual. Note that for Bernoulli data, there is a simpler expression for the within-cluster standard
error:

s2
h/nh =

ph(1− ph)
nh − 1

(5)

To obtain an overall variance estimate foryst we have:

Var(yst) = Var
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h=1

Whyh















=

H
∑

h=1

Var(Whyh) =
H
∑

h=1

W2
hVar(yh)

=

H
∑

h=1

W2
h(1− fh)

s2
h

nh
(6)
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2 Self-weighting Samples, and Proportionate Sampling

2.1 Self-weighting samples

In general,

yst =

H
∑

h=1

Whyh

need not be the same as

ysrs =
1
n

n
∑

i=1

yi .

When we are lucky enough to haveysrs = yst the stratification is said to be “self-weighting”.

2.2 Proportionate sampling

One case of a self-weighing stratification is called “proportionate sampling”. We get proportionate
sampling when we force the sampling fractionfh to be the same in every stratum,

fh ≡ f , ∀h (7)

Since fh = nh/Nh it is easy to see that if everynh/Nh ≡ f then alson/N = f , and so

nh/n = (nh/Nh)(Nh/N)(N/n) = f (Nh/N)(1/ f ) = Nh/N

Therefore,

yst =

H
∑

h=1

Whyh =

H
∑

h=1

(Nh/N)yh =

H
∑

h=1

(nh/n)yh =

H
∑

h=1

(nh/n)
1
nh

nh
∑

i=1

yhi =
1
n

n
∑

i=1

yi = ysrs (8)

2.3 Design Effect

The nice part about self-weighting samples is that anybody,with no statistical training, can calcu-
lateysrs and it will be the right number foryst as well. The only difference is that instead of

Var(ysrs) = (1− f )
s2

n
(9)

we will have

Var(yst) =
H
∑

h=1

W2
h(1− fh)

s2
h

nh
(10)
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The “art” of stratified sampling is making sure thatVar(yst) is smaller thanVar(ysr). Thedesign
effect is defined to be

d2 =
Var(yst)

Var(ysrs)
=

∑H
h=1 W2

h(1− fh)
s2
h

nh

(1− f ) s2

n

(11)

and we have succeeded in the art of stratified sampling whend2 < 1. Cochran (1961) did some
experiments with stratification and showed thatd2 < 1 when

• 2–6 strata are used (more strata tend to reduceVar(yst) further, but there are diminishing
returns asH grows);

• Elements are more similar to each other within strata than between (e.g., substantively mean-
ingful strata);

• Proportionate sampling is used.

3 Examples

3.1 Confidence Intervals for SRS and Proportionate Stratified Samples

3.1.1 Proportion ppop

Consider the three urns we played with in class:

• Urn 1: N1 = 100 balls; 10 yellow, 90 blue,p1 = 0.1

• Urn 2: N2 = 100 balls; 20 yellow, 80 blue,p2 = 0.2

• Urn 3: N3 = 100 balls; 30 yellow, 70 blue,p3 = 0.3

• Combined urns:N = 300, 60 yellow, 240 bluep = 0.2.

We want to comparen = 30 SRS without replacement from the combined urns, with a stratified
sample ofnh = 10 balls each from the three urns.

n = 30 SRS: Using formula (9) (and the adjustment in equation (5)),

Var(p̂srs) = (1− f )
s2

n
= (1− f )

p(1− p)
n− 1

= (1− 30/300)
0.2(1− 0.2)

30− 1
= 0.00497

so, if we draw 30 balls and 8 of them are yellow, then ˆp = 8/30= 0.27 and we get a 95% CI
that is

0.27± (1.96)
√

0.00497= 0.27± 0.1381
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nh = 10 stratified SRS’s from each urn: Using formula (10), and noting thatfh = 10/100= 0.1
for all strata (proportionate sampling) andWh = 100/300= 1/3 for all strata,

Var(p̂st) =
H
∑

h=1

W2
h(1− fh)

s2
h

nh
=

H
∑

h=1

W2
h(1− fh)

ph(1− ph)
nh − 1

=

H
∑

h=1

(1/3)2(1− 0.1)
ph(1− ph)

10− 1

=
(1/3)2(0.9)

9
[(0.1)(0.9)+ (0.2)(0.8)+ (0.3)(0.7)] = 0.00511

If 2 of the 10 balls from Urn 1 are yellow, 2 from Urn 2 are yellow, and 3 from Urn 3 are
yellow, we can use the fact that we are doingproportionate samplingto obtainp̂ = 8/30 =
0.27 (otherwise we have to use formula (3)). We get a 95% CI

0.27± (1.96)
√

0.00511= 0.27± 0.1401

Note that in this case,stratification was not as good as a plain old SRS!, although the difference
wasn’t enormous. The problem is that the three strata are a little too much like the combined urn.
It is better when the strata have much less internal variability than the combined population would
have. For example:

Setup: Same setup but now suppose the three urns have proportions ofyellow p1 = 0.1, p2 = 0.5
andp3 = 0.9. The combined population will now have a proportionp = 0.5 of yellow balls.
We’ll continue to haveNh = 100,nh = 10.

SRS CI: The margin of error for a 95% CI is going to be

(1.96)×
√

(1− f )
p(1− p)

n− 1
= (1.96)×

√

(1− 30/300)
(0.5)(1− 0.5)

30− 1
= 0.1726

Stratified CI: The margin of error for a 95% CI is going to be

(1.96)×

√

√

H
∑

h=1

W2
h(1− fh)

ph(1− ph)
nh − 1

= (1.96)×
√

(1/3)2(1− 10/100)
9

[(0.1)(0.9)+ (0.5)(0.5)+ (0.9)(0.1)] = 0.1355

Now the stratified CI wins, because stratum 1 and 3 have so muchless internal variability than the
combined population does. In this case also, the design effect is

d2 =
Var(p̂st)
Var(p̂srs)

=
(0.1355/1.96)2

(0.1726/1.96)2
= 0.616

so the stratified variance fory is only 61% of the SRS variance!
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Taxpayer No. Actual Income ($ thousands) Reported Income
1 60 50
2 72 56
3 68 66
4 94 76
5 90 90
6 102 100
7 116 112
8 130 110
9 200 175

Table 1: Sampling frame for Williams (1978) example.

3.1.2 Numericalypop

This example is a little contrived, in order to make all of theparts “visible”. But the underlying
principle, that stratification reduces variance, still holds.

Williams (1978) gives a simple illustration of gains from stratification for a small population of
measurements on the income (in thousands of dollars) for a population ofN = 9 taxpayers, shown
in Table 1.

SRS: For the complete population we haveN = 9, and for the actual incomeypop = 103.56 and
s2

pop = 1621.14. The variance for an SRS of sizen = 3 is

Var(ysrs) == (1− f )
s2

n
= (1− 3/9)

1621.14
3

= 360.25

(if we didn’t know s2
pop to plug in fors2 we would plug in a sample variance instead), so the

95% margin of error for estimatingypop would be

(1.96)×
√

360.25= 37.20

Stratified: Now suppose we use the values of the reported income in order to stratify the popula-
tion into two subpopulations consisting of the first eight observations and the ninth observa-
tion:

N1 = 8, y1,pop = 91.50 ands2
1,pop = 515.75; N2 = 1, y2,pop = 200 ands2

2,pop = 0.
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We now take a sample of sizen = 3, with n1 = 2 from stratum 1 andn2 = N2 = 1 from
stratum 2 (note that this is not a proportionate sample!). The variance for this stratified
sample is

Var(yst) =
H
∑

h=1

W2
h(1− fh)

s2
h

nh
= (8/9)(1−3/8)

515.75
8
+ (1/9)(1−1/9)

0
1
= 35.82+0 = 35.82

and the 95% margin of error for estimatingypop will be

(1.96)×
√

35.82= 11.73

The design effect in this case is

d2 =
Var(yst)
Var(ysrs)

=
35.82
360.32

= 0.0994

so in this case the variance for the stratified sample isless than 10%of the variance from an
SRS.

Note especially in the Variance calcualtion above the expression “35.82+ 0”. The zero comes
because there is no variability in stratum 2, just the one observation. Low within stratum variability
causes low variance, which causes low sample size (see next subsection!). This is a good thing.

3.2 Sample Size Calculations for SRS and Proportionate Stratified Samples

3.2.1 Proportion ppop

We will illustrate calculating a sample size to get a 0.10 margin of error for a 95% CI. We will
assume a population of 300 units.

SRS: We’ve done this a few times before. We first calculate the SRS with replacement sample
size

n0 ≥
(Z)2(S D)2

(ME)2
=

(1.96)2(0.5)2

(0.10)2
= 96.04

(where we takeS D = 0.5 as a worst case), and then apply the correction for SRS without
replacement.

n ≥
Nn0

N + n0
=

(300)(96.04)
300+ 96.04

= 72.75

Stratified: Let us suppose that our population breaks into three strata,with N1 = 50, N2 = 100,
andN3 = 150 units per stratum. Here are two possible approaches to determining sample
sizes for the three strata:

8
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• Trial and error with proportionate sampling.One might imagine a table like this:

f nh = f × Nh ph ME = 1.96×
√

Eq. (10) n= n1 + n2 + n3

0.10 ( 5, 10, 15) (0.5, 0.5, 0.5) 0.18 30
0.20 (10, 20, 30) (0.5, 0.5, 0.5) 0.12 60
0.30 (15, 30, 45) (0.5, 0.5, 0.5) 0.09 90
0.25 (13, 25, 37) (0.5, 0.5, 0.5) 0.10 75

Note that here we have used just about the worst possible assumption, namely that
p1 = p2 = p3, so we get no advantage (and actually probably a slight disdadvantage)
for stratifying.

On the other hand if we knew something aboutp1, p2, p3 (perhaps from a pilot study?),
then things look better:

f nh = f × Nh p̂h,pilot ME = 1.96×
√

Eq. (10) n= n1 + n2 + n3

0.100 ( 5, 10, 15) (0.1, 0.5, 0.9) 0.14 30
0.200 (10, 20, 30) (0.1, 0.5, 0.9) 0.09 60
0.150 ( 8, 15, 22) (0.1, 0.5, 0.9) 0.11 45
0.175 ( 9, 17, 26) (0.1, 0.5, 0.9) 0.10 53

n = 53 is more efficient thann = 72 or 73 that would be needed for SRS. Note that we
have used the additional information in the ˆppilot’s to get this better sample size!

• Optimal Allocation.It turns out that we can achieve greater gains from stratification by
choosing our sampling fractions to be proportional to the standard deviations in each
stratum. The idea is

nh = csh

wherec is a constant, andsh is the (population) SD for stratumh. For fixed overall
sample sizen, we also need

H
∑

h=1

nh = n, i.e.
H
∑

h=1

csh = n

and so, clearly,

c =
n

∑H
h=1 sh

and therefore
nh =

sh
∑H

k=1 sk

× n

We can apply this to our sample size problem for a margin of error of 0.10 with another
’trial and error table’, this time for the overall sample sizen:

9
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n nh = sh/
∑

k sk fh = nh/Nh ME = 1.96×
√

Eq. (10)
33 (11, 11, 11) (0.22, 0.11, 0.07) 0.18
66 (22, 22, 22) (0.44, 0.22, 0.15) 0.12
99 (33, 33, 33) (0.66, 0.33, 0.22) 0.09
90 (30, 30, 30) (0.60, 0.30, 0.20) 0.10

Note that this isnota proportionate allocation scheme; thefh’s are not all equal.
Note also that we have takenp = 0.5 again, so that everysh is 0.5, and so we are really
just doing 1/3-1/3-1/3 allocation. This is probably why the result is not so great (n = 90
suggested here, vs. the best so-far ofn = 53 above.
As before we can improve things by using pilot estimates forp. Now if we use our
fictional pilot estimates ˆppilot = (0.1, 0.5, 0.9), we discover that

s1 =
√

(0.1)(0.9) = 0.3; s2 =
√

(0.5)(0.5) = 0.5; s3 =
√

(0.9)(0.1) = 0.3

and so the proportions ofn allocated to each stratum would be

n1 = s1/
∑

hsh = (0.27)n; n2 = s2/
∑

hsh = (0.45)n; n3 = s3/
∑

hsh = (0.27)n;

Note that most of the sample is being spent on the stratum withthe largest variance;
that is why this method works. Our new trial and error table isas follows:

n nh = sh/
∑

k sk fh = nh/Nh ME = 1.96×
√

Eq. (10)
33 ( 9, 15, 9) (0.18, 0.15, 0.06) 0.13
66 (18, 30, 18) (0.36, 0.30, 0.12) 0.09
45 (12, 21, 13) (0.25, 0.20, 0.08) 0.11
54 (14, 25, 15) (0.30, 0.25, 0.10) 0.10

Once again this is not a proportionate allocation scheme. Itis also worth noting that
the Nh’s don’t seem to matter much: smaller samples are taken in thefirst and third
strata, because that’s where the variance, and hence the uncertainty, is the lowest –
even though strata 1 and 3 are the smallest and largest strata.
Our answer here is comparable to the answer we got with proportionate sampling;
indeedn = 53 also produces a 10% margin of error here.

3.2.2 Numericalypop

To illustrate sample size calculations for a numerical variable, I will consider the problem of esti-
mating average income for a population of size 300, that can be broken up into three strata:

Stratum (h) Nh yh,pop s2
h,pop

1 50 140 2000
2 100 85 415
3 150 50 200

10
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Note: yh,pop is the stratum mean income, in
1,000’s of dollars.s2

h,pop is the stratum vari-
ance in income.

From this table one can easily calculate that

s2
pop =

(50)(2000)+ (100)(415)+ (150)(200)
300

= 571.67

so that the population SD is
√

572.67 = 23.91 (if we didn’t know this we could estimate it from
pilot data, for example).

We want to know the sample size needed to estimate the population mean income with a 95%
margin of error of± 5 thousand dollars.

SRS This is our old familiar friend. It proceeds pretty much as before. We first calculate the SRS
with replacement sample size

n0 ≥
(Z)2(S D)2

(ME)2
=

(1.96)2(23.91)2

(5)2
= 87.85

and then apply the correction for SRS without replacement.

n ≥
Nn0

N + n0
=

(300)(87.85)
300+ 87.85

= 67.95

Stratified We try the same two approaches that we tried for proportions:

• Trial and error with proportionate sampling.Here is our trial and error table:

f nh = f × Nh sh ME = 1.96×
√

Eq. (10) n= n1 + n2 + n3

0.10 ( 5, 10, 15) (44.72, 12.04, 14.14) 7.45 30
0.20 (10, 20, 30) (44.72, 12.04, 14.14) 4.96 60

So, in this case, stratification with proportionate allocation requires only a sample of
sizen = 60, which is already beating SRS’s sample size requirement of n = 68.

• Optimal Allocation.Reacalling from above that our standard deviations ares1 = 44.72,
s2 = 12.04, ands3 = 14.14 As in the previous subsection, the idea is to take

n1 = s1/
∑

hsh = (0.63)n; n2 = s2/
∑

hsh = (0.17)n; n3 = s3/
∑

hsh = (0.20)n;

Again we build a trial-and-error table for various sample sizesn:

11
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n nh = sh/
∑

k sk fh = nh/Nh ME = 1.96×
√

Eq. (10)
30 (19, 5, 6) (0.37, 0.05, 0.04) 7.03
60 (38, 10, 12) (0.76, 0.10, 0.08) 4.64
45 (28, 8, 9) (0.57, 0.08, 0.06) 5.55
54 (34, 9, 11) (0.68, 0.09, 0.07) 4.97

Once again this isnota proportionate allocation scheme; thefh’s are not all equal. For
this problem, the “optimal” scheme produces a somewhat better sample size require-
ment,n = 54 than the proportionate allocation scheme,n = 60.

4 Proportionate vs. Non-Proportionate Stratified Samples

Proportionate samplingschemes are easy to explain: the formula fory is the same under propor-
tionate stratified sampling as it is under SRS (because proportionate sampling is self-weighting);
moreover it is easy to explain to someone that you sampled more from the bigger strata, and that
is what proportionate sampling does.

In some ways taking a bigger sample from the bigger stratum islooking at the problem wrong.
The things that are hard to estimate are not things in big strata, but rather things that vary a lot
within their stratum.Optimal samplingtakes account of this by allocating sample size to each
stratum, proportionate to that stratum’s SD, rather than proportionate to that stratum’s size. As we
saw above, optimal sampling can produce lower sample sizes than proportionate sampling. You
pay for this greater efficiency by not being able to useysrs as your estimator anymore (instead, use
the weightedyst from equation (3)).

Proportionate sampling gets you most of the benefits of stratified sampling, in getting you a
reduced sample size. Optimal sampling reduces the sample size a little bit more, but sometimes
not much more.

If you are only interested in estimating overall populationquantities, then once you have as-
signed sample sizes to each stratum by one of these methods, you are done. However, you may
want to estimate some quantities separately in a stratum as well.
Example:

If you were doing a survey of satisfaction with sports facilities at Carnegie Mellon, your strata
might be: staff, faculty, student-athletes, and other students. You mightbe epsecially interested in
the proportion of student athletes who are satisfied. But that is a small stratum, so proportionate
sampling will allocate only a few observations to that stratum.

You could do a separate, plain-vanilla SRS calculation in that one stratum, to see how many
student athletes you need to just estimate their satisfaction. This will probably lead to a larger
sample size in that stratum than proportionate sampling suggests. If so, go ahead and increase
the sample size for the student-athletes stratum. It will allow you to make a better estimate for
student-athletes, and it will not wreck anything else in thesurvey (in fact it should help your
overall estimates just a little bit).

12
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5 Pro’s and Con’s of Stratified Samples

Pro’s:

• Can make your sample “more representative” of the population by making sure you get some
observations from each stratum.

• Can “oversample” some strata because you want really good estimates for those strata.

• Can generally design a set of strata so that the margin of error is smaller for stratified samples
than for nonstratified.

Con’s:

• Figuring out what strata to use, largely a trial-and-error game.

• Figuring out the sample size for each stratum, largely a trial-and-error game.

• Need to know

– The population sizes of the strata,Nh

– The overall population size of your sampling frame,N

– Rough guesses about the variances ˆs2
h,pilot and/or the proportions ˆph,pilot, often from a

pilot study or other background information about your strata.

in order to make stratification work for you to reduce sample size.

• Once you have committed to stratified sampling, now you have to make the extra effort
necessary to reach your target sample sizein each stratum. It will make for a better survey,
but it is also more work for you.
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