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Abstract  
 
The idea of modeling data heterogeneity by a mixture 
of local models, and exploiting the correlation in the 
localized data subsets to reduce their subspace 
dimensionalities has been realized in many mixture 
models; like PCA mixture and FA mixture models. 
Instead of using fixed ad-hoc dimensionality for all 
subspaces, this paper proposes using a global 
preserved variance percentage value, to estimate the 
dimensionality that retains the given variability 
percentage in each subspace. We test the proposed 
method on classifying handwritten digit by a mixture 
of probabilistic PCA model, the result shows that the 
proposed method outperforms fixed dimensionality 
probabilistic PCA mixture model. 
 
Keywords: PCA, mixture model, EM algorithm. 
 
1. Introduction 
In recent years, there is more interest in pattern 
recognition discriminative methods, such as support 
vector machines, than density-base methods. 
Discriminative methods find the boundaries between 
class regions without much interest in the structure of 
the class densities. Better recognition accuracy and 
less computational complexity are the main reasons 
behind the increasing interest. Despite these facts, 
density-based methods have many important aspects 
that discriminative methods could not offer: 
 

1. Density-based methods are the choice of the 
dynamic class-plug-in systems, since we can 
train new class and plug it into the 
classification system without retraining the 
entire system. 

2. Density-based methods have natural rejection 
criteria when all the densities are low. 

Since the above mentioned aspects are critical for 
some applications, density based methods still 
undergo research to lever their performance and 
applicability. Model fitting when the underlying data 
have different structures in different parts of the input 
space, is one of these problems that need more 

research work. Fitting one global linear model for 
such data, can poorly represent the whole data. On 
the other hand, current global nonlinear models can 
be slow and inaccurate especially for high 
dimensional data [3, 8]. A combination of local linear 
models can quickly learn the structure of the data in 
local regions which consequently, offer faster and 
more accurate model fitting [7, 8, 13]. Partitioning 
training data set into smaller subsets may lead to 
curse of dimensionality problem, as a training sample 
subset may not be enough for estimating the required 
set of parameters for the submodel. On the other hand, 
increasing the size of training data is not possible in 
many situations. Interestingly, since the data points in 
local regions are highly similar, the data is highly 
correlated. Therefore, by decorrelation methods we 
can reduce data dimension and hence the number of 
parameters. In other words, we can find uncorrelated 
low dimensional subspaces that capture most of the 
data variability. Among these new local model 
methods that entail dimensionality reduction is the 
Mixture of Principal Component Analyzers (MPCA) 
[8, 5]. A turning study in this model history is Hinton 
et al. paper ”Modelling the Manifolds of Images of 
Handwritten Digits”, since this is the first work that 
used one global EM-training process in pseudo-
likelihood framework [7]. All algorithms proposed 
before this one has two separate processes; 
partitioning the data space by hard clustering methods, 
followed by fitting a PCA for each cluster. Another 
major enhancement comes from Tipping & Bishop 
and Roweis through proposing the Probabilistic 
Principal Component Analyzer (PPCA). By giving a 
probabilistic definition for PCA the usage of the 
mixture model and soft clustering, to define the 
mixture of PPCA is straight forward. To this end, 
MPPCA model still suffers the following problems: 
 
1. There is no standard method to specify the optimal 
number of subspaces. 
2. There is no standard method for EM algorithm 
initialization, nor a standard method to help the 
algorithm escape the local maxima. 
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3. There is no standard method to specify the optimal 
dimensionality for each subspace. 
 
As this model has many applications one global 
method for optimal solution may not be possible. For 
instance, the optimal number of subspaces and 
dimensionality for best classification performance 
may not be optimal for compression. Therefore, it is 
more reasonable to offer the modeler a graded 
manageable scheme to control subspaces complexity 
in a global way. In line with this philosophy, we 
propose using a global percentage constant, that 
represent the preserved variance retained by each 
subspaces. This method has many advantages over 
specifying global constant value for all subspaces 
dimensionality: 
1. As pointed out by Meinicke and Ritter [9], data 
acquisition devices e.g. sensor, generally have the 
same noise percentage presence. Therefore, a global 
preserved variance value is more efficient in de-
noising subspaces. 
2. Subspaces with similar variability is expected to be 
more smoothed and therefore their density estimate is 
expected to be better than subspaces with different 
variability and same dimensionality. Moreover the 
danger of overfitting is also less. 
 
2. Probabilistic Principal Component 

Analyzer 
Tipping and Bishop [10] found a probabilistic 
formulation of PCA by viewing it as a latent variable 
problem, in which a d-dimensional observed data 
vector  y can be described in terms of an m-
dimensional latent vector, 

 
Where A is an d × m matrix, µ is the data mean and 
w is an independent Gaussian noise with a diagonal 
covariance matrix I. The probability of observed data 
vector y is: 

 
Where C is the model covariance matrix given by: 

 
2.1 Subspace Dimensionality and Noise 
Intuitively, the model partitions the input space into 
subspace of signal (principal subspace) and noise (σ2 
in Eqn. 3). As the variability in the minor d – m 
dimensions hypothetically considered noise only, the 
eigenvalues that result form the data covariance 
matrix diagonalization, could be used to estimate the 
noise level. Tipping and Bishop have shown that the 
m.l.e. for the noise could be given by: 

 
 
 

where  are the d – m  small eigenvalues. 
Notice that we have subscripted σ2

av to differentiate 
this value form the one that follows. In line with the 
conclusion of our previous paper [11], that says the 
noise 
level could be used to determine the subspace 
dimensionality, Meinicke and Ritter have given the 
same suggestion [9]. A PPCA model that has a 
hypothesized noise level and estimated 
dimensionality (VD-PPCA) is advantageous over the 
one that has a hypothesized fixed dimensionality and 
estimated noise (FD-PPCA). Meinicke and Ritter 
have shown that for a fixed noise level model, VD-
PPCA, the m.l.e. of the principal subspace 
dimensionality could be given by: 

 
where σ2

fxd, is a hypothesized constant value. In 
contrast with σ2

av, σ2
fxd  is approximately equal to λm+1. 

With conventional PCA, the user can input a retained 
variance percentage (let us call it α), for which the 
system calculates the dimensionality that retains this 
variability percentage. We think this could also work 
for local PCA model. Moreover, by validation 
methods the system could calculate a suboptimal 
value for α from the given training data for the 
underlying application. This suboptimal value has 
special importance as it makes the determine the 
dimensionality autonomously.  
 
3. Mixtures of Probabilistic Principal 
Component Analyzers 
Thanks to the Probabilistic PCA model as it 
facilitates defining the Mixture of Probabilistic 
Principal Component Analyzers (MPPCA) as a 
restricted Mixture of Gaussians model (MoG) which 
could be trained globally in maximum likelihood 
framework. A mixture of Gaussians is given by the 
weighted sum: 

 
where the j-th component pj(y: Θj) is a d-dimensional 
Gaussian density, parameterized by  the mean µj, Aj 
and σj , in our restricted Gaussian model, which are 
collectively denoted by the parameter vector Θj. As 
there is no direct method for training the mixture 
model, The EM algorithm estimates the model 
parameters iteratively, using the following set of 
equations: 
• E step 
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• M step 

 
 
Starting with some initial values for the unknown 
parameters vector Θ, the EM algorithm computes the 
Starting with some initial values for the unknown 
parameters vectors Θ, the EM algorithm computes 
the  posteriori probabilities for the training data using 
Eqn. 6; this is known as expectation step (E-step). In 
the second step -known as maximization step (M-
step)- the algorithm use the recently calculated 
posteriori probabilities and Eqns (7, 8, 9) to calculate 
new estimation for the parameters vector Θ. The 
calculation then, cycles from expectation to 
maximization and from maximization to expectation, 
until the revised estimate do not differ appreciably 
from the estimate obtained in the previous iteration or 
alternatively, until there is no significant change in 
the log likelihood value. More information about EM 
and its properties could be found in [4]. 
 
3.1 Training 
Our training algorithm can be summarized as follows: 

1. input D (training data set) and α (preserved  
variance). 

2. find k hard clusters 
3. for each cluster estimate the parameters 

vector Θ. 
4. fit the model using the EM algorithm. 
5. Re-fit all submodel dimensionality to 

preserved α from the local variability. 
6. fit the model using the EM algorithm. 

The algorithm starts by finding k hard clusters. There 
are two reasons for this step: 

1. To help the EM to generalize by starting 
from well distributed clusters and escape 
local minima's; 

2. To find some realistic, rather then ad hoc, 
starting parameter values.  

For the hard clustering step, we use a recently 
developed Gaussian centres finding algorithm, 
proposed by Dasgupta [1]. Working in a reduced 
dimension subspace is the main reason for choosing 
this algorithm, without claiming that this is best 
initialization method for our purpose. At the 
beginning, the dimensionality of each subspace is 
determined by α and the set of points belonging to the 
underlying hard cluster only. Subspaces change their 
shapes during EM iteration (step 4) for this reason, 

we re-estimate subspaces dimensionality and fit with 
EM. 
 
4 A Sample Application 
Handwritten digit recognition is a popular 
classification problem that is used extensively in 
testing relative density classification approaches as 
well as discriminative approaches [7]. In this section 
we describe our experiments for testing the proposed 
algorithms on modeling handwritten digits using 
mixtures of PPCA.The data set used in our 
experiments was extracted from the 
 well-known NIST handwritten digit database [12]. 
The original data set consisted of 128x128 pixel 
binary images. In pre-processing, these images were 
normalized 
for position, size, slant and stroke width, resulting in 
16x16 pixel grey-value images [2]. Furthermore, for 
the experiments described in this paper PCA was 
used on the entire data set to reduce the number of 
dimensions from 256 to 64. The resulting data set 
was used to construct training and test sets. Using the 
given data set, we have trained a mixture of PPCA 
model for handwritten digit recognition, using our 
proposed method and tested its classification 
performance. During the training phase, only images 
of one class are presented to the model generator 
program, i.e. each digit model is built separately. 
Each digit id modelled by 10 subspaces. 1000 
patterns (images) per class (digit) have been use for 
training and 1000 patterns per class have been used 
for testing. Experiments with PPCA mixture models 
and what alike in being mixture of Gaussians, e.g. 
Mixture of FA, showed that when the noise estimate 
is small i.e. σ2 is small the model is prone to 
overfitting [7]. To overcome this problem we need to 
regularize the model by one of two methods. One 
method is by adding constant value to all σ2 av. The 
other regularization way is by imposing a minimum 
allowable variance in all dimensions. These 
regularization methods are roughly equal. In this set 
of experiments we used the second one. Specifically 
we used 0.5 as a minimum allowable variance. 
Table 1, shows the testing result for different α 
(preserved variance).  For the purpose of comparing 
our proposed method with the fixed dimensionality 
method, we trained a fixed dimensionality model 
with its fixed dimensionality equal to the average 
dimensionality for all classes found by the proposed 
model. Fig. 1. summarizes these results graphically. 
Class ’1’ has the least average subspace 
dimensionality. On the other hand, class ’3’,’5’ 
and ’8’ has the maximum average subspace 
dimensionality. This seems reasonable, as the later 
have more curvature in their shapes and their input 
space is more full of structure, while the former is 
semi straight line, This shows that the method is 
reasonable in its subspace dimensionality selection. 
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6 Conclusions 
We designed an EM algorithm for Mixture of 
Probabilistic Principal Component Analyzers training. 
According to a global preserved variance value α, the 
algorithm determines for each subspace the 
dimensionality that retains α percentage of the local 
space variability. We applied the model to 
handwritten digit recognition. The result shows that 
the preserved variance is a suitable guidance for the 
process of searching for the optimal subspace 
dimensionality. 
 

 
Fig. 1. Errors (% of test patterns classified incorrectly) as a 

function of the preserved variance percentage (α) 
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Classes 0 1 2 3 4 5 6 7 8 9 Avg.
Avg. Dim 7 4 8 9 7 8 6 5 8 6 7 
V. Dim. errors 1.2 1.5 1.3 1.9 1.9 2.9 1.2 1.8 2.1 2.7 1.79 
F. Dim. errors 0.9 1.2 1.7 2.8 2.3 2.8 1.4 2.3 3.5 2.6 1.98 

Preserved variance .70 
Avg. Dim 9 5 9 10 8 10 8 6 10 7 8 
V. Dim. errors 0.6 1.6 1.3 1.7 2.1 2.6 0.8 1.9 1.8 2.1 1.63 
F. Dim. errors 0.9 1.3 1.2 2.6 3.1 3 1.2 1.5 2.6 2.6 1.89 

Preserved variance .75 
Avg. Dim 11 6 11 12 10 12 9 8 12 9 10 
V. Dim. errors 0.6 1.7 0.9 1.6 1.4 1.7 0.7 1.8 2.4 2.5 1.57 
F. Dim. errors 0.8 1.2 1.7 2 1.9 2.9 0.6 1.8 2.4 2.2 1.7 

Preserved variance .80 
Avg. Dim 14 8 14 16 13 15 12 10 15 12 13 
V. Dim. errors 0.8 1.6 1 1.5 1.5 1.7 0.8 2.2 2.4 2.2 1.59 
F. Dim. errors 0.8 1.2 0.9 2 2 1.9 0.9 1.8 2.8 2.6 1.59 

Preserved variance .85 
Avg. Dim 18 10 18 20 16 20 15 14 19 15 17 
V. Dim. errors 0.9 1.1 1.1 1.7 1.6 2.2 0.9 2 2.7 2.4 1.48 
F. Dim. errors 0.8 1 1 1.5 1.8 1.8 0.6 1.9 2.4 2.5 1.50 

Preserved variance .90 
 

Table 1: This table summarizes the classification results for different preserved variance percentage i.e. α  The 
dimensionality of F. Dim. Models are equal to the average of the dimensionalities found by V. Dim model 
for all model 
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