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Course Origins

• This review course was developed and first 
presented in 1998.

• Presented a second time in 2005.

• In response to input from newer staff, we are re-
offering the course
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Outline
• SAMPLING

– Probability versus non-probability samples

– Types of probability samples (e.g., simple 
random samples, stratified random samples, 
cluster samples)

– Systematic and unsystematic survey error

– Types of survey bias (e.g., frame bias, 
nonresponse bias, self-selection bias)

• Development and use of simple survey weights.

• Concepts in Sample Size and Power Calculations
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Purpose of Sampling

• Valid and reliable inferences about characteristics 
(parameters) of a large population of interest from a 
smaller sample

• One survey may be used to make inferences about 
multiple parameters for multiple subpopulations

• Parameters can be means, proportions, regression 
coefficients, . . . 

• Statistics are calculated on the sample

• Sampling links the sample to the population
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Two Main Types of Samples
• Probability sample
– You control or otherwise know the (nonzero) 
probability of inclusion for all members of the 
population (don’t have to be equal)
– Statistical inference valid
– Mail survey from list, RDD, etc.

• Judgment/convenience sample
– Volunteerism or unsystematic approach makes 
probabilities of inclusion unknown
– Statistical inference not valid
– Mall intercept, inbound calls, etc.
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Some Types of 
Probability Samples

• Simple random sample (SRS)

• Systematic sample

• Stratified sample

• Cluster sample 

• Combinations 
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Sample Statistics are Random Variables
Estimating Population Parameters

• Take a SRS and calculate the sample mean for that 
particular SRS
• Doing this many times produces many sample means
• Draw a histogram of those sample means 
• This histogram is an approximation of the density of the 

Sample Mean, a random variable (R.V.)

also called the standard errorn
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• As the sample size n becomes large, 

• is approximately Normally distributed with mean

• and variance          

• regardless of the underlying distribution of X.  

• Good Rule of Thumb:

• Sample size n > 30 for continuous, roughly symmetric

• Might need 100 or even 1000 if really skewed, discrete, etc.

Central Limit Theorem (C.L.T.)

n
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Estimation Error

• Bias: Systematic error 

– Expected difference between sample and 
population parameter

– From sample design or estimator properties

• Variance: Unsystematic (sampling) error 

• Mean squared error (MSE): Total estimation error

– Variance + squared bias
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Bias and Sample Size

• Bias is typically “invisible” to software 
packages 

• Larger sample sizes reduce variance 
component, but not bias 

• As sample sizes get bigger, bias dominates 
variance and becomes most of the MSE



Elliott -11 Jan-27

Types of Biases

•Whom you select: Selection bias

•Who responds: Non-response bias

• How they respond: Response bias
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Whom you select: Selection bias

–Are some people systematically omitted, 
over-represented, or under-represented?
–Example: Landon vs. Roosevelt
–Solutions

Alter sampling approach
Design weights
Redefine population
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Who responds: 
Nonresponse bias

–Are the people who respond like those who 
do not in important ways?
–Solutions

Drive response rate up/alter survey 
approach
Nonresponse weights
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How they respond: 
Response bias

– When people answer, do the answers 
themselves systematically differ from the 
truth?
– Solutions

• Redesign questions to deal with social 
desirability, etc.

• Regression adjustment/ calibration
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A little bias goes a long way
• If we use to represent standardized bias ( = b / )

• It can be shown that the effective sample size (ESS) for an 
estimate is 

• n / (1 + n 2)

= 0.02 (1% bias on 50% outcome, 0.6% bias on 10% outcome)

-kills 4% of the “efficiency” (MSE-based ESS) 

at n=100

-kills 67% of the efficiency at n=5000

= 0.10 (5% bias on 50% outcome, 3% bias on 10% outcome)

-kills 67% of the efficiency at n=100

-kills 98% of the efficiency at n=5000

Stratified Sampling

-Proportionate

-Disproportionate
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Stratified Sampling Using
Proportionate Stratification

• Proportions selected within each stratum are 
proportionate to the proportion of the population they 
comprise 

• Produces a self-weighting sample

• Simple 

• Usually improves precision as compared to an SRS 
(can’t worsen)
–Depends on relationship of stratification variable 
to what you are estimating
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• 7% of the population have infection, so SRS has

• 25% of a 10% subpopulation have infection; while 
remaining 90% of population have a 5% infection rate

• To reduce the variance from that of an SRS, we can 
take a proportionate stratified sample so that our 
sample has exactly 10% from the high risk 
subpopulation

Chlamydial Infection Example 

0651.0)93.0)(07(.2
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• For proportionate stratification sampling (PSS), the 
variance is        , the weighted average of the within 
strata variances

• The relationship between the SRS variance and the 
PSS variance         for strata i=1,…,k is

Relationship between 
SRS and PSS Variances
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Proportionate Stratification 
Results in a Smaller Variance

22

222

1

2

2
21

21

945.0)0651(.945.00615.
slide) previous on seen hip(relations 6003.0615.0651.   and

0036.)07.05(.9.)07.25(.1.

0615.)95)(.05)(.9(.)75)(.25)(.1(. For PSS
0651. SRS  Recall

.05   .25
07.)05(.9.)25(.1.

9.   1.

w

i

k

i
i

w

w

ww



Elliott -21 Jan-27

Stratified Sample Using
Disproportionate Stratification

• Fully divide the population of interest into mutually 
exclusive strata

• Sample is not allocated proportionately to stratum 
size

• Sample weight for an observation= inverse of the 
sampling probability of the observation
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Uses of 
Disproportionate Stratification

• Increase precision for specific subgroups, trading off 
overall precision

• Optimize precision under cost constraints if 
observations vary in cost

• Street vs. shelter in homeless survey

• Optimize precision via allocation proportionate to 
variance if know strata variances

– “swing districts” (Tukey)

• If none of above apply, DS inefficient
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Cambodian stratification example
(Elliott McCaffrey et al 2009 POQ)

• Cambodians in Long Beach

• -People who lived in Cambodia at a certain time are target 
population; screening of general area for 12% group

• -Allocate to census tracts according to 2000 census

• -Define strata for households based on expert’s judgment 
of whether HH is Cambodian 

• -86% sensitivity, 91% specificity 

• -Undersample low-prob HHs by a factor of 4 

• -Tremendous improvements in ESS/$
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Combining Complete and Incomplete 
Frames-1

(Elliott Finch et al. 2008 Stat in Med)
• Want national probability sample of Chinese Americans in 

telephone survey
• RDD can result in a complete frame, but inefficient
• Run phone directories through Chinese surname list to 

generate a listed sample that is an incomplete frame, but 
efficient
• If just use listed sample do not have a probability sample
• But can define strata to make this a disproportionately 

stratified probability sample
– We can account for differences among listed!
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Combining Complete and Incomplete 
Frames-2

• Define two strata (mutually exclusive and exhaustive):

– (1) Chinese on  lists- N1 in population

– (2) Chinese not on lists- N2 in population

• RDD of sample size n1 should reach n1*N1/(N1+N2) in 
stratum 1 and n1*N2/(N1+N2) in stratum 2

• Surname list supplement of size n2 is entirely in stratum 2

• Probabilities of being selected

– Stratum 1: n1/(N1+N2)

– Stratum 2: n1/(N1+N2)+n2/N2
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Post-stratification

•Stratification variables may only be available after
data collection

•Strata may be defined after sampling
• May reduce non-response or selection bias
• Increases variance

• Iterative Proportionate Fitting/Raking



Cluster Sampling
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Pros & Cons of Cluster Sampling

•Advantages

–Feasibility (two-stage access to units)

–Cost-effective (travel)

–Want clusters for analysis (market, neighborhood, 
etc.)

•Disadvantage:

–Loss of information b/c of homogeneity within 
groups (variance inflation)
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Design Effects of Complex Surveys

• Design effect (DEFF) of a complex design =
(variance of the estimate obtained via the complex 
design)

divided by
(variance of the estimate obtained via a SRS with the 
same sample size)
• May come from stratification/weighting
– Applies to all outcomes equally 

• May come from clustering
– Affects all outcomes, but unequally
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Meaning of Design Effects

• DEFF>1 ---> loss of precision relative to an SRS
– Most common for complex survey design

• DEFF=1 ---> precision is equivalent to that of an SRS

• DEFF<1 ---> gain in precision relative to an SRS
– may happen with a proportionately stratified 

sample
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Effective Sample Size
• Effective Sample Size (ESS) is the sample size of simple random 

sample to which the current  sample size is equivalent given the
DEFF from the complex survey design

ESS=N/DEFF

• Effective Sample Size Translates Design effects (DEFF) into Sample 
Size terms.
– The ESS of a SRS is the nominal Sample Size
– Allows comparison alternative design in common terms

• Minimize cost per ESS
• Maximize ESS under cost constraints

• We sometimes really want ESS (and DEFF) based on MSE, rather 
than variance, but there is no standard term for this (MSE-based 
ESS?)
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Design Effects in Cluster Sampling
• Size of the clusters (B) and the degree of similarity of items within a 

cluster, as measured by the intra-class correlation coefficient 
=ICC=r, increase the loss of precision in a cluster sample

• ICC is the proportion of variance of individual scores attributable to 
clusters

r = 0 ---> items are as heterogeneous within clusters as between 
(random assignment to clusters)

r > 0 ---> items are more homogeneous within clusters than 
between (most common)

Typical values of r are between 0.01 and 0.15
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Formula for DEFF for Cluster 
Samples

)()1(
)())((

XVarB
XVarmeansclusterVarBr

rBDEFF )1(1

• If Var(cluster means)=Var(X), then r=0
• Related to F-Stat in 1-way ANOVA (with clusters as          
groups)
• Can derive from PROC VARCOMP (SAS) or simple 
hierarchical models
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Cluster Sampling 
Example

• Suppose r=0.05 and a cluster sample of 15 students from each of 20 
schools is chosen

• total sample size=300

• DEFF=1+(15-1)(0.05)=1.7

• The variance of a the sample mean estimated from the cluster design 
is 1.7 times as large as it would be based on an SRS of 300 students

• ESS=300/1.7=176.5

• If 25 students are chosen from each of 12 schools, which also 
produces a total sample size of 300, then DEFF=2.2 and ESS=136.4
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ICC limits usefulness of more 
observations within a cluster

• Let r be the ICC, B be the cluster size 
• 1/r is the maximum ESS per cluster
• Br is a measure of how “saturated” the clusters are relative to 

the ICC
• As Br increases, the marginal value of observations added to 

a cluster drops rapidly
– >50% of maximum ESS is achieved at Br=1; >75% at 

Br=3; >90% at Br=9
• For example, at r=0.05, 20 is the maximum ESS per cluster

– B=19 -> ESS of 10 /cluster; B=57->ESS of 15/cluster; 
B=171->ESS of 18/cluster 

– If extra observations within a cluster have marginal cost, 
they are wasteful beyond a certain point 
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Combining Design Effects: 
Example

• Rate of Chlamydia in high school students

• Survey 1 high risk and 9 low risk students from each 
of 30 schools; r=0.1

• DEFF(PSS)=0.945

• DEFF(Clustering)=1+(10-1)(0.1)=1.9

• DEFF(Overall)=DEFF(PSS)*DEFF(Clustering)=1.80

• ESS=30(10)/1.80=167
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Cluster Sampling and
Group Randomized Trials

• As an aside, the issues of ICCs in cluster sampling 
have strong parallels in group randomized trials
– Same losses in power with high ICCs, large 

sample size per randomized group
– “Saturation” heuristics apply in a similar manner
– See Torgerson (2001 BMJ) for trade-offs vs. 

contamination
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Weighting

• Calculating and using sample weights

• Design weights and non-response weights

• “Design effects” of weighting (variance inflation)

• Trade-offs in weighting 
• Fixing problems
• When not to use weights
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Purpose of Weights-1

• Imagine that we want to know the proportion of 
recent inpatients who would recommend their 
hospital to friends and family.

• From a list, we send out a survey to a subset, which 
is completed by a subset of that group 

• How do we estimate the above parameter from our 
survey responses?
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Purpose of Weights-2

• If all on the list were equally likely to be surveyed and 
equally likely to respond, we could simply average the 
outcome among respondents. 

• If, however, the above conditions are not met, and 
there is some association between these probabilities 
and the characteristics we are measuring, simple 
averages will be biased.

• Weights can reduce or eliminate these biases.
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Weights Have Limitations

• Weights cannot turn a convenience sample into a 
probability sample

• In a probability sample, weights are not always 
needed when sampling probabilities are unequal

• Poorly designed weights can make inference less 
accurate
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Types of Weights-1

• Design weights
– Correct for known differing probabilities of selection of 

population members into the sample we attempt to contact
– Used with disproportionate stratified random sampling (e.g., 

attempt to contact 10% of one subgroup but 20% of another 
subgroup)

• Non-response weights
– Correct for estimated differing probabilities of participation 

among those we attempt to contact, using information 
available for both non-respondents and respondents

– Example: perhaps 74% of females and 52% of males 
respond
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Types of Weights-2
• Post-stratification weights

– Correct for estimated differing probabilities of 
population members into the sample of respondents 
using characteristics that are known for the general 
population but which are not known about the 
individual members of the population until they 
respond

– Example: suppose we did not know the race/ethnicity 
of non-respondents, but we did know the true 
distribution of race/ethnicity for the population from a 
separate data source, and we want our sample to be 
representative of race/ethnicity

Creating Weights
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Creating Weights-1

• At their simplest, weights are the inverse of the 
probability of a population member being included in 
the sample of respondents
– If we have responses from 10% of those in 

subpopulation A, 20% of those in subpopulation 
B, and 25% of those in subpopulation C,  . . .

– We can assign each respondent from 
subpopulation A a weight of 1/.10=10.

– Likewise, members of subpopulations B and C 
would receive weights of 5 and 4, respectively.
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Creating Weights-2

– In a typical survey with non-response, both design 
and non-response weights are involved.  
• Design weights reflect the probability of selection 

from the population into the subset we attempt to 
contact (psel)
– DW=1/ psel

• Non-response weights reflect the estimated 
probability of people like the respondent 
responding, given that we attempted to contact 
them (pres)
– NRW=1/ pres
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Creating Weights-3

– Overall weights reflect the probability of selection 
from the population into sample of respondents 
(psel)*(pres) 

– OW=1/((psel)*(pres) )= DW*NRW
– Overall weights can be estimated directly as the 

inverse of the fraction of population members who 
respond within each stratum

– They can also be created in stages: design weights, 
then non-response weights, then multiply to create 
overall weight; This approach often has advantages
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Example 1:Design weights for HHs
for the Cambodian Study

• Within sampled blocks, we selected all HHs “likely” to contain 
eligible, ¼ of “unlikely” HHs.

• At this stage, an eligible found in a “likely” HH had P=1.00 of 
being selected ; P=0.25 for an eligible found in  an “unlikely”
HH

• Design weights at this stage are therefore 1 and 4, respectively.

• 18% of HHs were “likely;” they contained 96% of the eligibles in 
the sample, the mean weight was 0.96*1+0.04*4=1.11 (w/o 
rounding)

• Standardized (mean one) weights were 1/1.11 and 4/1.11 = 0.90 
and 3.59, respectively
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Example 2: Design weights for Chinese 
Listed/RDD Sample

• Let’s say 30% of population is picked up on lists, total population 
is 3,000,000, we get 1000 completes by RDD and 2700 from listed 
sample

• Expect 700 completes for the 2,100,000 unlisted, all from RDD

• Expect 3000 completes for the 900,000 listed (300 from RDD)

• Weights are 2,100,000/700=3000 and 900,000/3000=300, 
respectively

• Mean weight is 3,000,009/3700=810.8

• Standardized (mean one) weights were 3000/810.8 and 300/810.8 
= 3.70 and 0.37, respectively
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Creation of Nonresponse Weights

• Design weights are based on known probabilities (you chose the 
number per strata), so these are just ratios in a simple stratified 
sample.  Often simple.

• Non-response weights involve estimating the probability that 
people like the respondent respond when contacted. 
– These estimates are based on an implicit or explicit model of 

non-response
– Incorporating additional variables that are predictive of non-

response can further decrease bias
– Incorporating un-predictive variables (including strata that 

are too fine for non-response) can add noise to the weights 
and the estimates 
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Response Rates and 
Non-response Bias

• The main reason there is a push for high response 
rates (beyond the desire for larger sample sizes) is 
that higher response rates leave less room for 
differential non-response by personal characteristics

• While it is  possible that non-response is entirely 
random with a 10% response rate and highly selective 
with a 70% response rate, the reverse is more often 
true 

• But the relationship is weak (Groves and Petcheya
2008); good probability sampling process is most 
important
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Statistical Significance of 
Non-response Models

• A statistically significant non-response model can 
correct for differential non-response on the basis of 
the predictor variables in the model

• A statistically non-significant non-response model 
can provide some evidence that non-response does 
not differ on the basis of the predictor variables in 
the model if the sample size is large enough for 
adequate power



Design Effects from Weights
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Design Effects of Weighting-1

• Weighting  may correct bias, but generally at a price-
increased variance 

• Statistics calculated on unequally weighted 
observations are less stable (have larger standard 
errors) than statistics calculated on equally weighted 
observations

• The more variable the weights, the more variance is 
added to estimates and inference

• The amount of additional variance added is measured 
by the design effect
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Design Effect of Weighting-2

• Design effect (DEFF) of a weighted design =

(variance of the estimate obtained via the weighted 
design)

divided by

(variance of the estimate obtained via a SRS with the 
same sample size)

• DEFF>1 ---> loss of precision relative to an SRS

• DEFF=1 ---> precision is equivalent to that of an SRS
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Design Effect of Weighting:
Kish Approximation

• For disproportionately stratified or post-stratified 
designs DEFF=1+(CVw)2 where CVw is the coefficient of 
variation (SD/mean) of the weights.

• If the weights are standardized to have mean 1 then 
DEFF=1+Var(weights).

• Kish approximation overstates DEFF if weights are 
highly predictive of the outcome (Little & Vartivanian
2005)

• Weights can be a win-win, reducing both bias and 
variance
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How do weights increase variance?

Variance of a convex combination of two i.i.d. random 
variables X1 and X2
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Design Effect Example: 
Cambodian Study

• 96% of the sample has standardized weights of 0.89

• 4% has standardized weights of 3.59

• DEFF= 1+0.96[(1-0.89)2]+0.04[(1-3.59)2] =1.26
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Design Effect Example: 
Chinese Telephone Survey

• 81% of the sample has standardized weights of 0.37

• 19% has standardized weights of 3.70

• DEFF=1+0.81[(1-0.37)2]+0.19[(1-3.70)2] =1.70

• ESS=3700/1.70=2175
– Adding 2700 listed sample to 1000 RDD was 

equivalent to adding 1175 RDD cases- good news 
if these cases were less than 43% as expensive as 
RDD cases 

– Marginal value of oversampled listed cases would 
decrease as the size of the supplement increased
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Design Effects From 
Non-Sampling Weights 

• Same formulas for DEFF apply to non-sampling 
weights (e.g. propensity score weights)



Trade-offs
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Trade-offs: Intuition
• Weights only reduce bias if the basis of over- or 

under-representation is associated with what you are 
trying to measure.
• If sampling or response probabilities differ by 

something irrelevant, no bias is saved by weighting 
unequally, but variance is still inflated
• Example: If somehow we sampled people whose 

SSNs were odd at 10 times the rate as people whose 
SSNs were even, we would NOT want to weight to 
correct for this inequality, as it almost certainly would 
be irrelevant to any outcome we might want to 
measure
• Sometimes we can evaluate these trade-offs 

empirically



Elliott -63 Jan-27

Trade-offs: The MSE Metric

• Total mean squared error of estimation (MSE) = 
(variance of observations / n) +  (bias of estimates) 2

• Because weights reduce bias but increase variance, there 
is a trade-off that should be evaluated before weights are 
used
• Effective weights improve precision (reduce mean square 

error) by eliminating more bias than they add variance
• We can approximate bias by the difference in weighted and 

un-weighted estimates (which somewhat overestimates 
bias), so that change in MSE from weights = 
• (DEFF – 1) *(variance of observations / n) - (weighted 

estimate – un-weighted estimate)2
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Trade-offs and Sample Size

• Design effects (variance inflation) apply to all 
outcomes equally; bias reduction varies by outcome, 
so one has to evaluate this trade-off across several 
important outcomes (See Ghosh-Dastidar Elliott et al. 
2009 POQ)

• Because large sample sizes reduce variance but not 
bias, even small bias reductions are a good trade-off 
in large sample sizes (See Elliott & Haviland 2007 
Survey Methodology)
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Bias-Variance Tradeoffs: 
Cambodia Example

• Mean estimated bias reduction was 0.005, 0.000, 
0.020, 0.012 standard deviations for demographics, 
trauma incidence, psychological disorder incidence, 
and regression coefficients predicting Dx, 
respectively

• At our n=500, breakeven DEFFs would have 1.02, 1.00, 
1.21, and 1.07 in terms of MSE

• So weights with DEFF of 1.26 would worsen MSE 
across the board- do not use?

• Appears that errors were mainly mobility between 
rating and interview (and mobility unimportant for 
parameter estimates).
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Hypothesis Tests of 
Whether Weights Reduce Bias

• Test significance (and magnitude) of correlation of 
weights with outcomes

• Test interaction terms between independent variables 
and weights in regression

• Null Hypothesis is that weights do not reduce bias, 
p<0.05 suggests that they may



Smoothing Weights
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Smoothing weights
• Smoothing weights refers to various techniques for reducing their 

variance and hence their design effect. 

• A first step with compound weights (such as overall weights that a 
product of design weights and non-response weights) is to 
compute design effects separately for the two parts to understand 
where most of the overall design effect is coming from
– If non-response weights or some other estimated weights are a 

major source of design effect, smoothing should be considered 
here first 

– If non-estimated design weights are the major source of design 
effects, there are several options 
• Redesign survey more proportionately for next round
• Aggregate design weight calculations over less important 

factors
• Use empirical smoothing techniques
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Smoothing non-response weights:
Fixing The Model

• Aggregate to higher level strata (e.g., practices 
rather than physicians, annual rather than 
quarterly)

• Drop non-significant terms (or even significant 
terms with small standardized odds ratios) from 
logistic regression models of nonresponse; ignore 
higher-order interaction terms

• Shrink out sampling error in non-response weights 
if sample sizes/bins too small
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Empirical smoothing techniques
• Capping: After standardizing weights to mean 1, limit maximum 

value to a = 5 or 10, then re-standardize weights

• Shrinkage: After standardizing weights to mean 1, let new weight = 

• (1-a) * old weight + a * 1, 0 < a < 1
– larger values of a shrink more, multiplying DEFF-1 by (1-a)2

– generally better than capping

• Example of shrinkage: 500 observations with weight = 0.2, 100 
observations with weight=0.44, 24 observations with weight = 20.0; 
DEFF = 15.45, ESS=40

• With a=0.8, weights are 0.84, 0.888, 4.80; DEFF= 1.58; ESS=395



Elliott -71 Jan-27

Shrinking Sampling Error
(Haviland & Elliott, in prep)

• Design effect from sampling error alone is

DEFF0=1+(1-p)/(p(n-1)) 

if strata have size n per stratum and true response rate p

• Suppose our original strata weights Wi have mean 1 and that 
we create new shrunken weights Zi by shrinking the weights 
toward the mean of 1 in a linear combination where 

Zi=a(1)+(1-a)Wi, 0<=a<=1.

• Reduce design effect by amount corresponding to sampling 
error with

a=1-sqrt((DEFF-DEFFo)/(DEFF-1))
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Smoothing design weights
• Redesign survey more proportionately for next round
– Best approach because maximizes ESS and 

statistical power
– Limited by subgroup analysis needs

• Aggregate design weight calculations over less 
important factors

• Use empirical smoothing techniques
– Last choice, because weights don’t reproduce the 

population and you are knowingly leaving some 
bias present to control extremely variable weights.
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One approach for Evaluating Weights
• If DEFF is small and sample size is large, weights are 

probably worth it and no further examination is needed
• Otherwise
– Test Ho: that weights remove no bias
– If reject Ho, compare magnitude of estimated bias 

reduction and variance inflation.
– If reject Ho and there is more bias reduction than 

variance inflation, weights are probably worth it
– Otherwise
• Try to reduce DEFF of weights by aggregating or 

shrinking, examining components of compound 
weights individually.  Could solve to minimize 
MSE. 
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Other considerations 
when evaluating weights

• Evaluate weights for several key outcomes; look for 
a pattern

• Easiest to make one decision about weights for all 
outcomes

• Remember that smoothing weights or not weights 
can reduce the robustness to misspecification that 
comes with the design-based approach 
• But sometimes trivially, and at too high a price
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Sample Size, Power, Precision, and 
Confidence Intervals

• What sample size do I need (for a certain amount of 
power/precision)?

• What can I say with a given sample size?

• What matters and how much?
–Proportions vs. Means
–Effects of N, confidence level, significance 

level, power level, allocation/balance, pairing
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Power Versus Precision

• Power has to do with the ability to detect 
differences of a given magnitude in hypothesis 
testing

• Precision refers to the amount of variability present 
in point estimates in estimation

• Precision is a more basic concept, if we understand 
it, we understand power

• The power you have is largely determined by 
the precision you have
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Sample Size and Precision 

Width of a confidence interval is inversely related to the square root 
of the sample size

For a CI that is 1/3 as wide, multiply n by 9

1/2                4

2/3                2.25

3/4                1.78

Cutting sample size by 10% multiplies CI width by 1.05

20%               1.12

30%               1.20

40%               1.29

50%               1.41
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Precision/Power “Worse”
for Proportions

• Standard deviations are “large” for proportions

• 50% at 50%

• 40% at 20% / 80%

• 30% at 10% / 90%

• “Small” / “Medium” / “Large” effect sizes are 0.2 / 0.5 / 
0.8 standard deviations (Cohen)

• These are 6-10% / 15-25% / 24-40% for proportions in 
the 10-90% range
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Precision and p
Precision is greatest when the proportion p is near 0 or 1 and least
when p is near 0.5 in terms of percentages points, but NOT relative 
to p
Let n be the sample size required for a CI of width E when p=.25
and of width ap when p=0.25

p Obs for CI width E    Obs for CI Width ap
.05 0.25n 6.33n 
.1 0.48n 3.00n
.2 0.85n 1.33n
.25 1.00n 1.00n
.3 1.12n 0.78n
.4 1.28n 0.50n
.5 1.33n 0.33n
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Estimating Differences in Means
Requires Larger Ns

• Estimates of differences are much less precise than 
estimates of a single proportion or mean

• If we are estimating a single mean and have a CI of 
width E with sample size n -- to obtain a CI of width E 
for the difference of that mean and the mean of 
another population with the same SD, we need a total 
of 4n observations (2n for each of the two groups)

• Differences-of-differences (and 2-way interactions) are 
even worse: 16n= 4n in each of 4 cells needed
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Equal Sample Allocation Helps

• Assuming equal SDs, precision is least when the sample is 
allocated unevenly among the two populations

• Let a sample size n*=n1+n2 result in a CI of width E when n1=n2
Total sample size needed for a Sample in

r=n2/n1 difference in mean CI of width E rare group
1 1.00n* 0.50n*
1.5 1.04n* 0.42n*
2 1.12n* 0.38n*
3 1.33n* 0.33n*
4 1.58n* 0.32n*
5 1.80n* 0.30n*
10 3.02n* 0.27n*
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Small Departures from Balance 
Don’t Cost Much

• Let d=|p-0.5|, where p is the proportion allocated to 
group 1 of 2.

• Proportionate loss in effective sample size compared 
to perfect balance is 4d^2
– 4% for a .6/4 split 
– 16% for a .7/.3 split

• “Flat” function near .5/.5
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50/50 “Coin Flips” Provide Good Power 
for n>100

(Elliott, McCaffrey,  & Lockwood, 2007)
• CLT and flatness work together in simple 

randomization

– Imbalance is both rare and rarely consequential

• Expected power loss is equal to the loss of ONE 
OBSERVATION

• 5% chance of loss of power equivalent to 4 or more 
observations

• Stratified randomization or blocking not needed 
except for small samples
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Greater Confidence Levels are Costly

• A 99% CI is 32% wider than a 95% CI
A 90% CI is 84% as wide as a 95% CI
An 80% CI is 65% as wide as a 95% CI

• To have the same width as a given 95% CI with sample 
size n you need
1.73n for a 99% CI
0.71n for a 90% CI
0.43n for an 80% CI



Power
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Least Practically Significant Difference
• We can’t have good power against all alternatives

• Some alternatives might be statistically significant 
with large n, but not practically significant

• We typically want 80% (or 90%) power versus the 
least practically significant difference
– This is the minimum power over the range of 

alternatives we care about.
– Higher power often requires enormous n:

• Compared to n for 80% power
– 1.33n for 90%power; 1.66n for 95%, 2.46 n for 99%
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Effect Sizes are like CI widths

• Effect size detectable is inversely related to the square root of the 
sample size
• To be able to detect an effect size 1/3 as large, multiply n by 9 
1/2                                        4

2/3 2.25

3/4                                        1.78

• Cutting sample size by 10% multiplies CI width by 1.05
20%                                       1.12

30%                                       1.20

40%                                       1.29

50%                                       1.41
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Power for percentage points, 
RR, and OR

• Like precision, power to detect a given percentage point change is 
greatest when the proportion p is near 0 or 1 and least when p is 
near 0.5

• Power to detect a given RR or OR increases as p rises from 0 to 0.5.  
Can oversample rare outcomes to ameliorate.

• Let n be the sample size required for 80% power to detect a change 
of a points, a RR of  b, and an OR of c near p=.25

p Obs for a point change   Obs for RR of b Obs for OR of c
.05 0.25n 6.33n 10.16n
.1 0.48n 3.00n 4.32n
.2 0.85n 1.33n 1.52n
.25 1.00n 1.00n 1.00n
.3 1.12n 0.78n 0.68n
.4 1.28n 0.50n 0.32n
.5 1.33n 0.33n 0.15n
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Pairing Helps A Lot 
With Continuous Outcomes

• Repeated measures, pre-/post-, propensity 
matching etc.

• Let r be the correlation of paired observations

• Paired data can achieve same power as unpaired 
data using only 1-r as many case.
– E.g. if r=0.7, two-sample t-test with n=100 in 

each group equivalent to 30 pairs. 
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Pairing Helps Less 
With Dichotomous Outcomes

• R is Tetrachoric Correlation

• Table displays sample size 
needed for equivalent power 
in paired data

• Least gains for rare 
dichotomous data

• Alternatively, 
dichotomization hurts the 
most when data are paired 

Cont Dich
P=0.5

Dich
P=0.1

R=0.0 A B C

R=0.2 0.80A 0.87B 0.92C

R=0.4 0.60A 0.74B 0.81C

R=0.6 0.40A 0.59B 0.68C

R=0.8 0.20A 0.41B 0.49C
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Covariates can Increase 
(or Decrease)  Power

• If X2,…,Xk are correlated with the residual of Y|X1 , 
but are not correlated with X1, power improves 
(“cleaning the error term”)

• If a=R^2 of X2,…, Xk with residuals of Y|X1 and 
X2,…,Xk are not correlated with X1, need only n(1-a) 
observations for the same power as n without 
covariates 

• If X2,…,Xk are correlated with X1, the effect size can 
increase or decrease (“reducing confounding”)
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Costs of lost N on power in p-value terms
Say that I had done power calculations for a given sample size, 

then lost q% of the sample.  

What p-value under the original N becomes .05 now?

q Original p-value
----------- ----------------------
9% 0.04
18% 0.03
29% 0.02
42% 0.01
51% 0.005
65% 0.001
75% 0.0001
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Increase in N needed for power to detect a 
true effect ns in a smaller pilot

Suppose an effect in a small pilot is not significant at that N but is real.  

By what %  must we increase N to achieve 50% or 80% power at 0.05, 2-
sided?

Pilot p-value % add for 50% power % add for 80% power

-------------------------------------------------

0.06 9% 122%

0.07 17% 139%

0.08 25% 156%

0.09 34% 173%

0.10 42% 190%

0.125 63% 233%

0.15 85% 278%

0.20 134% 377%
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Other factors influencing power
• Power decreases as Type I error rate decreases

– In order to maintain 80% power while decreasing 
from .05 to .01 on a 2-sided test, sample size must 

be increased by 49%!  
– Slightly smaller effects at higher power levels; bigger 

effects for 1-sided tests

• Power is greater for 1-sided* than 2-sided tests
– Switching from a 2-sided to a 1-sided test (in the 

correct direction) increases 70% power->80% and 
80%->87.5%

– A 1-sided* test requires 21% less sample size for 80% 
power at =.05 than a 2-sided test 

– A 1-sided test in the wrong direction has virtually no 
power
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Non-RCT Studies Require Large 
Sample Sizes

• RCT is usually most powerful design per 
observation

• Group Randomized Trial loses power from 
clustering
– Group randomization analogous to Cluster 

Sampling

• Observational Studies typically generate gigantic 
design effects with proper analytic techniques
– Weighting, matching, Wald estimators etc.
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How to account for Design Effects

• Sample Size Needed, given power

Multiply n by DEFF

• Power, given sample size

Use ESS (n/DEFF), not n

• Difference  detectable, given sample size

Use ESS or multiply by (DEFF)
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