
36-752 Advanced Probability Overview Spring 2018

9. Almost Sure Convergence and Strong Law of Large Numbers

Instructor: Alessandro Rinaldo

Associated reading: Sec 6.1 and 6.2 of Ash and Doléans-Dade; Sec 2.3–2.5 of Durrett.

Overview

Let {Xi : i ≥ 1} be i.i.d random variables with −∞ < EX1 < ∞. WLLN says that the
partial average (X1 + X2 + ... + Xn)/n converges to EX1 in probability. In fact, one can
prove a stronger result: (X1 +X2 + ...+Xn)/n converges to µ almost surely.

We start with Kolmogorov’s 0-1 law and the notion of tail σ-field.

Theorem 1 (Kolmogorov 0-1 law). Let {Xn}∞n=1 be a sequence of independent random

quantities. Define Tn = σ({Xi : i ≥ n}) and T =
󰁗∞

n=1 Tn. Then every event in T has

probability either 0 or 1.

Proof: Let Un = σ({Xi : i ≤ n}), and let U =
󰁖∞

n=1 Un. Let A ∈ U and B ∈ T . There
exists n such that A ∈ Un. Because B ∈ Tn+1, it follows that A and B are independent.
So U and T are independent. It follows from Proposition 19 of Lecture Notes Set 4 that
σ(U) = σ({Xn}∞n=1) and T are independent. Since T ⊆ σ(U), it follows that T is independent
of itself, hence for all B ∈ T , Pr(B) ∈ {0, 1} because P (B) = P (B ∩B) = P (B)P (B).

Definition 2. The σ-field T in Theorem 1 is called the tail σ-field of the sequence {Xn}∞n=1.

Now consider the event A ≡ {ω : (X1 + X2 + ... + Xn)/n converges}. Then it is easy to
check that A ∈ T , and hence P (A) = 0 or 1 by Kolmogorov’s 0-1 law. According to WLLN,
we shall conjecture that P (A) = 1.

1 Preliminaries and Borel Cantelli Lemmas

Definition 3 (i.o. and ev.). Let qn be some statement, true or false for each n. We say

qn happens infinitely often or (qn i.o.) if for all n there is m ≥ n such that qm is true, and

(qn ev.) if there exists n such that for all m ≥ n, qm is true. Now consider probability space

(Ω,F , P ) and let qn depend on ω ∈ Ω, giving events

An = {ω : qn(ω) is true}.
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We now have new events,

{An i.o.} = {ω : qn(ω) i.o.} =
󰁟

n≥1

󰁞

m≥n

Am ≡ lim sup
n→∞

An ,

and

{An ev.} = {ω : qn(ω) ev.} =
󰁞

n≥1

󰁟

m≥n

Am ≡ lim inf
n→∞

An .

Useful facts.

1. Given a sequence of events An, the sequence (1An(ω) : n ≥ 1) can be viewed as a

function of ω 󰀁−→ {0, 1}ZZ
+

.

2. 1(An i.o.) = lim supn→∞ 1An and 1(An ev.) = lim infn→∞ 1An .

3. (de Morgan) {An i.o.}c = {Ac
n ev.} and {An ev.}c = {Ac

n i.o.}

4. an → a ⇐⇒ ∀󰂃 > 0, |an − a| < 󰂃 ev., so

Xn
a.s.→ X ⇐⇒ ∀󰂃 > 0, Pr(|Xn −X| ≤ 󰂃 ev.) = 1

⇐⇒ ∀󰂃 > 0, Pr(|Xn −X| > 󰂃 i.o.) = 0.

(in the second “⇔”, showing “⇒” is trivial but “⇐” is less trivial.)

Exercise 4. Xn
a.s.→ 0 ⇐⇒ supk≥n |Xk|

P→ 0.

Next we present a basic tool in the study of almost sure convergence.

Theorem 5 (First Borel-Cantelli lemma). Let (Ω,F , µ) be a measure space. If
󰁓∞

n=1 µ(An) <

∞ then µ (lim supn→∞ An) = 0 or equivalently, µ (An i.o.) = 0.

Proof: Let Bi =
󰁖∞

n=i An. Then {Bi}∞i=1 is a decreasing sequence of sets, each of which
has finite measure, so by continuity of measure we have

lim
i→∞

µ(Bi) = µ
󰀓
lim
i→∞

Bi

󰀔
= µ

󰀣 ∞󰁟

i=1

Bi

󰀤
= µ

󰀕
lim sup
n→∞

An

󰀖
.

Since
󰁓∞

n=1 µ(An) < ∞, it follows that limi→∞
󰁓∞

n=i µ(An) = 0. Since µ(Bi) ≤
󰁓∞

n=i µ(An),
limi→∞ µ(Bi) = 0, and the result follows.

Theorem 6 (Second Borel-Cantelli lemma). Let (Ω,F , P ) be a probability space. If󰁓∞
n=1 P (An) = ∞ and if {An}∞n=1 are mutually independent, then P (lim supn→∞ An) = 1 or

equivalently, P (An i.o.) = 1.
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Proof: Let B = lim supn→∞ An. We shall prove that P (BC) = 0. Let Ci =
󰁗∞

n=i A
C
n .

Then BC =
󰁖∞

i=1 Ci. So, we shall prove that P (Ci) = 0 for all i. Now, for each i and k > i,

P (Ci) = P

󰀣 ∞󰁟

n=i

AC
n

󰀤
≤ P

󰀣
k󰁟

n=i

AC
n

󰀤
=

k󰁜

n=i

[1− P (An)].

Use the fact that log(1− x) ≤ −x for all 0 ≤ x ≤ 1 to see that, for every k > i,

log[P (Ci)] ≤
k󰁛

n=i

log[1− P (An)] ≤ −
k󰁛

n=i

P (An).

Since this is true for all k > i, it follows that log[P (Ci)] ≤ −
󰁓∞

n=i P (An) = −∞. Hence,
P (Ci) = 0 for all i.

Now we use the Borel-Cantelli Lemma to prove some results in Lecture Notes Set 5.

Theorem (Lemma 25 of Lecture Notes Set 5). If Xn
P→ X, then there is a subsequence

{Xnk
}∞k=1 such that Xnk

a.s.→ X.

Proof: Let nk be large enough so that nk > nk−1 and Pr(d(Xnk
, X) > 1/2k) < 1/2k.

Because
󰁓∞

k=1 Pr(d(Xnk
, X) > 1/2k) < ∞, we know that Pr(d(Xnk

, X) > 1/2k i.o.) = 0.
Let A = {d(Xnk

, X) > 1/2k i.o.}. Then Pr(AC) = 1 and limk→∞ Xnk
(ω) = X(ω) for every

ω ∈ AC .

The next application of Borel-Cantelli lemma shows that LP (Ω,F , µ) is complete.

Definition 7 (Cauchy sequence). Let E be a metric space with metric d. A sequence

{xn}∞n=1 in E is a Cauchy sequence if, for every 󰂃 > 0 there exists N such that d(xn, xm) < 󰂃

for all m,n ≥ N . The metric space E is complete if every Cauchy sequence in E converges

to an element of E.

Proposition 8. If {xn}∞n=1 is a Cauchy sequence in a metric space and if a subsequence

converges to x, the whole sequence converges to x.

Lemma 9 (Completeness of LP spaces). Each Cauchy sequence in Lp converges.

Proof: Let {fn}∞n=1 be a Cauchy sequence in Lp(Ω,F , µ). Let {nk}∞k=1 be a sequence of
integers such that 󰀂fnk

− fnk+1
󰀂p < 1/3k for all k. For finite p, apply the Markov inequality

to |fnk
− fnk+1

|p to get

µ

󰀕
|fnk

− fnk+1
| > 1

2k

󰀖
< 2pk󰀂fnk

− fnk+1
󰀂pp ≤

󰀕
2

3

󰀖pk

.
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Since
󰁓∞

k=1 µ(|fnk
− fnk+1

| > 1/2k) < ∞, it follows from Theorem 5 that

µ

󰀕
|fnk

− fnk+1
| > 1

2k
i.o.

󰀖
= 0.

For p = ∞, we have µ(|fnk
− fnk+1

| > 1/3k) = 0, for all k, hence

µ

󰀕
|fnk

− fnk+1
| > 1

3k
i.o.

󰀖
= 0.

In either case, it follows that, a.e. [µ]
󰁓∞

k=1 |fnk
(ω)−fnk+1

(ω)| < ∞, hence {fnk
}∞k=1 converges

a.e. [µ] to some limit, call it f . To see that f is the Lp limit of {fnk
}, use Fatou’s lemma

and repeated applications of the triangle inequality to see that

󰀂f󰀂p ≤ lim inf
k→∞

󰀂fnk
󰀂p ≤

󰀣
󰀂fn1󰀂p + lim

k→∞

k󰁛

m=1

󰀂fnm − fnm+1󰀂p

󰀤
< ∞.

Also,

󰀂f − fnk
󰀂p ≤

∞󰁛

m=k

󰀂fnm − fnm+1󰀂p <
2

3k
.

Proposition 8 then says that the whole sequence converges to f in Lp.

2 Sums of independent random variables

The proof of strong law of large numbers requires a series of results about sums of independent
random variables. These are also interesting classical results.

Theorem 10 (Kolmogorov’s maximal inequality). Let {Xk}nk=1 be a finite collection

of independent random variables with finite variance and mean 0. Define Sk =
󰁓k

i=1 Xi for

all k. Then

Pr

󰀕
max
1≤k≤n

|Sk| ≥ 󰂃

󰀖
≤ Var(Sn)

󰂃2
.

Proof: For n = 1, the result is just Chebyshev’s inequality. So assume that n > 1 for the
rest of the proof. Let Ak be the event that |Sk| ≥ 󰂃 but |Sj| < 󰂃 for j < k. Then {Ak}nk=1

are disjoint and 󰀝
max
1≤k≤n

|Sk| ≥ 󰂃

󰀞
=

n󰁞

k=1

Ak. (1)
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It follows that

E(S2
n) ≥

n󰁛

k=1

󰁝

Ak

S2
ndP

=
n󰁛

k=1

󰁝

Ak

󰀅
S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2
󰀆
dP

≥
n󰁛

k=1

󰁝

Ak

[S2
k + 2Sk(Sn − Sk)]dP

=
n󰁛

k=1

󰁝

Ak

S2
kdP

≥ 󰂃2
n󰁛

k=1

Pr(Ak)

= 󰂃2 Pr

󰀕
max
1≤k≤n

|Sk| ≥ 󰂃

󰀖
,

where the first two inequalities and the first equality are obvious. The second inequality
follows from the fact that IAk

Sk is independent of (Sn − Sk) which has mean 0. The third
inequality follows since S2

k ≥ 󰂃2 on Ak, and the third equality follows from Equation (1).

The reason that this theorem works is that whenever the maximum |Sk| is large, it most
likely is |Sn| that is large.
A consequence of Kolmogorov’s maximal inequality is the basic L2 convergence theorem.

Theorem 11 (Basic L2 Convergence Theorem). Let X1 X2, . . . be independent random

variables with E(Xi) = 0 and E(X2
i ) = σ2

i < ∞, i = 1, 2, . . ., and Sn = X1 +X2 + · · ·+Xn.

If
󰁓∞

i=1 σ
2
i < ∞, then Sn converges a.s. and in L2 to some S∞ with E(S2

∞) =
󰁓∞

i=1 σ
2
i .

Recall: The conclusion has been proved in the completeness of Lp for p = 2. Here we give a
different argument for a.s. convergence using Kolmogorov’s maximal inequality.

Proof: We say that Sn is Cauchy a.s. if Mn := supp,q≥n |Sp − Sq| → 0 a.s. In light of
Exercise 4, if Pr(Mn > 󰂃) → 0 for all 󰂃 > 0, then Mn ↓ 0 a.s.

Let M∗
n := supp≥n |Sp − Sn|. By the triangle inequality,

|Sp − Sq| ≤ |Sp − Sn|+ |Sq − Sn| ⇒ M∗
n ≤ Mn ≤ 2M∗

n,

so it is sufficient to show that M∗
n

P→ 0.
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For all 󰂃 > 0,

Pr

󰀕
sup
p≥n

|Sp − Sn| > 󰂃

󰀖
= lim

N→∞
Pr

󰀕
max

n≤p≤N
|Sp − Sn| > 󰂃

󰀖

≤ lim
N→∞

N󰁛

i=n+1

σ2
i

󰂃2
=

∞󰁛

i=n+1

σ2
i

󰂃2

where we used continuity of measure in the first step and applied Kolmogorov’s inequality
in the second step. Since

󰁓∞
i=1 σ

2
i < ∞,

lim
n→∞

Pr

󰀕
sup
p≤n

|Sp − Sn| > 󰂃

󰀖
= 0

Remark: Later in this class we shall see that the conclusion is valid for a martingale {Sn}
with E[Xn+1f(X1, . . . , Xn)] = 0 for all bounded measurable f : Rn → R.
A consequence of the basic L2 theorem is the following interesting theorem about sums of
independent random variables. It gives necessary and sufficient conditions for convergence
of Sn. For each c > 0 and each n, let X

(c)
n (ω) = Xn(ω)I[0,c](|Xn(ω)|). We will prove only

the sufficiency part of the result. The necessity proof involves martingale theory and will be
given later.

Theorem 12 (Three-series theorem). Suppose that {Xn}∞n=1 are independent. For each

c > 0, consider the following three series:

∞󰁛

n=1

Pr(|Xn| > c),
∞󰁛

n=1

E(X(c)
n ),

∞󰁛

n=1

Var(X(c)
n ). (2)

A necessary condition for Sn to converge a.s. is that all three series are finite for all c > 0.

A sufficient condition is that all three series converge for some c > 0.

Proof: First, define some notation. For each c > 0 and each n, define

S(c)
n =

n󰁛

k=1

X
(c)
k ,

M (c)
n =

n󰁛

k=1

E(X
(c)
k ),

s(c)n =

󰁹󰁸󰁸󰁷
n󰁛

k=1

Var(X
(c)
k ).
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For sufficiency, assume that all three series converge for some c > 0. Because the second
and third series in Equation (2) converge, Theorem 11 says that S

(c)
n converges a.s. We know

that Pr(Xn ∕= X
(c)
n ) = Pr(|Xn| > c). Since the first series in Equation (2) converges, the

first Borel-Cantelli lemma says that Pr(Xn ∕= X
(c)
n i.o.) = 0. Hence, for almost all ω, there

exists N(ω) such that Sn(ω)− S
(c)
n (ω) is the same for all n ≥ N(ω). Hence Sn(ω) converges

for almost all ω.

Example 13. Let Xn have a uniform distribution on the interval [an, bn]. A necessary

condition for convergence of Sn is that
󰁓∞

n=1(bn − an)
2 < ∞ (the third series). Another

necessary condition is that
󰁓∞

n=1(an + bn) converge (the second series). It follows that an
and bn must both converge to 0 so that the first series also converges for all c > 0. That the

two conditions above are sufficient for the convergence of Sn follows from Theorem 11.

Example 14. Let

Pr(Xn = x) =

󰀻
󰁁󰀿

󰁁󰀽

1
2n2 if x = n or x = −n,
1
2
− 1

2n2 if x = −1/n or x = 1/n,

0 otherwise.

Then E(Xn) = 0 and Var(Xn) = 1 + 1/n2 − 1/n4. So Theorem 11 does not imply that Sn

converges a.s. However, for c > 0, E(X
(c)
n ) = 0 and Var(X

(c)
n ) eventually equals 1/n2− 1/n4

while Pr(|Xn| > c) eventually equals 1/n2, so the three-series theorem does imply that Sn

converges a.s.

3 Strong Law of Large Numbers

We now prove the strong law of large numbers. We first need to recall some results in
elementary analysis.

Lemma 15 (Kronecker’s lemma). If let {xn : n ≥ 1} and {an : n ≥ 1} be sequences of

real numbers, such that 0 < an ↑ ∞ and
󰁓∞

n=1 xn/an < ∞, then (
󰁓n

i=1 xi)/an → 0.

Observation. Let X1, X2, . . . be independent with mean 0 and Sn = X1 +X2 + · · · +Xn.
If

󰁓∞
n=1 E(X

2
n)/a

2
n < ∞, then by the basic L2 convergence theorem

󰁓∞
n=1 Xn/an converges

a.s., hence Sn/an → 0 a.s. by Kronecker’s lemma.

Example 16. Let X1, X2, . . . be i.i.d., E(Xi) = 0, and E(X2
i ) = σ2 < ∞.

Take an = n:
∞󰁛

n=1

σ2

n2
< ∞ ⇒ Sn

n

a.s.→ 0.
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Now take an = n
1
2
+󰂃, 󰂃 > 0:

∞󰁛

n=1

σ2

n1+2󰂃
< ∞ ⇒ Sn

n
1
2
+󰂃

a.s.→ 0.

Theorem 17 (Kolmogorov’s Law of Large Numbers). Let X1, X2, ... be i.i.d. with

E(|Xi|) < ∞, Sn = X1 + ...+Xn. Then Sn/n → E(X) a.s. as n → ∞.

Note that the theorem is true with just pairwise independence instead of the full inde-
pendence assumed here. The theorem also has an important generalization to stationary
sequences.

Proof: Without loss of generality, assume E(X1) = 0.

Consider truncated variables
󰁥Xn := Xn1(|Xn| ≤ n).

Observe that
Pr(Xn = 󰁥Xn ev.) = 1.

To see this, check

Pr(Xn ∕= 󰁥Xn i.o.) = Pr(|Xn| > n i.o.)

and use Borel-Cantelli lemma by observing

∞󰁛

n=1

Pr(|Xn| > n ) =
∞󰁛

n=1

Pr(|X| > n ) ≤
󰁝

[0,∞)

Pr(|X| > t)dt = E|X| < ∞ .

Now center the truncated variables. Define 󰁨Xn := 󰁥Xn − E
󰀓
󰁥Xn

󰀔
.

We will show that 󰀕
Sn

n

a.s.→ 0

󰀖
⇐
(a)

󰀣
Ŝn

n

a.s.→ 0

󰀤
⇐
(b)

󰀣
S̃n

n

a.s.→ 0

󰀤
,

where Ŝn = X̂1 + X̂2 + · · ·+ X̂n and S̃n = X̃1 + X̃2 + · · ·+ X̃n.

(a) comes from the fact that if ω ∈
󰁱
ω : Xn = 󰁥Xn ev.

󰁲
(which has probablity 1), then

Sn (ω) /n− 󰁥Sn (ω) /n → 0.

(b) comes from (fact: if cn → 0 then (c1 + ...+ cn)/n → 0)

󰁥Sn

n
−

󰁨Sn

n
=

E 󰁥X1 + E 󰁥X2 + ...+ E 󰁥Xn

n
→ 0 as n → ∞

because by DCT we have

E 󰁥Xn = E[Xn1 (|Xn| ≤ n)] = E[X1 (|X| ≤ n)] → 0 .
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Now, if we can show that
∞󰁛

n=1

E
󰀓
󰁨X2
n

󰀔

n2
< ∞ ,

then the proof can be completed by Kronecker’s lemma and the L2 convergence theorem (see
the observation following Lemma 15).

In fact, note that

E
󰀓
󰁨X2
n

󰀔
= Var(X̂n) ≤ E(X̂2

n) = E(X21(|X| ≤ n)).

So, by some basic manipulation, we have

∞󰁛

n=1

E
󰀓
󰁨X2
n

󰀔

n2
≤

∞󰁛

n=1

EX21 (|X| ≤ n)

n2
= E

󰀣
X2

∞󰁛

n=1

1 (|X| ≤ n)

n2

󰀤

≤ E

󰀣
X2

∞󰁛

n=1

1 (|X| ≤ n)

n2
1(|X| ≤ 2)

󰀤
+ E

󰀣
X2

∞󰁛

n=1

1 (|X| ≤ n)

n2
1(|X| > 2)

󰀤

≤ 4
∞󰁛

n=1

1

n2
+ E

󰀣
X2

∞󰁛

n=1

1 (⌊|X|⌋ ≤ n)

n2
1(|X| > 2)

󰀤

≤
∞󰁛

n=1

4

n2
+ E

󰀳

󰁃X2

∞󰁛

n=⌊|X|⌋

1

n2
1(|X| > 2)

󰀴

󰁄

≤
∞󰁛

n=1

4

n2
+ E

󰀕
X2 1

⌊|X|⌋ − 1
1(|X| > 2)

󰀖

≤
∞󰁛

n=1

4

n2
+ E

󰀕
X2 3

|X|1(|X| > 2)

󰀖

≤
∞󰁛

n=1

4

n2
+ E(3|X|) < ∞ .

4 Law of the Iterated Logarithm

Let X1, X2, ... be i.i.d. with EXi = 0, EX2
i = σ2, Sn = X1 + ...+Xn. We know

Sn

n
1
2
+ε

a.s.−→ 0 as n → ∞.

For general interest, we state, without proof, the Law of the Iterated Logarithm:
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lim sup
n→∞

Sn

σ
󰁳

2n log(log n)
= 1 a.s.

lim inf
n→∞

Sn

σ
󰁳

2n log(log n)
= −1 a.s.

We will show later
Sn

σn
1
2

d−→ N(0, 1) as n → ∞.
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