36-752 Advanced Probability Overview Spring 2018
9. Almost Sure Convergence and Strong Law of Large Numbers

Instructor: Alessandro Rinaldo

Associated reading: Sec 6.1 and 6.2 of Ash and Doléans-Dade; Sec 2.3-2.5 of Durrett.

Overview

Let {X; : ¢ > 1} be i.i.d random variables with —oco < EX; < oo. WLLN says that the
partial average (X; + Xy + ... + X,,)/n converges to EX; in probability. In fact, one can
prove a stronger result: (X; + Xo + ... + X,,)/n converges to p almost surely.

We start with Kolmogorov’s 0-1 law and the notion of tail o-field.

Theorem 1 (Kolmogorov 0-1 law). Let {X,,}°°, be a sequence of independent random
quantities. Define T, = o({X; : i > n}) and T = (\.—; Tn. Then every event in T has
probability either 0 or 1.

Proof: Let U, = o({X;:i <n}),andlet U =~ U,. Let A € U and B € T. There
exists n such that A € U,,. Because B € 7,4, it follows that A and B are independent.
So U and T are independent. It follows from Proposition 19 of Lecture Notes Set 4 that
oU) =oc({X,}°,) and T are independent. Since 7 C o(U), it follows that T is independent
of itself, hence for all B € T, Pr(B) € {0,1} because P(B) = P(BNB)=P(B)P(B). =

Definition 2. The o-field T in Theorem 1 is called the tail o-field of the sequence { X} .

Now consider the event A = {w : (X; + Xy + ... + X,,)/n converges}. Then it is easy to
check that A € T, and hence P(A) = 0 or 1 by Kolmogorov’s 0-1 law. According to WLLN,
we shall conjecture that P(A) = 1.

1 Preliminaries and Borel Cantelli Lemmas

Definition 3 (i.o. and ev.). Let g, be some statement, true or false for each n. We say
¢n happens infinitely often or (g, i.0.) if for all n there is m > n such that q,, is true, and
(gn ev.) if there ezists n such that for all m > n, q, is true. Now consider probability space
(Q, F, P) and let q, depend on w € ), giving events

A, ={w: gn(w) is true}.

1



We now have new events,

{4, i.0.} ={w: gn(w zo}—ﬂUAm_hmsupAn,

n>1m>n n—roo

and

{4, ev.} ={w: ¢n(w ev}—UﬂAm_hmmfA

n—00
n>1m>n

Useful facts.
1. Given a sequence of events A,, the sequence (14,(w) : n > 1) can be viewed as a
+
function of w +—— {0, 1}Z .

2. 1(An 0y = limsup,, ,, 14, and 1(4, ev.) = liminf, o 14,.
3. (de Morgan) {4, i.0.}¢ = {AS ev.} and {A,, ev.}° = {Af i.0.}
4. a, = a <= Ve >0, |a, —a| < e€ev., so

X, 23X <= Ve>0, Pr(|X, — X|<eev.) =1
<~ Ve>0, Pr(|X,, — X| >e€io.)=0.

(in the second “<”, showing “=" is trivial but “<" is less trivial.)
. 5. P
Exercise 4. X,, 3 0 <= sup;, | X = 0.

Next we present a basic tool in the study of almost sure convergence.

Theorem 5 (First Borel-Cantelli lemma). Let (2, F, i) be a measure space. Ify " ju(A,) <
oo then p (limsup,,_,. A,) = 0 or equivalently, p (A, i.0.) =0.

Proof: Let B, = |J,—, A,. Then {B;}$°, is a decreasing sequence of sets, each of which
has finite measure, so by continuity of measure we have

lim ju(By) = <hmB) _y (ﬂB) —M<h£n_>solipA )

Since > 7 | u(A,) < oo, it follows that lim; e D2 p(A,) = 0. Since u(B;) < > 7 u(A,),
lim; o p(B;) = 0, and the result follows. ]

Theorem 6 (Second Borel-Cantelli lemma). Let (2, F, P) be a probability space. If
> P(A,) = 00 and if {A, }22, are mutually independent, then P (limsup,, . A,) =1 or
equivalently, P (A, i.0.) = 1.



Proof: Let B = limsup,_,., A,. We shall prove that P(BY) = 0. Let C; = (., AS.
Then BY = J;2, Ci. So, we shall prove that P(C;) = 0 for all i. Now, for each i and k > i,

k

oy =r () <p(145) = [T - sy

Use the fact that log(1 —x) < —x for all 0 < x <1 to see that, for every k > 1,

k

log[P(Cy)] < Z log[l — P(A,)] < =) P(A,).

n=i

Since this is true for all k& > ¢, it follows that log[P(C;)] < —> > . P(A,) = —oo. Hence,
P(C;) =0 for all 1. u

Now we use the Borel-Cantelli Lemma to prove some results in Lecture Notes Set 5.

Theorem (Lemma 25 of Lecture Notes Set 5). If X, Rt X, then there is a subsequence
{X,, Y2, such that X,,, 3 X.

Proof: Let n; be large enough so that n, > n,_; and Pr(d(X,,,X) > 1/2F) < 1/2~.
Because Y -, Pr(d(X,,,X) > 1/2%) < oo, we know that Pr(d(X,,,X) > 1/2* i.o.) = 0.
Let A = {d(X,,,X) > 1/2% i.0.}. Then Pr(A%) =1 and lim_,, X, (w) = X (w) for every
w € AC°. ]

The next application of Borel-Cantelli lemma shows that L7 (€, F, i) is complete.

Definition 7 (Cauchy sequence). Let E be a metric space with metric d. A sequence
{zn}52, in E is a Cauchy sequence if, for every ¢ > 0 there exists N such that d(z,, zy,) < €
for all m,n > N. The metric space E is complete if every Cauchy sequence in E converges
to an element of E.

Proposition 8. If {z,}>°, is a Cauchy sequence in a metric space and if a subsequence
converges to x, the whole sequence converges to x.

Lemma 9 (Completeness of L7 spaces). Each Cauchy sequence in LP converges.

Proof: Let {f,}5°, be a Cauchy sequence in LP(Q, F, ). Let {n;}22; be a sequence of
integers such that || f,, — fa,,, |l < 1/3" for all k. For finite p, apply the Markov inequality

to | fr, — fap [P to get

1 pk P 2 "
% ’fnk - fnk“‘ > ? <2 ank - fnk+1H < g :
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Since 07 1 fuy — Fapin| > 1/2F) < 00, it follows from Theorem 5 that
.
wl | fr — fnk+1| > o io. ] =0.
For p = oo, we have (| fn, — fap,,| > 1/3%) =0, for all k, hence

1.
2 (’fnk - fnk+1| > ? 1.0.) = 0.

In either case, it follows that, a.e. [p] 77 | fu, (W) = fay.s ()| < 00, hence { f,, }72, converges
a.e. [u] to some limit, call it f. To see that f is the LP limit of {f,, }, use Fatou’s lemma
and repeated applications of the triangle inequality to see that

k
1fllp < liminf || £, [, < <r|fm|\p+ lim Z 1 fo — fnmﬂup) < oo.

Also,
- 2
1= Follo < D o = Freiallp < 55
m=k
Proposition 8 then says that the whole sequence converges to f in LP. [ ]

2 Sums of independent random variables

The proof of strong law of large numbers requires a series of results about sums of independent
random variables. These are also interesting classical results.

Theorem 10 (Kolmogorov’s maximal inequality). Let {X;}7_, be a finite collection
of independent random variables with finite variance and mean 0. Define Sy = Zle X; for

all k. Then
Var(S,,)

2

Pr <max |Sk| > e) <

1<k<n €

Proof: For n =1, the result is just Chebyshev’s inequality. So assume that n > 1 for the
rest of the proof. Let Ay be the event that |Si| > € but |S;| < € for j < k. Then {A;}}_;
are disjoint and

s 52 of = U W



It follows that

n

B(S2) > Y / S2dp
Apg

k=1

S / [S2 +254(S0 — St) + (Su — S1)?] dP
k=17 Ak

> 3 / 1S+ 284(S, — Si)]dP
k=17 Ak

= ) / SidP
k=17 Ak

>

e Z Pr(Ay)
k=1

= &Pr (max |Sk| > e) :

1<k<n

where the first two inequalities and the first equality are obvious. The second inequality
follows from the fact that I, Sy is independent of (S,, — Sx) which has mean 0. The third
inequality follows since S? > €? on Ay, and the third equality follows from Equation (1). m

The reason that this theorem works is that whenever the maximum |Sy| is large, it most
likely is |.S,,| that is large.

A consequence of Kolmogorov’s maximal inequality is the basic L? convergence theorem.
Theorem 11 (Basic L? Convergence Theorem). Let X; X, ... be independent random

variables with E(X;) =0 and E(X?) =0 < o0,i=1,2,..., and S,, = X; + Xo + -+ - + X,,.
If S 0% < 00, then S,, converges a.s. and in L* to some S, with B(S2) = > 02

i=1"1 i=1"1"

Recall: The conclusion has been proved in the completeness of LP for p = 2. Here we give a
different argument for a.s. convergence using Kolmogorov’s maximal inequality.

Proof: We say that S, is Cauchy a.s. if M, := sup, >, [S, — S, — 0 as. In light of
Exercise 4, if Pr(M,, > ¢) — 0 for all € > 0, then M, | 0 a.s.

Let M} :=sup,s, |Sp, — Su|- By the triangle inequality,
[Sp = Sl < 15p = Sul + 1S4 = Sul = M, < M, <2Mj,

so it is sufficient to show that M 5o



For all e > 0,

Pr (sup|S—S|>e)=lim Pr(max 1S, — Sn|>e)

p>n N—ro00 n<p<
2
. U
< lim E Ji _ E —
N—o00 €2 €2
i=n+1 n+1

where we used continuity of measure in the first step and applied Kolmogorov’s inequality
in the second step. Since > i, 07 < 00,

lim Pr(sup]S —S]>e> =0

n—o0 p<n

Remark: Later in this class we shall see that the conclusion is valid for a martingale {S,}
with E[X,,41f(X1,...,X,)] =0 for all bounded measurable f : R” — R.

A consequence of the basic L? theorem is the following interesting theorem about sums of
independent random variables. It gives necessary and sufficient conditions for convergence
of S,. For each ¢ > 0 and each n, let Xff)(w) = X (w)Ij,q(| Xn(w)]). We will prove only
the sufficiency part of the result. The necessity proof involves martingale theory and will be
given later.

Theorem 12 (Three-series theorem). Suppose that {X,}>2, are independent. For each
¢ > 0, consider the following three series:

ZPr 1 X,| > ¢) ZE (XD, iVar(X,(f)). (2)
n=1

A necessary condition for S, to converge a.s. is that all three series are finite for all ¢ > 0.
A sufficient condition is that all three series converge for some ¢ > 0.

Proof: First, define some notation. For each ¢ > 0 and each n, define




For sufficiency, assume that all three series converge for some ¢ > 0. Because the second
and third series in Equation (2) converge, Theorem 11 says that St converges a.s. We know
that Pr(X, # XT(LC)) = Pr(|X,| > ¢). Since the first series in Equation (2) converges, the
first Borel-Cantelli lemma says that Pr(X,, # X4 i.0.) = 0. Hence, for almost all w, there

exists N(w) such that S, (w) — S (w) is the same for all n > N(w). Hence S,,(w) converges
for almost all w. u

Example 13. Let X,, have a uniform distribution on the interval |an,b,|. A necessary
condition for convergence of S, is that Y oo (b, — an)? < oo (the third series). Another
necessary condition is that Y~ (a, + b,) converge (the second series). It follows that a,,
and b, must both converge to 0 so that the first series also converges for all ¢ > 0. That the
two conditions above are sufficient for the convergence of S,, follows from Theorem 11.

Example 14. Let

# ifx=n orx=—n,
Pr(X, =)= 1—-5% ife=-1/norz=1/n,
0 otherwise.

Then E(X,) = 0 and Var(X,,) = 1+ 1/n* — 1/n*. So Theorem 11 does not imply that S,
converges a.s. However, for ¢ >0, E(Xff)) =0 and Var(XéC)) eventually equals 1/n?* —1/n*
while Pr(|X,| > ¢) eventually equals 1/n?, so the three-series theorem does imply that S,

CONVETGES a.Ss.

3 Strong Law of Large Numbers

We now prove the strong law of large numbers. We first need to recall some results in
elementary analysis.

Lemma 15 (Kronecker’s lemma). If let {z, : n > 1} and {a, : n > 1} be sequences of
real numbers, such that 0 < a, T oo and Y " x,/a, < oo, then (3.1 x;)/a, — 0.

Observation. Let X;, X5, ... be independent with mean 0 and S, = X7 + Xo + --- + X,,.
If >>°  E(X2)/a2 < oo, then by the basic L? convergence theorem Y > X, /a, converges
a.s., hence S, /a,, — 0 a.s. by Kronecker’s lemma.

Example 16. Let X, X, ... be i.i.d., E(X;) =0, and E(X?) = 02 < oo.

Take a,, = n:

0 2
o Sn a.s.
Z—2<oo = 21232
nzln n



1
Now take a, = n2"¢, € > 0:

o 2
g Sn a.s.
g <oo == ——— — 0.
nl+26 n§+e
n=1

Theorem 17 (Kolmogorov’s Law of Large Numbers). Let X, X,, ... be i.i.d. with
E(|X;|) < o0, S, = X1+ ... + Xyn. Then S,/n — E(X) a.s. as n — oo.

Note that the theorem is true with just pairwise independence instead of the full inde-
pendence assumed here. The theorem also has an important generalization to stationary
sequences.

Proof: Without loss of generality, assume E(X;) = 0.

Consider truncated variables R
X, = X, 1(| X, <n).

Observe that R
Pr(X, = X, ev.) = 1.

To see this, check
Pr(X, # X, i.0.) = Pr(|X,| > n i.0.)

and use Borel-Cantelli lemma by observing

> Pr(|X,>n) =) Pr(X|>n)< / Pr(|X| > t)dt = B|X| < c0.
n=1 n=1 [0700)

Now center the truncated variables. Define )~(n = )A(n — E()?n> .

We will show that . ~
Sn a.s. S?‘L a.s. Sn a.s.
(——>0) (f) (——>O> (<b:) <——>O>,
n n n

where S, = X; + Xo+-- 4+ X, and S, = X; + Xo +--- + X,,.
(a) comes from the fact that if w € {w X, = X, ev.} (which has probablity 1), then
Sy (w) /n — S, (w) /n — 0.
(b) comes from (fact: if ¢,, — 0 then (¢; + ... + ¢,)/n — 0)
S

n

S, EX,+EX,+..+EX,
— = —0asn— o0
n n

because by DCT we have
EX, = E[X,1(|X,| <n)] =E[X1(|X| <n)] = 0.
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Now, if we can show that

i E(X,%)

n2

< 00,

n=1

then the proof can be completed by Kronecker’s lemma and the L? convergence theorem (see
the observation following Lemma 15).

In fact, note that
E()?,%) Var(X,) < HX2) = E(X21(]X]| < n)).

So, by some basic manipulation, we have
= B(%) & L]0 105
n . 2 n
> 3 SN gy HALE)
n=1 n=1
- < - <
<E < ZM (]X|<2>+E<X2Z |X| n) \X\>2))

<4Z—+E<X2Z (HX;lH =M1 (x| > 2)

IN

n=1

3
\/ |

n=1
(o] 4 (o]
SZEJrE X2y (IX] > 2)
n=1 n=|X|J
<S> Aie(xe L yxsy
T’ LX)
< i 1B XQil(]X| > 2)
B n=1 TL2 ’X|
= 4
< Zﬁ +EB|X]) < oo
n=1

4 Law of the Iterated Logarithm

Let X, Xo, ... be i.i.d. with EX; =0, EX? =02 S, = X; + ... + X,,. We know
Sn

a.s.
— — 0 asn — oo.
§+€

n

For general interest, we state, without proof, the Law of the Iterated Logarithm:
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Sn

lim sup =1 a.s.
n—oo 04/2nlog(logn)
lim inf Sn = —1 a.s.
n—o g, /2nlog(logn)
We will show later
Sn d

— N(0,1) as n — o0.

[NIE

on
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