
36-752 Advanced Probability Overview Spring 2018

10. Convergence in Distribution

Instructor: Alessandro Rinaldo

Associated reading: Sec 2.8, 7.2 of Ash and Doléans-Dade; Sec 3.1, 3.2 of Durrett.

Overview

Let {Xn : n ≥ 1} be a sequence of i.i.d random variables with EX1 = 0, VarX1 = σ2 < ∞.
In the last set of lecture notes we have shown that

Sn

σn
1
2
+󰂃

a.s.→ 0.

In the Law of Iterated Logarithm we have seen that

lim sup
n→∞

Sn

σ
󰁳

2n log(log n)
= 1 a.s.

lim inf
n→∞

Sn

σ
󰁳

2n log(log n)
= −1 a.s.

We shall show that Sn

σn
1
2
also converges, in a different notion, to a limit. In this set of lecture

notes, we introduce the notion of convergence in distribution.

1 Convergence in Distribution

Let X be a topological space and let B be the Borel σ-field. Let (Ω,F , P ) be a probability
space and let Xn : Ω → X be F/B-measurable. Also, let X : Ω → X be another random
quantity. Let Pn and PX be the distribution of Xn and X, respectively. This will be the
standard setup for all discussions of convergence in distribution.

Definition 1 (Convergence in Distribution). We say that Xn converges in distribution

to X if

lim
n→∞

E[f(Xn)] = E[f(X)],

for all bounded continuous functions f : X → IR. We denote this property Xn
D→ X.
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Example 2. Let Ω = IR∞ with F = B∞ and P being the joint distribution of a sequence

of iid standard normal random variables. Let Xn(ω) = 1√
n

󰁓n
j=1 ωj. Let X = X1. Then

Xn
D→ X in a trivial way.

There are several conditions that are all equivalent to Xn
D→ X.

Theorem 3 (Portmanteau theorem). The following are all equivalent if X is a metric

space:

1. limn→∞ E[f(Xn)] = E[f(X)], for all bounded continuous f ,

2. For each closed C ⊆ X , lim supn→∞ P (Xn ∈ C) ≤ P (X ∈ C).

3. For each open A ⊆ X , lim infn→∞ P (Xn ∈ A) ≥ P (X ∈ A).

4. For each B ∈ B such that P (X ∈ ∂B) = 0, limn→∞ P (Xn ∈ B) = P (X ∈ B).

We will not prove this whole theorem, but we will look a bit more at the four conditions.
If X = IR, then the fourth condition is a lot like the familiar convergence of cdf’s in places
where the limit is continuous. An interval B = (−∞, b] has PX(∂B) = 0 if and only if there
is no mass at b, hence if and only if the cdf is continuous at b. The second condition says
that we don’t want any mass from the distributions of the Xn’s to be able to escape from
a closed set, although it could happen that mass from outside of a closed set approaches
the boundary. That is why the inequality goes the way it does. Similarly, for the third
condition, mass can escape from an open set but nothing should be allowed to “jump” into
the open set. The first condition is related to the often overlooked fact that the distribution
of a random quantity is equivalent to the means of all bounded continuous functions. The
first condition is also a version of what mathematicians call weak∗ convergence, a concept
that arises in the theory of normed linear spaces. Many statisticians and probabilists call
convergence in distribution “weak convergence,” but convergence in distribution is not quite
the same as weak convergence in normed linear spaces.

Proof: First, notice that the second and third conditions are equivalent since closed sets
are complements of open sets. Together the second and third conditions imply the fourth
one. We will prove that the (4) ⇒ (1) and that (1) ⇒ (2).

(4) ⇒ (1).

Assume the fourth condition. Let f be bounded and continuous, |f(x)| ≤ K for all x. Let
󰂃 > 0. Let v0 < v1 < · · · < vM be real numbers such that v0 < −K < K < vM , vj − vj−1 < 󰂃
for all j = 1, . . . ,M , and PX({x : f(x) = vj}) = 0 for all j. Let Fj = {x : vj−1 < f(x) ≤ vj}.
The continuity of f and the fact that ∂Fj ⊆ {x : f(x) ∈ {vj, vj−1}} imply that

{x : vj−1 < f(x) < vj} ⊆ int(Fj) ⊆ F j ⊆ {x : vj−1 ≤ f(x) ≤ vj}.
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By construction

󰀏󰀏󰀏󰀏󰀏

M󰁛

j=1

vjPn(Fj)− E[f(Xn)]

󰀏󰀏󰀏󰀏󰀏 ≤ 󰂃,

󰀏󰀏󰀏󰀏󰀏

M󰁛

j=1

vjPX(Fj)− E[f(X)]

󰀏󰀏󰀏󰀏󰀏 ≤ 󰂃.

By assumption PX(∂Fj) = 0 for all j and

lim
n→∞

M󰁛

j=1

vjPn(Fj) =
M󰁛

j=1

vjPX(Fj).

Combining these yields | limn→∞ E[f(Xn)]− E[f(X)]| < 2󰂃, hence the first condition holds.

(1) ⇒ (2).

Let C be a closed set. For each m, let Cm be the set of points that are at most 1/m
away from C. The function fm(x) = max{0, 1 − md(x, C)} is bounded and continuous,
equals 0 on CC

m, equals 1 on C, and lies between 0 and 1 everywhere. We know that
limn→∞ E(fm(Xn)) = E(fm(X)) for all m. Also, Pn(C) ≤ E(fm(Xn)) ≤ Pn(Cm) for all n
and m. So

lim sup
n→∞

Pn(C) ≤ E(fm(X)) ≤ PX(Cm), (1)

for all m. Since {Cm}∞m=1 is a decreasing sequence of sets whose intersection is C, we have
limm→∞ PX(Cm) = PX(C). Since the left side of Equation (1) doesn’t depend on m, we have
the result.

Because convergence in distribution depends only on the distributions of the random quan-
tities involved, we do not actually need random quantities in order to discuss convergence in

distribution. Hence, we might also use notation like µn
D→ µ, where µn and µ are probability

measures on the same space. If X = IR, we might refer to the cdf’s and say Fn
D→ F . We

might even refer to the names of distributions and say that Xn converges in distribution
to a standard normal distribution or some other distribution. Even if we do have random
quantities, they don’t even have to be defined on the same probability spaces. They do have
to take values in the same space, however. For example, for each n, let (Ωn,Fn, Pn) be a
probability space, and let (Ω,F , P ) be another one. Let (X ,B) be a topological space with
Borel σ-field. Let Xn : Ωn → X and X : Ω → X be random quantities. We could then ask

whether or not Xn
D→ X. We won’t use this last bit of added generality.

Example 4. Let {Xn}∞n=1 be a sequence of iid standard normal random variables. Then Xn

converges in distribution to standard normal, but does not converge in probability to anything.
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Some authors use the expression converges in law to mean “converges in distribution”. They

might write this Xn
L→ X. Others use the expression converges weakly and might write it

Xn
w→ X.1

Convergence in distribution is weaker than convergence in probability, hence it is also weaker
than convergence a.s. and Lp convergence.

Proposition 5 (Relationships between convergences). Let (X ,B) be a metric space

(having metric d) and its Borel σ-field. Let {Xn}∞n=1 be a sequence of random quantities

taking values in X and let X be another random quantity taking values in X .

1. If limn→∞ Xn = X a.s., then Xn
P→ X.

2. If Xn
P→ X, then Xn

D→ X.

3. If X is degenerate and Xn
D→ X, then Xn

P→ X.

4. If Xn
P→ X, then there is a subsequence {nk}∞k=1 such that limk→∞ Xnk

= X, a.s.

Proof: The first and last claims were proven earlier and are only included for completeness.
For the second claim, let C be a closed set and let Cm = {x : d(x, C) ≤ 1/m} for each integer
m > 0. Then

µXn(C) ≤ µX(Cm) + Pr(d(X,Xn) > 1/m).

It follows that lim supn µXn(C) ≤ µX(Cm). Since limm→∞ µX(Cm) = µX(C), we have that

Xn
D→ X by Theorem 3. The third claim follows by approximating I[c−󰂃,c+󰂃] by a bounded

continuous function, where Pr(X = c) = 1.

2 The special case of (IR1,B1)

Now suppose (X ,B) = (IR1,B1). Consider part 4 of Theorem 3 with B = (−∞, x]. The
condition PX(∂B) = 0 is equivalent to PX({x}) = 0 and hence equivalent to that F is

continuous at x. According to part 4 of Theorem 3, a necessary condition for Fn
D→ F is

that Fn(x) → F (x) at all continuity points x of F . We will show that this is also sufficient.

The argument below uses some basic useful properties of distribution functions and their
inverses. For a distribution G on R, define the inverse of G as

G−1(p) = inf{x : G(x) ≥ p} , ∀ p ∈ (0, 1) .

Then we have the following basic facts about G−1.

1Convergence in distribution is not the same as weak convergence of continuous linear functionals in

functional analysis. It is the same as weak∗ convergence, but we will not go into that distinction here.
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Lemma 6 (Basic facts about G−1). For a distribution function G, the following are true.

1. G−1 is non-decreasing, and hence G−1 has at most countably many discontinuous

points.

2. G−1(p) ≤ x ⇔ G(x) ≥ p, or equivalently G−1(p) > x ⇔ G(x) < p.

3. G(G−1(p)) ≥ p.

4. G−1(G(x)) ≤ x.

5. G−1 is left-continuous.

The proof of sufficiency relies on the following theorem of Skorohod.

Lemma 7 (Skorohod). Let {Fn : n ≥ 1}, F be distribution functions on R such that

Fn(x) → F (x) for all x at which F is continuous. Then there exist random variables {Yn :

n ≥ 1}, Y defined on ((0, 1),B1,λ) (λ being Lebesgue measure) such that Yn has distribution

function Fn for all n, Y has distribution function F , and Yn
a.s.→ Y .

Proof: Define Yn(ω) = F−1
n (ω) and Y (ω) = F−1(ω). It is easy to see that Yn has distribu-

tion function Fn and Y has distribution function F . For example,

Pr(Y ≤ y) = Pr(F−1(ω) ≤ y) = Pr(ω ≤ F (y)) = F (y).

To see that Yn(ω) → Y (ω), let 󰂃 > 0 and let Y (ω)−󰂃 < x < Y (ω) be such that F is continuous
at x. Then F (x) < ω, so eventually Fn(x) < ω and eventually Y (ω) − 󰂃 < x < Yn(ω), so
lim infn Yn(ω) ≥ Y (ω).

For the other direction, let ω be a continuity point of Y . For any ω′ > ω and 󰂃 > 0
choose Y (ω′) < x < Y (ω′) + 󰂃 with x an continuity point of F . Then Fn(x) → F (x) ≥
F (Y (ω′)) ≥ ω′ > ω. As a result, for n large enough we have Yn(ω) ≤ x ≤ Y (ω′) + 󰂃. Thus
lim supn Yn(ω) ≤ Y (ω′) + 󰂃. Let ω′ ↓ ω and 󰂃 ↓ 0 we have lim supn Yn(ω) ≤ Y (ω).

Now we have shown that Yn(ω) → Y (ω) for all ω at which Y (ω) is continuous. The desired
result follows because the set of ω at which Y is discontinuous is at most countable.

The following result says that the usual definition of convergence in distribution in one
dimension is equivalent to what we have stated above.

Lemma 8 (Portmanteau in R1). Let (X ,B) = (IR,B1). Let Fn be the cdf of Xn and let

F be the cdf of X. Then Xn
D→ X if and only if limn→∞ Fn(x) = F (x) for all x at which F

is continuous.
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Proof: The proof of the “only if” direction is direct from Theorem 3 because F is con-
tinuous at x if and only if µX({x}) = 0 and {x} is the boundary of (−∞, x]. For the “if”
part, construct Yn and Y as in the proof of Lemma 7. It then follows from the dominated
convergence theorem that E(f(Yn)) → E(f(Y )) for all bounded continuous f .

Example 9. Let Φ be the standard normal cdf, and let

Fn(x) =

󰀻
󰁁󰀿

󰁁󰀽

0 if x < −n,
Φ(x)−Φ(−n)
Φ(n)−Φ(−n)

if −n ≤ x < n,

1 if x ≥ n.

Then, we see that limn→∞ Fn(x) = Φ(x) for all x. Each Fn gives probability 1 to a bounded

set, but the limit distribution does not.

Example 10. Let Φ be the standard normal cdf, and let

Fn(x) =

󰀻
󰀿

󰀽

0 if x < −n,

Φ(x) if −n ≤ x < n,

1 if x ≥ n.

Then, we see that limn→∞ Fn(x) = Φ(x) for all x. Each Fn is neither discrete nor continuous,

but the limit is continuous.

Example 11. Enumerate the dyadic rationals in this sequence: 1/2, 1/4, 3/4, 1/8, 3/8,

5/8, 7/8, 1/16, 3/16, . . . . Let µn be the measure that puts mass 1/n on each of the first

n in the list. Then the subsequence {µ2n−1}∞n=1 converges in distribution to the uniform

distribution on [0, 1], but the whole sequence does not converge. Consider the subsequence

{µ2n+2−2n−1}∞n=1, which converges to a distribution with twice as much probability on [0, 1/2]

as on (1/2, 1].

Example 12. Let Fn be the cdf of the uniform distribution on [−n, n]. No subsequence of

Fn converges in distribution even though each cdf gives probability 1 to a bounded set.

Examples 9 and 12 illustrate a necessary and sufficient condition for a sequence of distri-
butions to have a convergent (in distribution) subsequence. Even though the Fn in both
examples assign probability to 1 to the same intervals, the probability moves out to infinity
at different rates in the two examples. In Definition 22, we will see a condition on how fast
probability can move out to infinity and still allow subsequences to converge in distribution.

3 Continuous Mapping

If f is a continuous function and Xn
D→ X, then f(Xn)

D→ f(X). Indeed, even if f is not
continuous, so long as µX assigns 0 probability to the set of discontinuities, the result still
holds.
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Theorem 13 (Continuous mapping, 1). Let {Xn}∞n=1 be a sequence of random quantities,

and let X be another random quantity all taking values in the same metric space X . Suppose

that Xn
D→ X. Let Y be a metric space and let g : X → Y. Define

Cg = {x : g is continuous at x}.

Suppose that Pr(X ∈ Cg) = 1. Then g(Xn)
D→ g(X).

The proof of Theorem 13 together with the proof of Theorem 15 both rely on the second
part of Theorem 3, and they resemble the part of the proof of Proposition 5 that we already
did.

Proof: Let Qn be the distribution of g(Xn) and let Q be the distribution of g(X). Let Rn

be the distribution of Xn and let R be the distribution of X. Let B be a closed subset of Y .
If x ∈ g−1(B) but x ∕∈ g−1(B), then g is not continuous at x because otherwise there exists
a sequence {xn : n ≥ 1} ⊆ g−1(B) such that g(xn) → g(x) ∈ B since B is closed and all
g(xn) ∈ B. It follows that g−1(B) ⊆ g−1(B) ∪ CC

g . Now write

lim sup
n→∞

Qn(B) = lim sup
n→∞

Rn(g
−1(B)) ≤ lim sup

n→∞
Rn(g−1(B))

≤ R(g−1(B)) ≤ R(g−1(B)) +R(CC
g )

= R(g−1(B)) = Q(B),

and the result now follows from the Theorem 3.

Example 14. If (Sn − nµ)/[
√
nσ] converges in distribution to standard normal, then (Sn −

nµ)2/(nσ2) converges in distribution to χ2 with one degree of freedom.

Theorem 15 (Continuous mapping, 2). Let {Xn}∞n=1, X, and {Yn}∞n=1 be random quanti-

ties taking values in a metric space with metric d. Suppose that Xn
D→ X and d(Xn, Yn)

P→ 0,

then Yn
D→ X.

Proof: Let Qn be the distribution of Yn, let Rn be the distribution of Xn and let R be the
distribution of X. Let B be an arbitrary closed set. According to Theorem 3, it suffices to
show that lim supQn(B) ≤ R(B). Then

{Yn ∈ B} ⊆ {d(Xn, B) ≤ 󰂃} ∪ {d(Xn, Yn) > 󰂃}.

Define C󰂃 = {x : d(x,B) ≤ 󰂃}, which is a closed set. So,

Qn(B) = Pn(Yn ∈ B)

≤ Pn(d(Xn, B) ≤ 󰂃) + Pn(d(Xn, Yn) > 󰂃)

= Rn(C󰂃) + Pn(d(Xn, Yn) > 󰂃).
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We have assumed that limn→∞ Pn(d(Xn, Yn) > 󰂃) = 0 and that Xn
D→ X, so we conclude

lim supn→∞ Qn(B) ≤ lim supn→∞ Rn(C󰂃) ≤ R(C󰂃). Since B is closed, lim󰂃→0 R(C󰂃) = R(B).
It follows then that

lim sup
n→∞

Qn(B) ≤ R(B),

hence Yn
D→ X.

The most common use of this theorem is the following. If the difference between two se-
quences converges to 0 in probability and if one of the two sequences converges in distribution
to X, then so does the other one. A related result is the following.

Theorem 16 (Continuous mapping, 3). Let Xn take values in a metric space and let Yn

take values in a metric space. Suppose that Xn
D→ X and Yn

P→ c, then (Xn, Yn)
D→ (X, c).

Proof: Let d1 be the metric in the space where Xn takes values and let d2 be the metric
in the space where Yn takes values. Then

d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2),

defines a metric in the product space and the product σ-field is the Borel σ-field. First note

that (Xn, c)
D→ (X, c) since every bounded continuous function of (Xn, c) is a bounded contin-

uous function ofXn alone. Next, note that d((Xn, Yn), (Xn, c)) = d2(Yn, c) and Pn(d2(Yn, c) >

󰂃) → 0 for all 󰂃 > 0, so d((Xn, Yn), (Xn, c))
P→ 0. By Theorem 15, (Xn, Yn)

D→ (X, c).

A simple and useful consequence of the continuous mapping theorem is the Slutsky’s Theo-
rem.

Theorem 17 (Slutsky’s Theorem). If Xn
D→ X, Yn

D→ c then

1. Xn + Yn
D→ X + c.

2. XnYn
D→ cX.

3. Xn/Yn
D→ X/c provided c ∕= 0.

Example 18. Suppose that Un = (Sn − nµ)/(
√
nσ) converges in distribution to standard

normal. Suppose also, that Tn
P→ σ. Then (Un, Tn)

D→ (Z, σ), where Z ∼ N(0, 1). Consider

the continuous function g(z, s) = zσ/s. It follows that

g(Un, Tn) =
Sn − nµ√

nTn

D→ Z.
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Example 19 (Delta method). Suppose that limn→∞ rn = ∞ and rn(Xn − a)
D→ Y . Then

Xn
P→ a. Suppose that g is a function that has a derivative g′(a) at a. Define

h(x) =
g(x)− g(a)

x− a
− g′(a).

We know that limx→a h(x) = 0, so we can make h continuous at a by setting h(a) = 0. Also

g(x)− g(a) = (x− a)g′(a) + (x− a)h(x). So,

rn[g(Xn)− g(a)] = rn(Xn − a)g′(a) + rn(Xn − a)h(Xn).

It follows from Theorems 13 and 5 that h(Xn)
P→ 0. By Theorem 17, rn(Xn − a)h(Xn)

P→ 0

and rn(Xn − a)g′(a)
D→ g′(a)Y . By Theorem 17, rn[g(Xn) − g(a)]

D→ g′(a)Y . After we see

the central limit theorem, there will be many examples of the use of this result.

If g′(a) = 0 in the above example, there may still be hope if a higher derivative is nonzero.

Example 20. Let {Xn}∞n=1 be iid with exponential distribution with parameter 2. That

is, the density is 2 exp(−2x) for x > 0. Let Yn = min{X1, . . . , Xn}. Then Yn has an

exponential distribution with parameter 2n. So n(Yn − 0)
D→ X1. Let g(y) = cos(y) so that

g′(y) = − sin(y). Then n[cos(Yn)− 1]
D→ 0. But g(y)− 1 = 0− y2/2 + o(y2) as y → 0. So,

n2[g(Yn)− 1] =
n2

2
Y 2
n + Zn

D→ 1

2
X2

1 ,

where Zn
P→ 0.

The following result is the convergence in probability version of Theorem 13.

Theorem 21 (In-probability version of CMT). Let {Xn}∞n=1 be a sequence of random

quantities, and let X be another random quantity all taking values in the same metric space

X with metric d1. Suppose that Xn
P→ X. Let Y be a metric space with metric d2 and let

g : X → Y. Define

Cg = {x : g is continuous at x}.

Suppose that Pr(X ∈ Cg) = 1. Then g(Xn)
P→ g(X).

4 Tightness and Helly-Bray Selection

For the discussions of tight sequences and characteristic functions, we will take X = IRp for
some p with Borel σ-field Bp.
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Definition 22 (Tightness and Relative Sequential Compactness). A collection {Pα :

α ∈ ℵ} of probability measures on (IRp,Bp) is called tight if for every 󰂃 > 0, there exists a

compact set A such that Pα(A) > 1 − 󰂃 for all α. The collection is relatively sequentially

compact if every sequence {Pαn}∞n=1 from the collection has a subsequence that converges in

distribution.

Examples 9 and 11 are tight sequences. Example 12 is not a tight sequence. It is fairly easy
to see that relative sequential compactness implies tightness. Theorem 23 provides most of
the proof that tightness implies relative sequential compactness.2

Theorem 23 (Helly-Bray Selection). Let {Pn}∞n=1 be a tight sequence of probability mea-

sures on (IRp,Bp). Then there exists a subsequence that converges in distribution. Also,

if every convergent subsequence converges in distribution to the same probability P . Then

Pn
D→ P .

Proof: Each Pn is equivalent to a cdf Fn and P is equivalent to a cdf F . We will use the
following notation: x ≤ y will mean that xi ≤ yi for i = 1, . . . , p for vectors x, y ∈ IRp.
Similarly, x < y means xi < yi for all i. For each rectangle A of the form {x : ai < xi ≤
bi, for i = 1, . . . , p} and function H : IRp → IR, define

H(A) =
󰁛

All corners r

(−1)c(r)H(r),

where c(r) = 1 if r has an odd number of ai and c(r) = 0 if r has an even number of ai.
When H is the cdf of X, H(A) = Pr(X ∈ A).

The proof is in six parts:

1. Show that every subsequence of {Fn}∞n=1 has a further subsequence Fnk
that converges

at points with rational coordinates to some function G∗ that is nondecreasing.

2. Show that G∗ can be modified to a function G defined on Rp that is non-decreasing
and continuous from above.

3. Show that Fnk
converges to G at continuity points of G.

4. Show that G(A) ≥ 0 for each rectangle A.

5. Show that G is a cdf (using tightness).

6. If every convergent subsequence converges to the same G then show that G = F , and
the whole sequence converges to F .

2In more general spaces than IRp, the concepts of tightness and relative sequential compactness are not

equivalent.
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First, let {Hn}∞n=1 be a subsequence of {Fn}∞n=1. Let {qn}∞n=1 be an enummeration of the
points with all rational coordinates. Let {Hn1

k
}∞k=1 be a subsequence such that limk→∞ Hn1

k
(q1) =

G∗(q1) exists. For i > 1, let {Hni
k
}∞k=1 be a subsequence of {Hni−1

k
}∞k=1 such that Hni

k
(qi) =

G∗(qi) exists. Our final subsequence is {nk}∞k=1 with nk = nk
k. For this subsequence

limk→∞ Hnk
(qi) = G∗(qi) for all i. Because Fnk

are distribution function, it is straightforward
to check that G∗ is non-decreasing on points with all rational numbers.

Second, for all x, define G(x) = inf{G∗(qi) : qi > x}. Then G is non-decreasing and
continuous from above. To show that G is continuous from above, let zn ↓ x. Then G(zn) ↓
b ≥ G(x) for some b. If b > G(x), then we can find a rational q > x such that G(x) ≤ G∗(q) <
b. For n large enough, we have x < zn < q, so G(zn) ≤ G∗(q) < b. Thus limG(zn) < b, a
contradiction.

Third, we show that Fnk
(x) → G(x) if G is continuous at x. For δ > 0, let q have rational

coordinates such that x < q and G∗(q) ≤ G(x) + δ. Then lim supFnk
(x) ≤ lim supFnk

(q) =
G∗(q) < G(x) + δ, hence lim supFnk

(x) ≤ G(x). On the other hand, for any x′ < x, let q
have rational coordinates such that x′ < q < x. We have G(x′) ≤ G∗(q) = limFnk

(q) ≤
lim inf Fnk

(x). Let G(x−) = sup{G(x′) : x′ < x}. Then G(x−) ≤ lim inf Fnk
(x). Because G

is continuous at x, G(x) = G(x−) and hence limFnk
(x) = G(x).

Fourth, let A = {x : ai < xi ≤ bi, for i = 1, . . . , p} be a rectangle. We now show thatG(A) ≥
0. Let 󰂃 > 0. Let y1, . . . , y2p be the corners of A. Let qi > ai and si > bi be rational numbers
and let y′1, . . . , y

′
2p be the corresponding corners of A′ = {x : qi < xi ≤ si, for i = 1, . . . , p}.

We can choose qi, si close enough to ai, bi such that G(yr) ≤ G∗(yr′) < G(yr) + 󰂃/2p+1

for all r = 1, ..., 2p and hence |G(A) − G∗(A′)| ≤ 󰂃/2. On the other hand, when k is large
enough we have |Fnk

(yr′)−G∗(yr′)| ≤ 󰂃/2p+1 for all r = 1, ..., 2p. Thus, |G(A)− Fnk
(A′)| ≤

|G(A)−G∗(A′)|+ |G∗(A′)−Fnk
(A′)| ≤ 󰂃. As a result, G(A) ≥ |Fnk

(A′)|− 󰂃 ≥ −󰂃. Let 󰂃 → 0
we have G(A) ≥ 0.

Fifth, let 󰂃 > 0, and let A = [−q, q]p with a rational number q. For a rational number s > q
define A′ = [−s, s]p. We can chose s close enough to q such that G(A) ≥ G ∗ (A′) − 󰂃/2.
Also, when q is large enough, s is also large enough such that Fnk

(A′) ≥ 1 − 󰂃/2 for all k.
Therefore, G(A) ≥ 1− 󰂃 and hence G is a probability measure in Rp.

Sixth, suppose that there exists a continuity point of F such that limn→∞ Fn(x) ∕= F (x). So,
there exists 󰂃 > 0 and a sequence of integers {mk}∞k=1 such that |Fmk

(x)− F (x)| > 󰂃 for all
k. Then no subsequence of {Fmk

(x)}∞k=1 can converge to F (x), which contradicts what we
proved in the first five parts.

11


