36-710: Advanced Statistical Theory

Lecture 7: September 24

Lecturer: Alessandro Rinaldo

Scribes: Maria Jahja

Fall 2018

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Bounded Differences Inequality

Continuing from the previous lecture, we now show the proof of the *bounded differences inequality*, also known as McDiarmid's inequality.

Theorem 7.1 (Bounded Differences Inequality) Suppose (X_1, \ldots, X_n) are independent random variables, and let $f : \mathbb{R}^n \to \mathbb{R}$ satisfy the bounded differences property with constants L_1, \ldots, L_n .

Then

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_i^n L_i^2}\right)$$

where $Z = f(X_1, \ldots, X_n)$.

Proof: Define the martingale difference

$$D_k = \mathbb{E}[Z|X_1, \dots, X_k] - \mathbb{E}[Z|X_1, \dots, X_{k-1}]$$

for k = 1, ..., n and $D_0 = \mathbb{E}[Z]$. Then we have $Z - \mathbb{E}[Z] = \sum_{i=1}^{n} D_k$. If we also define

$$A_{k} = \inf_{x} \mathbb{E}[Z|X_{1}, \dots, X_{k-1}, x] - \mathbb{E}[Z|X_{1}, \dots, X_{k-1}]$$

= $\inf_{x} \int f(X_{1}, \dots, X_{k-1}, x, x_{k+1}, \dots, x_{n})dP(x_{k+1}) \cdots dP(x_{n})$
$$B_{k} = \sup_{x} \mathbb{E}[Z|X_{1}, \dots, X_{k-1}, x] - \mathbb{E}[Z|X_{1}, \dots, X_{k-1}]$$

= $\sup_{x} \int f(X_{1}, \dots, X_{k-1}, x, x_{k+1}, \dots, x_{n})dP(x_{k+1}) \cdots dP(x_{n}),$

then we have sandwiched A_k

$$A_k \leq D_k \leq B_k$$
 a.e $\forall k = 1, \dots, n$

We need to bound the quantity $B_k - A_k$. By independence of the X_k and the bounded difference assumption

$$B_{k} - A_{k} = \sup_{x} \mathbb{E}[Z|X_{1}, \dots, X_{k-1}, x] - \inf_{x} \mathbb{E}[Z|X_{1}, \dots, X_{k-1}, x]$$

= $\sup_{x,y} \int f(X_{1}, \dots, X_{k-1}, x, x_{k+1}, \dots, x_{n})$
- $f(X_{1}, \dots, X_{k-1}, y, x_{k+1}, \dots, x_{n}) dP(x_{k+1}) \cdots dP(x_{n})$
 $\leq L_{k}.$

We apply Azuma-Hoeffding (as proven in the last lecture), and the result follows.

7.1.0.1 Examples of Bounded Differences Inequality

1. U-statistics. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$, and let $g : \mathbb{R}^2 \to \mathbb{R}$ such that g is symmetric in its arguments. A U-statistic of order 2 is a random variable with the form

$$U_n = \frac{1}{\binom{n}{2}} \sum_{i < j} g(X_i, X_j).$$

- One example is $g(x_1, x_2) = \frac{1}{2}(x_1 x_2)^2$. Then $\mathbb{E}[g(X_1, X_2)] = \operatorname{Var}[X_1]$.
- Another example: $\mu = \mathbb{P}(X_1 + X_2 \ge 0)$. If P is symmetric around 0, then $\mu = 1/2$.
- A third example (Kendall's tao): let $Z_i = (X_i, Y_i) \stackrel{iid}{\sim} P$, for $i = 1, \ldots, n$. Let

$$\tau = \frac{4}{n(n-1)} \sum_{i < j} \mathbf{1}\{(Y_j - Y_i)(X_j - X_i) > 0\} - 1$$

which calculates the fraction of concordant pairs, where we have concordance if $(Y_j - Y_i)(X_j - X_i) > 0$. Then $\tau + 1$ is a U-statistic with order 2 given by

$$g\left(\binom{x_1}{x_2}, \binom{y_1}{y_2}\right) = 2 \times \mathbf{1}\{(y_2 - y_1)(x_2 - x_1) > 0\}$$

If $X \perp Y$ (and both have continuous distributions), then $\mathbb{E}[\tau] = 0$.

• A fact is that if U_n is a U-statistic such that $\mathbb{E}[U_n] = \theta$, where θ is some parameter of interest, then

$$\operatorname{Var}[U_n] \leq \operatorname{Var}[T],$$

where T is any unbiased estimator of θ .

What is the concentration of U_n around $\mathbb{E}[X_n]$? Let's further assume that the U-statistic kernel g is bounded in L^{∞} -norm, i.e.

$$||g||_{\infty} = \sup_{x \in \mathbb{R}^2} |g(x)| \le b.$$

We can check the bounded difference property, first expressing U_n as $U_n = f(x_1, \ldots, x_n)$. Then for all x_1, \ldots, x_n , and $(x, y) \in \mathbb{R}$

$$|f(x_1, \dots, x_{k-1}, x, x_{k+1}, \dots, x_n) - f(x_1, \dots, x_{k-1}, y, x_{k+1}, \dots, x_n)|$$

$$\leq \frac{1}{\binom{n}{2}} \sum_{j \neq k} |g(x, x_j), g(y, x_j)|$$

$$\leq \frac{(n-1)}{\binom{n}{2}} 2b = \frac{4b}{n}.$$

By the bounded differences inequality,

$$\mathbb{P}(|U_n - \mathbb{E}[U_n]| \ge t) \le 2 \exp\left(-\frac{nt^2}{8b^2}\right).$$

In general, for a U-statistic of order m with the form

$$U_n = \frac{1}{\binom{n}{m}} \sum_{i_1 < i_2 < \dots < i_m} g(X_{i_1}, \dots, X_{i_m}),$$

we can form a bound

$$\mathbb{P}(|U_n - \mathbb{E}[U_n]| \ge t) \le 2 \exp\left(-\frac{nt^2}{2m^2b^2}\right).$$

Note that better bounds exist of the order $\exp\left(-\frac{nt^2}{m}\right)$ (Hoeffding, 1948), although this is a simple way to start.

2. Clique number in Erdös-Renyi random graphs. Let $G = \{X_{i,j}\}_{i < j}$ be a random graph with n vertices, where $X_{i,j} \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p), p \in (0, 1)$. Define C as the *clique number*, or the size of the largest complete subgraph. What can we say about the clique number? The bounded difference inequality gives a bound of the form

$$\mathbb{P}\left(\left|\frac{C}{n} - \frac{\mathbb{E}[C]}{n}\right| \ge t\right) \le 2\exp(-2nt^2).$$

However, there is one problem: What is $\mathbb{E}[C]$?

3. Empirical measure. Let \mathcal{A} be a collection of subsets in \mathbb{R}^d , and let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$ on $(\mathbb{R}^d, \mathcal{B}_n)$. For each $A \in \mathcal{A}$, define the empirical measure as

$$P_n(A) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \in A\}$$

therefore $\mathbb{E}[P_n(A)] = P(A)$ for all A. We are interested in the largest deviation to the true measure

$$Z \stackrel{\Delta}{=} \sup_{A \in \mathcal{A}} |P_n(A) - P(A)|.$$

For example, take $d = 1, \mathcal{A} = \{(-\infty, x], x \in \mathbb{R}\}$. Then

$$Z = \sup_{A \in \mathcal{A}} |P_n(A) - P(A)| = \sup_x |F_n(x) - F(x)|,$$

which is the empirical CDF. Then by the bounded difference inequality,

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le 2\exp(-2nt^2).$$

But, note we still have the same issue: What is $\mathbb{E}[Z]$? This is the next topic once we cover a few more useful concentration inequalities.

7.2 Concentration Inequalities

We will cover several noteworthy concentration equalities. The results are stated below without proof–see Chapters 2 and 3 of Wainwright for details.

7.2.1 Lipschitz Functions of Gaussians

Let $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be *L*-Lipschitz, i.e.

$$|f(x) - f(y)| \le L||x - y||.$$

Then,

$$\mathbb{P}(|f(z_1,\ldots,z_n) - \mathbb{E}[f(z_1,\ldots,z_n)]| \ge t) \le 2\exp\left(-\frac{t^2}{2L^2\sigma^2}\right).$$

What is striking about this result is that the dimension does not appear in the bound! This is a *dimension-free* bound, as long as we keep the Lipschitz assumption.

Corollary 7.2 Let $Y \sim \mathcal{N}_d(0, \Sigma)$ and let

$$X = \max_{i} Y_i \quad or \quad \max_{i} |Y_i|.$$

Then

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sigma^2}\right)$$

where $\sigma^2 = \max_i \Sigma_{ii}$.

7.2.2 Maximal Inequalities

Often, we are interested in computing high probability bounds and the expected values of the quantities

$$\sup_{i \in \mathcal{I}} X_i \quad \text{or} \quad \sup_{i \in \mathcal{I}} |X_i|$$

where \mathcal{I} is some (possibly infinite) set. If \mathcal{I} is finite, we can find bounds through union bounds or some other properties (sub-Gaussianity) of the random variables. But what about infinite and uncountable \mathcal{I} ?

We can first try to approximate the set with a finite subset. As a first approach, consider a discretization of the set by evaluating only a grid of points over the space.

7.2.2.1 Approximating large spaces

First, recall the definition of a metric space.

Definition 7.3 (Metric space) A metric space is a pair (\mathcal{X}, d) , where \mathcal{X} is an arbitrary set, and d is a metric, $d : \mathcal{X} \times \mathcal{X} \to [0, \infty)$ with the following properties for any $x, y, z \in \mathcal{X}$

1. $d(x,y) \ge 0$	(Non-negativity)
2. $d(x,y) = 0 \Leftrightarrow x = y$	(Identity of indiscernibles)
3. $d(x,y) = d(y,x)$	(Symmetry)
4. $d(x,z) \le d(x,y) + d(y,z)$	(Triangle inequality)

Examples

- The set \mathbb{R}^d with the L^p -norm defined for $1 \le p \le \infty$ is a *d*-dimensional normed vector space. This is the pair $(\mathbb{R}^d, || \cdot ||_p)$, where $||x||_p = (\sum_i |x_i|^p)^{1/p}$. If $p = \infty$, take $||x||_{\infty} = \max_i |x_i|$.
- Consider a discrete space where $\mathcal{X} = \{0,1\}^d$, and d is the normalized Hamming's distance

$$d_H(x,y) = \frac{1}{n} \sum_{i=1}^d \mathbf{1}(x_i \neq y_i).$$

• (L^p spaces). Let \mathcal{X} be the set of real-valued functions on [0, 1], and

$$d_p(f,g) = ||f - g||_p = \left(\int_0^1 |f(x) - g(x)|^p dx\right)^{1/p}.$$

Note that $L^p(\mathcal{X}, d)$ consists of equivalence classes. If we have $p = \infty$, then

$$||f - g||_{\infty} = \sup_{x} |f(x) - g(x)|,$$

which is a metric on C([0,1]), or the set of continuous functions on [0,1].

Next class, we will study covering and packing numbers.