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Lemma 2.2.1 (Hoeffding). Let U € R be a random variable, such that U € [a, b] a.s. for some
finite a < b. Then, for every t € R,

t2(b—a)?
E [exp (t({U — EU))] < exp (%) . (2.2.3)
Proof. For every p € [0,1] and A € R, let us define the function
H,(\) £ In (pek(l_p) +(1— p)e‘A”) : (2.2.4)

Let £ = U — EU, where £ € [a —EU, b — EU]. Using the convexity of the exponential function, we
can write
—a
-t

exp(t€) = exp <[g— (b—EU) + % t(a — EU))

—a

< <%) exp (t(b—EU)) + <%) exp (t(a — EU)).

Taking expectations of both sides, we get

Elexp(t€)] < <%) exp (t(b — EU)) + (bb__Eg) exp (t(a — EU))

= exp (Hy(N)) (2.2.5)

where we have let

EU —
p= Ura and A=tb—a).
b—a
In the following, we show that for every A € R
>\2
Hy(\) < 5, Vpelo.1]. (2.2.6)
From (2.2.4), we have
H,(A) = =Ap+ In(pe* + (1 — p)), (2.2.7)
! )\ peA
H = — _ 2.2.8
YN =t (2.2.8)
p(1 —p)et
HJ(\) = 5 (2.2.9)

(pe* + (1 -p))
From (2.2.7)-(2.2.9), we have H,(0) = H,(0) = 0, and

H;/y,()‘) _ 1 pe)‘ ’ (1 _p>

4 <pek+(1—p)>2
2

1
<1 VAER peo1
where the last inequality holds since the geometric mean is less than or equal to the arithmetic
mean. Using a Taylor’s series expansion, there exists an intermediate value 6 € [0, A] (or 8 € [X, 0]

if £ < 0) such that
! 1 1"
Hy(\) = Hy(0) + H)(0)A+ 5 H}(6) X

so, consequently, (2.2.6) holds. Substituting this bound into (2.2.5) and using the above definitions
of p and A, we get (2.2.3). O



