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Tsybakov’s master thoerem for minimax bounds

Theorem 6.1 (Theorem 2.5 in Tsybakov’s book) Let M ≥ 2 and θ0, θ1, · · · , θM ∈ Θ be such that

(i) d(θi, θj) ≥ 2δ for all 0 ≤ i < j ≤M

(ii) Pi � P0 for all i = 1, 2, · · ·M and

(iii) For an α ∈ (0, 1/8),

1

M

M∑
i=1

KL(Pi, P0) ≤ α logM

Then

inf
θ̂

sup
P∈P

EP
[
w(d(θ̂, θ(P )))

]
≥ w(δ)C(α)

where

C(α) =

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)

We apply this theorem to obtain minimax lower bound in L2 loss for nonparametric regression.

Let Yi = f(Xi) + εi for i = 1, 2, · · · , n where εi ∼ N(0, σ2).

Assumption: Let pε be a density function. There exist p∗, v0 > 0 such that∫
pε(µ) log

pε(µ)

pε(µ+ v)
dµ ≤ p∗v2 if |ν| ≤ v0. (6.1)

In other words, the KL divergence between pε and its translated versions is bounded in terms of the amount
of translation. Note that if pε is Gaussian, the bound is satisfied for all v and p∗ = 1/2.

For β, L > 0, define the Holder class of functions

Σ(β, L) =
{
f : [0, 1]→ R | ∀x, y ∈ [0, 1],

∣∣f (ρ)(x)− f (ρ)(y)
∣∣ ≤ L|x− y|β−ρ}

where ρ = bβc, the smallest integer strictly less than β.
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We want to find

inf
f̂

sup
f∈Σ(β,L)

Ef
[
‖f − f̂‖2

]
where ‖g‖2 =

∫
g2(x)dx. It can be shown that there exists f̂ such that

sup
f∈Σ(β,L)

Ef
[
‖f − f̂‖2

]
� n−β/(2β+1).

As β → ∞, the bound goes to n−1/2 which is the parametric rate. Now we lower bound this rate using
Theorem 6.1.

Proof: Let c0 be a constant chosen later. Partition [0, 1] into m = dc0n1/(2β+1)e intervals of width 1/m
and let xk = (k − 1/2)/m for k = 1, · · · ,m be the mid-points of those intervals. Also let ∆k = (k−1

m , km ] for
k = 1, · · · ,m. Define the blip on the kth interval

ψk(x) = LhβK
(x− xk

h

)
where the kernel K ∈ Σ(β, L/2) ∩ C∞, supp(K) = (−1/2, 1/2) and K > 0.

For example, K(µ) can be aK0(2µ) where K0(z) = exp
(
−1

1−z2 1{|z| < 1}
)

and a > 0.

By construction, ψk’s have non-overlapping support.

Next let Ω = {0, 1}m and for any ω ∈ Ω, let ωj denote the jth component of ω where 1 ≤ j ≤ m.

Denote fω(x) =
∑m
k=1 wkψk(x). Then for any distinct ω, ω′ ∈ Ω,

‖fω − fω′‖22 =

m∑
k=1

(ωk − ω′k)2

∫
∆k

ψ2
k(x) dx

= dH(ω, ω′)

∫
∆1

ψ2
1(x) dx

= dH(ω, ω′)L2h2β+1‖K‖22

where dH(ω, ω′) =
∑m
k=1 1{ωk 6= ω′k} denotes the Hamming distance.

To show the lower bound using Theorem 6.1, it is sufficient to have a subset Ω′ of Ω such that for all distinct
ω, ω′ ∈ Ω′,

dH(ω, ω′) & 1/h = m so that

‖fω − fω′‖2 ≥ 2δn � n−
−β

2β+1

while still satsifying (iii) of Theorem 6.1. The following result gives such a subset Ω′.

Lemma 6.2 (Varshamov-Gilbert) Let m ≥ 8. There exists a subset {ω(0), · · · , ω(M)} of Ω with M ≥
2m/8 such that ω(0) = (0, 0, · · · , 0) and

dH(ω(i), ω(j)) ≥ m/8,

for 0 ≤ i ≤ j ≤M .
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Continuing the proof of the lower bound, let fj = fω(j) for j = 0, 1, · · · ,M where ω(j) are chosen as in
Varshamov-Gilbert’s lemma above. To apply Theorem 6.1, we verify the hypothesis of the theorem.

It can be shown that fj ∈ Σ(β, L) from the fact that ψk ∈ Σ(β, L/2).

To show (i), that is, that the functions are apart, recall that we have

‖fi − fj‖22 = L2h2β+1‖K‖22dH(ω(i), ω(j)) ≥ L2h2β+1‖K‖22
m

8
=

1

8
L2m−2β‖K‖22

where we used h = 1/m for the last equality. Recalling that m = dc0n1/(2β+1)e, for m ≥ 8 and sufficiently
larger n, we have

‖fi − fj‖2 ≥
L‖K‖2

4
(2c0)−β n−

β
2β+1

Now we want to show that

1

M

M∑
j=1

KL(Pj , P0) ≤ α logM

where Pj is the distribution of Y1, · · · , Yn under fj for j = 0, 1, · · · ,M . Pj has Lebesgue density

(y1, y2, · · · , yn)→ Πn
i=1pε(yi − f(Xi)

where pε is the distribution of the noise term. The KL divergence can be upper bounded as follows:

KL(Pj , P0) =

∫
Rn

log Πn
i=1

pε(yi − fj(Xi))

pε(yi)
Πn
i=1pε(yi − fj(Xi)) dy1 · · · dyn

=

n∑
i=1

∫
R
pε(y − fj(Xi)) log

pε(y − fj(Xi))

pε(y)
dy

≤ p∗
n∑
i=1

f2
j (Xi) by the assumption 6.1

≤ p∗
m∑
k=1

∑
i:Xi∈∆k

ψ2
k(Xi)

≤ p∗L2K2
maxh

2β
m∑
k=1

∣∣∣{i : Xi ∈ ∆k]}
∣∣∣ where Kmax = sup

µ
K(µ)

= p∗L2K2
maxh

2βn

≤ p∗L2K2
maxc

−(2β+1)
0 m

Observe that m ≤ 8 log2M and choose

c0 =
(8p∗L2K2

max

α log 2

)1/(2β+1)

so that we have the desired bound
KL(Pj , P0) ≤ α logM.

Thus we have verified the conditions required for theorem 6.1 to hold. Therefore,

max
f∈{f0,··· ,fM}

Pf
(
‖f̂ − f‖2 ≥ An

−β
2β+1

)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)



6-4 Lecture 6: November 12

Note that if we use L∞ norm instead of the L2 norm, then the minimax rate is only slightly worse:
(log n/n)β/(2β+1).

Assouad’s Method

It consists of many binary hypothesis testing problems in contrast to the previous methods which deal with a
multiple hypothesis test in general. The method is not always applicable, but worth trying after the methods
we discussed previously in the class.

Let Sm denote the hypercube {−1, 1}m for positive integers m.

Assumption: There exists a sub-family
{
Pv, v ∈ Sm

}
⊂ P and a function v : θ(P) → Sm such that

∀v, v′ ∈ Sm,
w(d(θ(Pv), θ(Pv′))) ≥ 2δdH(v, v′).

Think of the function v as something which maps θ to the closest corner of the hypercube Sm.

Let v ∈ Uniform(Sm) and P±j be the conditional distribution of (X, v) given vj = ±1, then

inf
θ̂

sup
P∈P

E[w(d(θ̂, θ(P )))] ≥ 2δ
1

2m

∑
v∈Sm

EPv [dH(v(θ̂), v)]

≥ δ
m∑
j=1

(
1− dTV(P+j ,P−j)

)
≥ mδ min

v,v′∈Sm,dH(v,v′)=1

(
1− dTV(Pv, Pv′)

)
We continue the discussion on Assouad’s method in the next lecture.


