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Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Tsybakov’s master thoerem for minimax bounds
Theorem 6.1 (Theorem 2.5 in Tsybakov’s book) Let M > 2 and 6y,61,--- ,0p € © be such that

(i) d(6;,6;) > 26 for all0<i<j<M
(ii) P, < Py foralli=1,2,---M and
(iii) For an o € (0,1/8),

M
1
7 Z KL(P;, Py) < alog M
=1

Then

inf sup Ep {w(d(é,H(P)))] > w(6)C(a)
0 PeP

N3 a
Cla) = %(1‘2“‘\/ 1OZM)

We apply this theorem to obtain minimax lower bound in Lo loss for nonparametric regression.

where

Let YV; = f(X;) +¢ fori=1,2,--- ,n where ¢; ~ N(0,0?%).

Assumption: Let p. be a density function. There exist p*, vy > 0 such that

pﬁ(lu’) *x 2 .
(1) log ————du < p*v if lv] < vg. 6.1
[ retwos P < it < (6.1

In other words, the KL divergence between p. and its translated versions is bounded in terms of the amount
of translation. Note that if p. is Gaussian, the bound is satisfied for all v and p* = 1/2.

For B8, L > 0, define the Holder class of functions
(8, L) = {f: [0,1] > R | Va,y € [0,1], |/ (@) - 9 (y)| < Lla— y)"~*}
where p = | 8], the smallest integer strictly less than 3.
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We want to find
inf sup E[|f il
f fex(B,L)

where |gll2 = [ g?(z)dx. It can be shown that there exists f such that

sup  Eg[llf = flla] = n/5D).
fex(s,n)
As 8 — oo, the bound goes to n~1/2
Theorem 6.1.

which is the parametric rate. Now we lower bound this rate using

Proof: Let co be a constant chosen later. Partition [0, 1] into m = [con!/ (217 intervals of width 1/m
and let z;, = (kK —1/2)/m for k =1,--- ,m be the mid-points of those intervals. Also let Ay = (%, %] for
k=1, ---,m. Define the blip on the kth interval

oo = 0 (5%)

where the kernel K € ¥(8, L/2) N C*,supp(K) = (—1/2,1/2) and K > 0.

For example, K (p) can be aKy(2u) where Ky(z) = exp (1:i2 2] < 1}) and a > 0.
By construction, 1;’s have non-overlapping support.

Next let Q = {0,1}"™ and for any w € Q, let w; denote the jth component of w where 1 < j < m.

Denote f,(z) = >, witr(z). Then for any distinct w,w’ € €,

2 7\2 2
— ’ = WE — W d
||f(, /e H2 kE 1( k k) /kl/Jk(m) x

=dy(w,) | 2(x)d
Ay
= dp(w,w)Lh* | K| 3

where dy (w,w') = 37", 1{wi # w},} denotes the Hamming distance.

To show the lower bound using Theorem 6.1, it is sufficient to have a subset ' of Q such that for all distinct
w,w e,

dy(w,w’) 2 1/h=m so that

__=B_
wa - fw/”Q Z 2671 = n 26+1

while still satsifying (4i) of Theorem 6.1. The following result gives such a subset €2’

Lemma 6.2 (Varshamov-Gilbert) Let m > 8. There exists a subset {w©®, .- WM} of Q with M >
27/8 such that w® = (0,0,---,0) and

dH(w(i),w(j)) >m/8,

for0<i<j< M.
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Continuing the proof of the lower bound, let f; = f,u for j = 0,1,---, M where w) are chosen as in
Varshamov-Gilbert’s lemma above. To apply Theorem 6.1, we verify the hypothesis of the theorem.

It can be shown that f; € X(3, L) from the fact that ¢, € £(5,L/2).
To show (i), that is, that the functions are apart, recall that we have

1
S LPm ™| K13

. . m
1fi = £l = LW K |3 (0, 09) > 2R K| = S

where we used h = 1/m for the last equality. Recalling that m = [con!/2#+1D7, for m > 8 and sufficiently
larger n, we have

(2¢0)~F n T

17— gyl > AUl

Now we want to show that

M
1
i > KL(P;, Ry) < alog M
j=1

where P; is the distribution of Y7,---,Y,, under f; for j =0,1,--- , M. P; has Lebesgue density

(ylvaa T 7yn) - H?:lpe(yi - f(Xz)

where p. is the distribution of the noise term. The KL divergence can be upper bounded as follows:

KL(P;, Py) = / logH?_1WHy_lpe(yi — F5(X3)) dyy - - dy,

= Y (y— F(X)1 Md
;/Rp (y — fi(Xi))log o) Y
<p" Z fj2 (X;) by the assumption 6.1
i=1

m

<Pty D vR(X)

k=1#:X,EAL
<p*L?K2,.h*" Z ‘{z : X; € Ag]}|  where Kpax = sup K ()
k=1 "

=p LK h®n
< p LPK? ca(wﬂ)m
Observe that m < 8log, M and choose

_ (8p*L2K§1aX) 1/(2B+1)
0= alog 2

so that we have the desired bound
KL(PJ',P()) < alogM.

Thus we have verified the conditions required for theorem 6.1 to hold. Therefore,

4 -5 vM 2
max P — > Anz+t ) > ————— (1 — 20—
fe{fos - fm} f(Hf fllz= ) T 14+ ,/M( @)
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Note that if we use Lo norm instead of the Lo norm, then the minimax rate is only slightly worse:
(log n/n)B/(2B+1),

Assouad’s Method

It consists of many binary hypothesis testing problems in contrast to the previous methods which deal with a
multiple hypothesis test in general. The method is not always applicable, but worth trying after the methods
we discussed previously in the class.

Let S,, denote the hypercube {—1,1}™ for positive integers m.

Assumption: There exists a sub-family {Pv,v € Sm} C P and a function v : 8(P) — S,, such that

Yu,v' € Sp,
w(d(0(Py),0(Py))) > 26d g (v,v").

Think of the function v as something which maps € to the closest corner of the hypercube S,,.

Let v € Uniform(S,,) and P4; be the conditional distribution of (X, v) given v; = £1, then

inf sup E[w(d(0,0(P)))] > 252% > Epldu(v(d),v)]

6 PecP

VES,
>6) (1 — drv (P4, P—j))
=1
> mé min (1 —drv(Py, PU/)>
v,0' €Sy, du (v,v')=1

We continue the discussion on Assouad’s method in the next lecture.



