

Online Thinning to Reduce Discrepancy

Raaz Dwivedi, Ohad Feldheim, Ori Gurel-Gurevich and Aaditya Ramdas raaz.rsk@berkeley.edu, ohad.feldheim@mail.huji.ac.il, ori.gurel-gurevich@mail.huji.ac.il, aramdas@berkeley.

Notation

$$X_i \in [0,1)^d, X^N = \{X_1,\ldots,X_N\}, X^\infty = \{X_1,X_2,\ldots\},$$

 $\mathcal{R} = \text{Set of axis-aligned hyper-rectangles in } [0,1)^d,$
 $\text{vol}(\cdot) = \text{Lebesgue Measure.}$

Quantity of interest: Rate of the discrepancy sequence

$$\operatorname{Dis}(X^N) = \sup_{R \in \mathcal{R}} \left| \frac{1}{N} |R \cap X^N| - \operatorname{vol}(R) \right|.$$

Set-up and Objectives

Goal: Design a strategy, which selects a subset Z^{∞} from a streaming sequence X^{∞} of i.i.d. $U[0,1]^d$ random variables such that $\operatorname{Dis}(Z^N) \ll \operatorname{Dis}(X^N)$.

Requirements: We can keep or reject any point in X^{∞} . The sequence Z^{∞} should be **dense** in X^{∞} . The strategy should be **online** and **time and space efficient**.

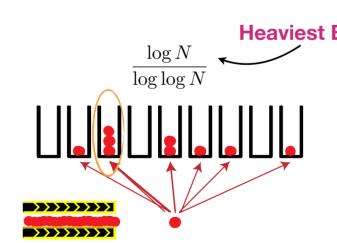
Remark: $\operatorname{Dis}(X^N) = \operatorname{Monte Carlo Discrepancy} = \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$.

Inspiration: Power of Two Choice

N Balls, N Bins

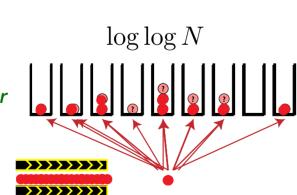
Random Assignment

Randomly sample a bin. Assign the new ball to it.



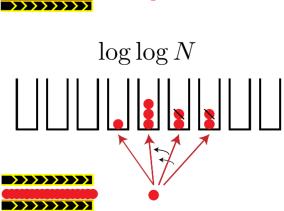
Two Choice Assignment

Randomly sample two bins. Assign the new ball to the **bette** one.



Two Thinning Assignment

Randomly sample a bin. With some probability assign the new ball to it. Else, assign the ball to the next random bin.



Idea: Extend the two thinning strategy to our set-up.

Difficulty: The cardinality of \mathcal{R} and heavy dependence across its

elements.

Tool: Use of Haar Wavelet Basis.

Main Result

For a streaming sequence X^{∞} of i.i.d. $U[0,1)^d$ random variables, Haar 2-Thinning strategy outputs a streaming sequence Z^{∞} such that

$$\operatorname{Dis}(Z^N) = \mathcal{O}\left(\frac{d \log^{2d+1}(N)}{N}\right) \ \forall N \in \mathbb{N}, \text{ almost surely.}$$

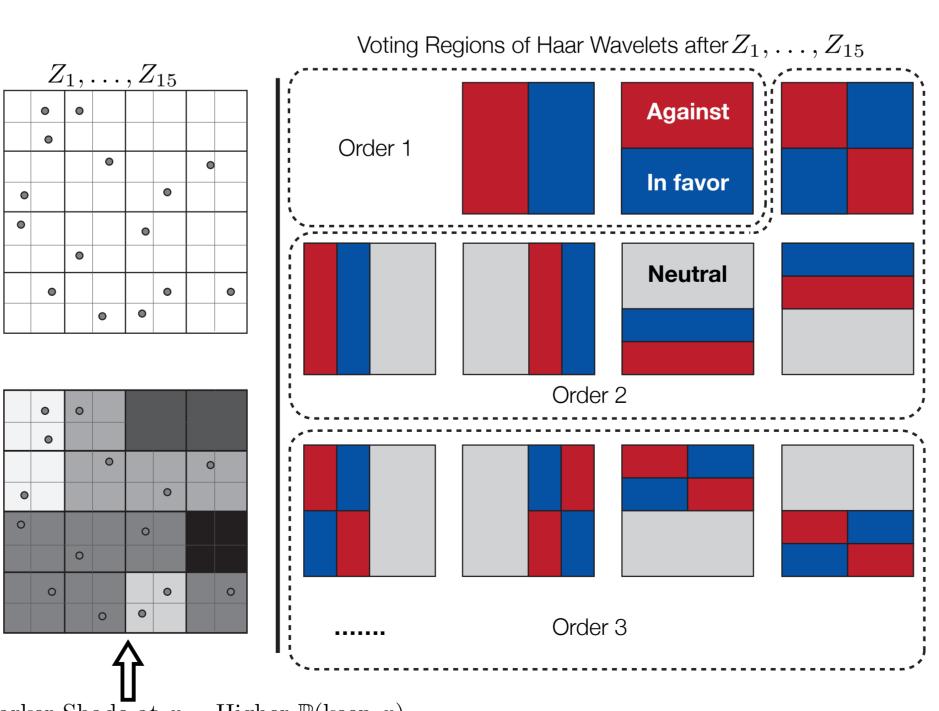
The strategy has $\mathcal{O}(d \log^d N)$ space-time complexity to output N points and keeps at least one out of every two consecutive points of the sequence X^{∞} .

Haar 2-Thinning Strategy

- Given Z^N and a new candidate point x, each Haar wavelet of order up-to $\lceil \log_2 N \rceil$ votes whether to keep x or reject it.
- Haar functions vote to maintain balance of points in their support.
- Based on votes, the point x is kept randomly with probability

$$\mathbb{P}(\text{keep } x) = \frac{1}{2} + \frac{1}{2} \cdot \frac{\text{\#votes in favor of } x - \text{\#votes against } x}{\text{\#total votes}};$$

if x is rejected, the next candidate point is kept.



Darker Shade at $x = \text{Higher } \mathbb{P}(\text{keep } x)$

Figure 1: Illustration of Haar 2-thinning strategy after obtaining 15 samples in two dimensions. For clarity, $\mathbb{P}(\text{keep }x)$ is averaged on diadic squares of side 1/4. The strategy favors to keep points in regions that are *deficient* in samples so far.

Haar Greedy-Thinning Strategy

Conjecture: A simplified greedy strategy with $\mathcal{O}(d \log^d N)$ spacetime complexity outputs a thinned sequence Z^{∞} from a streaming sequence of i.i.d. $U[0,1)^d$ random variables, such that

$$\operatorname{Dis}(Z^N) = \mathcal{O}\left(\frac{d \log^d N}{N}\right) \ \forall N \in \mathbb{N}, \text{ almost surely.}$$

Greedy Strategy: Winner takes it all. Keep x deterministically if # votes in favor of x > # votes against x. Reject otherwise.

Numerical Experiments

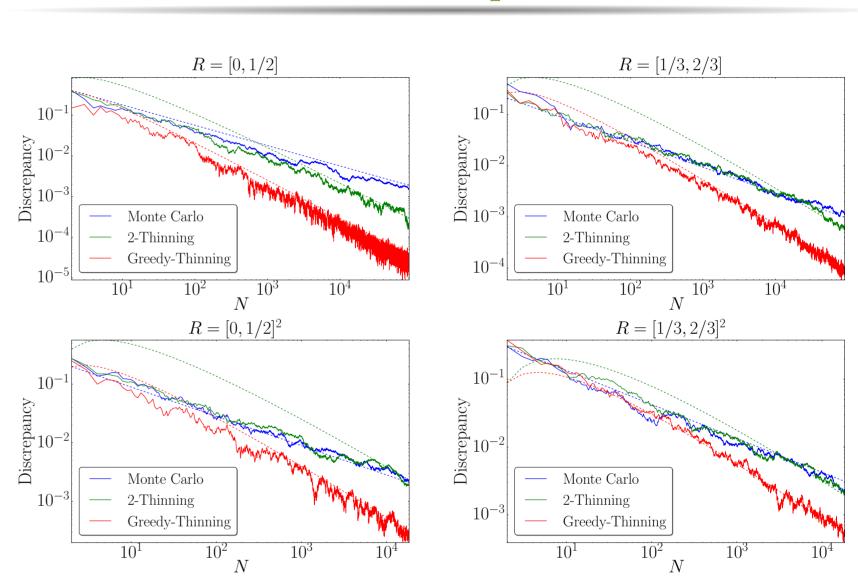


Figure 2: Plots of discrepancy for two different rectangles R in one and two dimensions (averaged over 20 experiments). Axes are in logarithmic scale.

Proof Techniques

- Decompose arbitrary rectangles in terms of "diadic rectangles"
- Express diadic rectangles in terms of "Haar wavelets"
- Exploit *exponential concentration* of self-regulating processes to maintain the balance of points in Haar wavelets up-to some resolution

References

- [1] Y. Azar, A. Broder, A. Karlin and E. Upfal, *Balanced allocations*. SIAM Journal of Computing 29 no. 1 (1999).
- [2] O. N. Feldheim and O. Gurel-Gurevich, *The power of one-retry in reducing discrepancy*. preprint arXiv:1608.02895 (2016).
- [3] Chazelle, Bernard, *The discrepancy method: randomness and complexity*, Cambridge University Press, 2000.
- [4] P. Maillard and E. Paquette, *Choices and intervals*. Israel Journal of Mathematics (2014).
- [5] A. B. Owen, Statistically efficient thinning of a Markov chain sampler, preprint arXiv:1510.07727 [stat.CO].
- [6] R. Dwivedi, O. N. Feldheim, O. Gurel-Gurevich and A. Ramdas, *Online thinning to reduce discrepancy.*, arXiv:version, coming soon.