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Introduction Open Questions Some Details… Answers! 

Thought Experiment: Red vs Blue Pill

4-week Experiment: Each day, give Neo either R or B pill, measure
real-valued thyroxine concentration (X or Y respectively).
Data: R: X1, ..., X14 ⇠ P (iid) and B: Y1, ..., Y14 ⇠ Q (iid).
Mean-di↵erence alternatives:

H0 : E
P

[X] = E
Q

[Y ] vs. H1 : E
P

[X] 6= E
Q

[Y ]

General alternatives:

H0 : P = Q vs. H1 : P 6= Q

Two-sample test: inputs data, outputs 0 or 1. “Stochastic proof
by contradiction”. Nonparametric: no assumptions about P,Q.
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Real Experiment: Faces vs Houses

Question: Does brain region R di↵erentiate faces and non-faces?

• Show someone a face:

• Measure brain activity
(in, say, 500 voxels)

• Repeat 200 times

• Show someone a house:

• Measure brain activity
(in, say, 500 voxels)

• Repeat 200 times

Data: X1, ..., X200 ⇠ P 2 R500 and Y1, ..., Y200 ⇠ Q 2 R500.
Test: Mean-di↵erence alternative or general alternative.
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Errors, and power

Two ways that a two-sample test could be wrong:

1. False Positive: When P = Q (H0), but the test returns 1.
The type-1 error ↵ is the probability of a false positive.

High ↵ - false discoveries - dangerous! Control at (say) 0.05.

2. False Negative: When P 6= Q (H1), but the test returns 0.
The type-2 error � is the probability of a false negative.

High � implies low power � := 1� � - very weak test
incapable of detecting real di↵erences that do exist.

A test is (classically) consistent if, while controlling ↵ at any level
(say 0.05), the power goes to 1 as the number of samples n ! 1.

A test is (high-dim) consistent if, while controlling ↵ at any level
(say 0.05), the power goes to 1 as (n, d) ! 1.
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Tests and Tradeo↵s

1. Parametric + Mean-Di↵erence Alternative

Eg: Threshold Hotelling’s Statistic (X̄ � Ȳ )TS�1(X̄ � Ȳ )
Eg: Random Projections variant : Lopes-Jacob-Wainwright’12

2. Nonparametric + Mean-Di↵erence Alternative

Eg: Diagonalize/drop S (SD, BS, CQ: Chen+Qin).

3. Nonparametric + General Alternative

Eg: Threshold the empirical Gaussian MMD (G-MMD2)
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Fact: Population G-MMD2 = 0 i↵ P = Q (also E-ED)⌥⌃ ⌅⇧Q1: How do the latter tests perform in the former setting?⌥⌃ ⌅⇧Q2: What is the role of bandwidth � on test power?
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The Quadratic-time and Linear-time Statistics

Define (k is the Gaussian kernel or negative Euclidean distance)

h := h(x, x0, y, y0) = k(x, x0) + k(y, y0)� k(x, y0)� k(x0, y)

MMD2
u
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MMD2
l
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1

n/2

n/2X

i=1

h(x2i�1, x2i, y2i�1, y2i)

It is easy to define a sub-quadratic time block-based variant that
looks at n2x entries for 0.5  x  1.⌥⌃ ⌅⇧Q3: What is the tradeo↵ of computation vs power for these tests?
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How did we land here? Misconceptions!⌥⌃ ⌅⇧Q4: How do G-MMD2 and E-ED perform in high-dimensions?

1. Szekely1: ”The power of dCor test for independence is very
good especially for high dimensions p,q”. No proof!

2. Gretton et al2: ”Estimation of MMD2 is independent of d”.
True, but...Power 6= estimation error! MMD2 is 1/poly(d)!

3. Misleading Experiments2, - P and Q are mean-separated
Gaussians with means (0, 0, ..., 0) and (1, 1, ..., 1).

4. Misleading Experiments3 - Table 13 shows that unbiased dCov
estimates dCov well (dCov hovers near 0 under independence).

1
W’shop on Nonparam. Measures of Dependence (Columbia Univ, May’14)

2
A Kernel Two Sample Test, Gretton et al. (JMLR’12)

3
The dist. corr. t-test of indep. in high dim., Szekely et al (JMA’14)
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Summary of Some Results

1. Explicit characterization of power as a function of
n, d, ⇡ KL(P,Q) in the high-dimensional setting as
(n, d) ! 1, for nonparametric P,Q di↵ering in their means.

2. A clear and smooth computation-statistics tradeo↵ if
computation scales as n2x for 0.5  x  1, then the power in

the low SNR (low  ) regime is
⌥
⌃

⌅
⇧⇡ �(nx 2/

p
d) .

3. The power is independent of Gaussian kernel bandwidth,
as long as it is chosen large enough as ⌦(

p
d), which happens

to be the choice made by the popular “median heuristic”.

4. Energy Distance & Gaussian MMD have the same power

in this setting with a mean-di↵erence between distributions.

5. Free Lunch! ED and GMMD have the same power as
specialized tests that have been designed in the literature to
test for mean di↵erences (like Chen+Qin, Srivastava+Du).
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A Simulation
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Figure : Parameters: P,Q Gaussians, d = 40, 60, ..., 200, n = d,  = 1.
Top set: U-statistics (G-MMD for many bandwidths, E-ED, CQ, SD).
Bottom set: Linear-time statistics.
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Summary of Some Techniques

1. G-MMD2 ⇡ k�k2/�2. Recall � = ⌦(
p
d).

Implication: This is why estimation error alone is misleading.

2. Variance V of test statistic also decays with d, but slower.
Implication: This is why power decays with d.

3. Ratio of v/V ! 1 as n ! 1 independent of how d grows.
Implication: Studentization works fine.

4. (Linear) The right-hand side of the Berry Esseen lemma
10 ⇠3

V

3/2
p
n

is actually  20/
p
n, independent of d!

Implication: Null, alternate distributions are always Gaussian.

5. (U-statistic) Martingale central limit theorem works out.
Implication: Null, alternate distributions are Gaussian, not
infinite sums of weighted chi-squared distributions (fixed d).
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Test based on MMD2
l

Define V = 2Var[h]. By CLT

p
n(MMD2

l

�MMD2)p
V

 N(0, 1)

Let v be the empirical counterpart of V . Define the test

Reject when
p
n
MMD2

lp
v

> z
↵

where z
↵

= ��1(1� ↵) for standard Gaussian cdf �, i.e.
P (Z > z

↵

) = ↵ for standard Gaussian random variable Z.

The type-1 error and power of this test changes with

1. Number of points n

2. Underlying dimensionality d of x, y

3. The signal-to-noise ratio  = kE
P

[X]� E
Q

[X]k2/�2

4. The bandwidth of the Gaussian kernel �

The “Classical” Power of MMD2
l

If Pr denotes the probability under H1, and � is the standard
normal cdf, the power is

Pr
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This behaves like �(
p
n) since the population MMD2 and V are

constants that are both independent of n.

Challenges in the high dimensional setting

1. MMD2 depends on dimension

2. V depends on dimension

3. (n, d) ! 1 at any rate

4. Does v/V ! 1 even if (n, d) ! 1?

We will address these by

1. Non-asymptotic, finite-sample Berry-Esseen theorem

2. Calculating MMD2, V explicitly by Taylor expansions

3. Concentration bounds in terms of fourth moments
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