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Introduction

Thought Experiment: Red vs Blue Pill

4-week Experiment: Each day, give Neo either R or B pill, measure

real-valued thyroxine concentration (X or Y respectively).
Data: R: Xq,.... X4y~ P (Ild) and B: Y7,....Yi4 ~ @ (Ild)
Mean-difference alternatives:

Hy :Ep|X]|=EqglY] vs. H;:EplX|#EglY]
General alternatives:
H():P:Q VS. Hlp#Q

Two-sample test: inputs data, outputs 0 or 1. “Stochastic proof
by contradiction”. Nonparametric: no assumptions about P, ().

Real Experiment: Faces vs Houses

Question: Does brain region R differentiate faces and non-faces?

e Show someone a face: e Show someone a house:

e Measure brain activity
(in, say, 500 voxels)

e Measure brain activity
(in, say, 500 voxels)

e Repeat 200 times e Repeat 200 times

Data: Xi,..., X990 ~ P € R°% and Yi,...,.Yo00 ~ Q € R2V0.
Test: Mean-difference alternative or general alternative.

Errors, and power

Two ways that a two-sample test could be wrong:

1. False Positive: When P = ) (Hp), but the test returns 1.
The type-1 error «v is the probability of a false positive.

High « - false discoveries - dangerous! Control at (say) 0.05.

2. False Negative: When P == () (H1), but the test returns 0.
The type-2 error (3 is the probability of a false negative.

High 3 implies low power ¢ := 1 — [ - very weak test
incapable of detecting real differences that do exist.

A test is (classically) consistent if, while controlling o at any level
(say 0.05), the power goes to 1 as the number of samples n — oo.

A test is (high-dim) consistent if, while controlling « at any level
(say 0.05), the power goes to 1 as (n,d) — oc.
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Open Questions

Tests and Tradeoffs

1. Parametric + Mean-Difference Alternative -
Eg: Threshold Hotelling's Statistic (X — V)1 S~1(X —Y)
Eg: Random Projections variant : Lopes-Jacob-Wainwright'12

2. Nonparametric + Mean-Difference Alternative
Eg: Diagonalize/drop S (SD, BS, CQ: Chen+Qin).

3. Nonparametric + General Alternative
Eg: Threshold the empirical Gaussian MMD (G-MMD?)
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Eg: Euclidean Energy Dist. (E-ED): e AN |z; — x|
Fact: Population G-MMD? = 0 iff P = Q (also E-ED)

[Ql: How do the latter tests perform in the former setting?)

[QZ: What is the role of bandwidth v on test power?)

The Quadratic-time and Linear-time Statistics

Define (k is the Gaussian kernel or negative Euclidean distance)

h o= h(z,2',y,y) = k(z,2) +k(y,y") = k(z,y) — k(z',y)
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1 n/2
MMDZ2 = n_/2 ; h(T2i-1, T2i, Y2i—1, Y2i)

It is easy to define a sub-quadratic time block-based variant that
looks at n?% entries for 0.5 < z < 1.

[Q3: What is the tradeoff of computation vs power for these tests? ]

How did we land here? Misconceptions!

[Q4: How do G-MMD? and E-ED perform in high—dimensions?]

1. Szekely': " The power of dCor test for independence is very
good especially for high dimensions p,q". No proof!

2. Gretton et al®: " Estimation of MMD? is independent of d".
True, but...Power # estimation errorl MMD? is 1/poly(d)!

3. Misleading Experiments® - P and () are mean-separated
Gaussians with means (0,0, ...,0) and (1,1,...,1).

4. Misleading Experiments® - Table 13 shows that unbiased dCov
estimates dCov well (dCov hovers near 0 under independence).

'W'’shop on Nonparam. Measures of Dependence (Columbia Univ, May'14)

°A Kernel Two Sample Test, Gretton et al. (JMLR'12)
>The dist. corr. t-test of indep. in high dim., Szekely et al (JMA’'14)

Some Details...

Test based on MMD;
Define V = 2Var[h]. By CLT

vn(MMD? — MMD?)
vV

Let v be the empirical counterpart of V. Define the test

~ N(0,1)

MMD?
U

where z, = ®71(1 — «) for standard Gaussian cdf ®, i.e.
P(Z > z,) = « for standard Gaussian random variable Z.

Reject when /n > 2o

The type-1 error and power of this test changes with
1. Number of points n

2. Underlying dimensionality d of x,y
3. The signal-to-noise ratio ¥ = [|[Ep[X] — Eg[X]||?/c?
4. The bandwidth of the Gaussian kernel ~

The “Classical” Power of MMD;

If Pr denotes the probability under H;, and ® is the standard
normal cdf, the power is

MMD?
Pr(ﬁ\/_ l>z&>
(V)

_ Py (\/E(MMIziv— MMD?) g \/gza B \/ﬁl\\;[;/ﬂ)Q)
2 Pr (Z > Zo — \/ﬁl\;;ﬂﬂ)

Y VnMMD?

_ o <\/E<MMD2 \ZV) )

— = §

This behaves like ®(/n) since the population MMD? and V' are
constants that are both independent of n.

Challenges in the high dimensional setting

1. MMD? depends on dimension
2. V depends on dimension
3. (n,d) — oo at any rate

4. Does v/V — 1 even if (n,d) — oo?

We will address these by

1. Non-asymptotic, finite-sample Berry-Esseen theorem
2. Calculating MMD?, V' explicitly by Taylor expansions

3. Concentration bounds in terms of fourth moments

Answers!

Summary of Some Results

. Explicit characterization of power as a function of
n,d, ¥V ~ KL(P,Q) in the high-dimensional setting as
(n,d) — oo, for nonparametric P, Q) differing in their means.

. A clear and smooth computation-statistics tradeoff if
computation scales as n?z for 0.5 < x < 1, then the power in

the low SNR (low W) regime is [z @(nx\Pz/\/E)J

. The power is independent of Gaussian kernel bandwidth,
as long as it is chosen large enough as ©(+/d), which happens
to be the choice made by the popular “median heuristic”.

. Energy Distance & Gaussian MMD have the same power
in this setting with a mean-difference between distributions.

. Free Lunch! ED and GMMD have the same power as
specialized tests that have been designed in the literature to
test for mean differences (like Chen+Qin, Srivastava+Du).

A Simulation
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Figure : Parameters: P,Q Gaussians, d = 40, 60, ...,200, n =d, ¥ = 1.
Top set: U-statistics (G-MMD for many bandwidths, E-ED, CQ, SD).
Bottom set: Linear-time statistics.

Summary of Some Techniques

1. G-MMD? =~ ||]|2/72. Recall v = Q(V/d).
Implication: This is why estimation error alone is misleading.

2. Variance V of test statistic also decays with d, but slower.
Implication: This is why power decays with d.

3. Ratio of v/V — 1 as n — oo independent of how d grows.
Implication: Studentization works fine.

4. (Linear) The right-hand side of the Berry Esseen lemma

10‘/3/%”\/5 is actually < 20/4/n, independent of d!

Implication: Null, alternate distributions are always Gaussian.

5. (U-statistic) Martingale central limit theorem works out.
Implication: Null, alternate distributions are Gaussian, not
infinite sums of weighted chi-squared distributions (fixed d).



