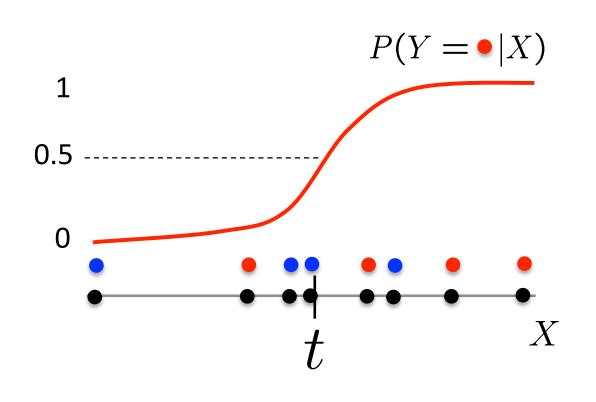


An Analysis of Active Learning with Uniform Feature Noise

Aaditya Ramdas, Aarti Singh, Barnabas Poczos, Larry Wasserman

Introduction

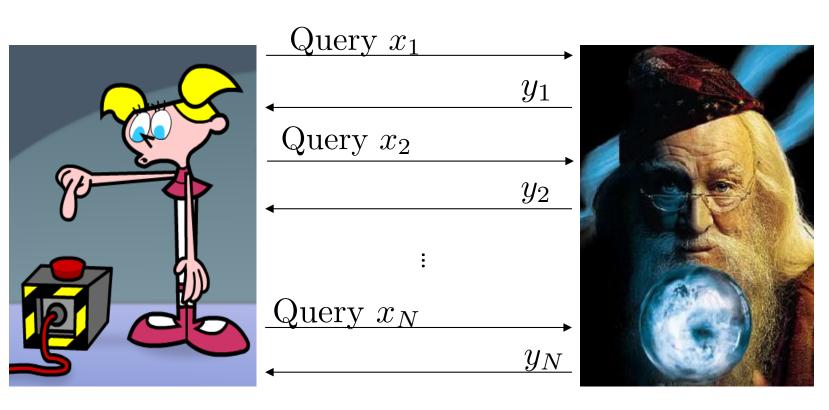
Active 1-D Threshold Learning



Aim: minimize label complexity

(N = # queries needed to find decision boundary)

Oracle provides noisy binary labels



$$y_i \in \{0, 1\}$$
 and $\mathbb{E}[Y|X=x] = P(Y=1|X=x)$
Point error: $|\hat{t}_N - t|$

Errors-In-Variables

1. Classical Model (observe W,Y – infer m)

$$W = X + \delta$$
$$Y = m(X) + \epsilon$$

$$W \leftarrow X \rightarrow Y$$

2. Berkson Model (observe W,Y – infer m)

$$X = W + \delta$$

Seemingly easier to interpret active learning

 $P(Y = \bullet | X)$

$$Y = m(X) + \epsilon$$

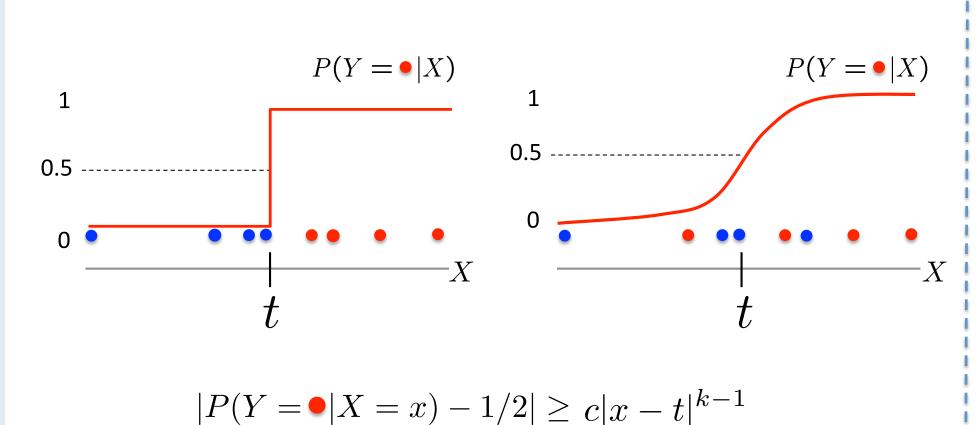
 $W \setminus V \setminus V$

$$W \to X \to Y$$

(motivation: errors in measurement, communication, oracle)

Active Learning

Tsybakov's Noise Condition



Characterizes growth of the regression function around

the threshold t by a polynomial of distance to t.

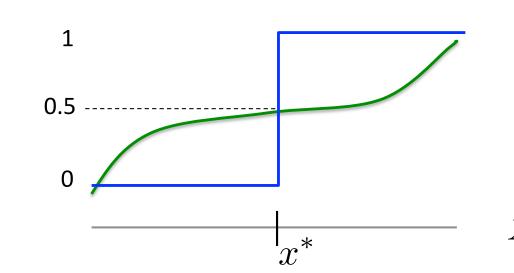
When does Active Learning help?

 $P(Y = \bullet | X)$

k = 1

 $k \to \infty$

Flatter is harder



• JUMP: Binary search - exponentially fast!

• FLAT : No intelligent queries – passive learning

 $|P(Y = \bullet | X = x) - 1/2| \ge c|x - t|^{k-1}$

If Tsybakov's Noise Condition (TNC) holds
$$|P(Y = \bullet | X = x) - 1/2| \ge c|x - t|^{k-1}$$

then, minimax optimal active learning rate is

$$\mathbb{E}|\widehat{t}_N - t| \asymp N^{-\frac{1}{2k-2}}$$

Eg: exponentially fast when $k = 1, N^{-1/2}$ when k = 2, constant when $k = \infty$

Castro-Nowak's Minimax Rates

and minimax optimal passive learning rate is

$$\mathbb{E}|\widehat{t}_N - t| \asymp N^{-\frac{1}{2k-1}}$$

Eg: 1/N when $k = 1, N^{-1/3}$ when k = 2, constant when $k = \infty$

Active Learning + Feature Noise

Formal Setup

Let the domain be [-1,1], regression function m. Unique t s.t. m(t) = 1/2 (Bayes' optimal classifier).

- 1. User chooses W, requests label.
- 2. Oracle receives noisy W, namely X = W + U
- 3. Oracle returns Y, where P(Y = +|X = x) = m(x)

We take noise $U \sim \text{Unif}[-\sigma, \sigma]$, known σ . Loss measure is point error $L(\hat{t}, t) = |\hat{t} - t|$.

Assume querying within σ of boundary disallowed.

Passive learning : $W \sim \text{Unif}[-1, 1]$ or a grid.

Minimax Risk

For $k \geq 1$, define $\mathcal{P}(k, \sigma)$ as the set of functions m(x) satisfying for some threshold t,

T.
$$C|x-t|^{k-1} \ge |m(x)-1/2| \ge c|x-t|^{k-1}$$

whenever $|m(x)-1/2| \le \epsilon_0$

M. $m(t + \delta) = 1/2 - m(t - \delta)$ for all $\delta \le \sigma$

B. t is at least σ away from $\{-1,1\}$.

Minimax Risk under point error loss: $R_N(P(k,\sigma)) = \inf_{S \in \mathcal{S}_N} \sup_{P \in \mathcal{P}(k,\sigma)} \mathbb{E}|\hat{t}_N - t|$

where S_N is the set of active/passive strategies with access to N oracle queries.

Summary of Main Result

Under the Berkson error model, given N labels sampled (A)ctively or (P)assively when the true regression function lies in $\mathcal{P}(k,\sigma)$ for known k,σ , the minimax risk is

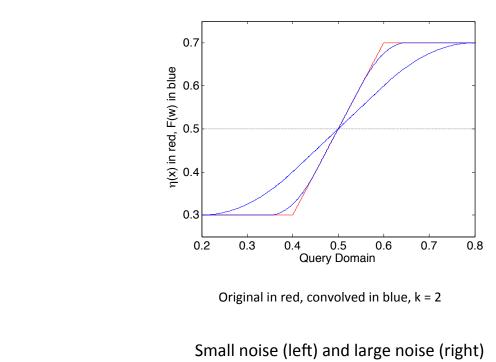
1.
$$\mathcal{R}_{N}^{P}(\mathcal{P}(k,\sigma)) \simeq \begin{cases} N^{-\frac{1}{2k-1}} & \text{if } \sigma \prec N^{-\frac{1}{2k-1}} \\ \sigma^{-(k-\frac{3}{2})} \sqrt{\frac{1}{N}} & \text{otherwise} \end{cases}$$

2.
$$\mathcal{R}_{N}^{A}(\mathcal{P}(k,\sigma)) \simeq \begin{cases} N^{-\frac{1}{2k-2}} & \text{if } \sigma \prec N^{-\frac{1}{2k-2}} \\ \sigma^{-(k-2)} \sqrt{\frac{1}{N}} & \text{otherwise} \end{cases}$$

Remarks about Main Result

- 1. When σ is zero, we get Castro-Nowak's noiseless rates.
- 2. When σ < noiseless error, we get the same noiseless rate.
- 3. When σ is large, and k > 2 (flat regression function), we get an improvement in rate with larger noise level σ !
- 4. On the one hand, this is explained by the unflattening of the regression function when convolved with uniform noise.
- 5. On the other hand, the function class gets simpler with larger σ because of m(x)'s local anti-symmetry around t.

Unflattening due to Convolution



Discussion

Remarks about Proof Techniques

- 1. We use Castro-Nowak's proof technique involving Fano's inequality to derive information theoretic lower bounds.
- 2. We demonstrate two well-separated functions in $\mathcal{P}(k,\sigma)$ that are hard to differentiate, i.e. the joint distribution of observations under both functions have small KL divergence.
- 3. Passive upper bound a histogram variant (estimate at each bin averages over a region of width σ instead of bin-width).
- 4. Active upper bound any optimal passive subroutine can be applied recursively to get an optimal active algorithm.