Introduction

Active 1-D Threshold Learning
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Aim: minimize label complexity

y; € {0,1} and E|Y|X = z| =

Point error: |ty — t

(N = # queries needed to find
decision boundary)

Oracle provides noisy binary labels
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Active Learning

Tsybakov’s Noise Condition
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Characterizes growth of the regression function around
the threshold ¢ by a polynomial of distance to t.

Formal Setup

Let the domain be |—1, 1], regression function m.
Unique t s.t. m(t) = 1/2 (Bayes’ optimal classifier).

1. User chooses W, requests label.
2. Oracle receives noisy W, namely X =W + U
3. Oracle returns Y, where P(Y = +|X = x)

= m(x)

We take noise U ~ Unif|—o, o], known o.
Loss measure is point error L(t,t) = |t — t|.

Assume querying within o of boundary disallowed.

Passive learning : W ~ Unif[—1, 1] or a grid.

Remarks about Main Result

. When o is zero, we get Castro-Nowak’s noiseless rates.
. When o < noiseless error, we get the same noiseless rate.

. When o is large, and k > 2 (flat regression function), we
get an improvement in rate with larger noise level o!

4. On the one hand, this is explained by the unflattening of

the regression function when convolved with uniform noise.

. On the other hand, the function class gets simpler with
larger o because of m(x)’s local anti-symmetry around .

When does Active Learning help?

Flatter is harder

Errors-In-Variables

Query z 1. Classical Model (observe W,Y —infer m)
. 1
Query xo
Y =m(X) +e W+—X->Y
Query x 2. Berkson Model (observe W,Y —infer m)
. N

Seemingly easier to
interpret active learning

W —-X—=Y

(motivation: errors in measurement, communication, oracle)

X=WH+9$
Y =m(X)+e

Castro-Nowak’s Minimax Rates

If Tsybakov’s Noise Condition (TNC) holds

P(Y =e|X) - P(Y =o|X)
. P(Y =e|X =12)—1/2| > c|lz — t|"~
0 — / then, minimax optimal active learning rate is
___1 '
0 ,/ — t| = N~ 2k—2 t .
b Eg: exponentially fast when £k =1, N ~1/2 when k = 2, constant when k£ = oo
x*
 JUMP : Binary search - exponentially fast! E—1 and minimax optimal passive learning rate is
i . . . . . 1
* FLAT : No intelligent queries — passive learning Lk — 00 o t| — N 2&-1

P(Y =@|X =)~ 1/2] > c|o — ]}~

Active Learning
+ Feature Noise

Minimax Risk

For k > 1, define P(k, o) as the set of
functions m(x) satisfying for some threshold ¢,

T. Clz —t|*~1 > Im(z) — 1/2| > c|z — t|F1
whenever |m(x) — 1/2| < ¢
M. m(t+9)=1/2—m(t—9) forall § <o

B. tis at least o away from {—1,1}.

Minimax Risk under point error loss:

Ry (P(k,0)) = SlengN Pespu(]_z . Elty — t|

where Sy is the set of active/passive strategies
with access to N oracle queries.
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Eg: 1/N when k = 1, N~/3 when k = 2, constant when k = oo

Summary of Main Result

Under the Berkson error model, given N labels sampled
(A)ctively or (P)assively when the true regression function
lies in P(k, o) for known k, o, the minimax risk is

1. RE(P(k,0)) = <N _31 Ho =
k4 (k_‘)\/ otherwise
(N~ 72 it o < N 22

2. Ra(P(k, o))

—(k—2) A / otherwise

Discussion

Remarks about Proof Techniques

1. We use Castro-Nowak’s proof technique involving Fano’s
inequality to derive information theoretic lower bounds.

2. We demonstrate two well-separated functions in P(k, o)
that are hard to differentiate, i.e. the joint distribution of
observations under both functions have small KL divergence.

3. Passive upper bound — a histogram variant (estimate at each
bin averages over a region of width ¢ instead of bin-width).

4. Active upper bound — any optimal passive subroutine can be
applied recursively to get an optimal active algorithm.



