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Outline of this tutorial

@ First half: game-theoretic hypothesis testing

B. Second half: game-theoretic estimation

Slides and references at

http://www.stat.cmu.edu/~aramdas/icml25



http://www.stat.cmu.edu/~aramdas

Outline of second half

|. Core definition: confidence sequence

2. A simple, explicit nonparametric example

3. Asymptotic confidence sequences




A “confidence sequence (CS)” for a parameter ¢
is a sequence of confidence intervals (L, U,)

that are constructed from the first n samples, and
have a uniform (simultaneous) coverage guarantee.

P(Vi>1:0e (L, U)>1-a.

(Another motivation: (L,, U,) should not
contradict (L,,, U,) for any m > n. Darling, Robbins '67,70s

pointwise Cls, intersection = & a.s, Lai 76, 84

but +CSs, intersection = 6 wp. 1 — a)

Robbins, Siegsmund */0s

Much stronger than the pointwise (fixed-sample)
confidence interval (Cl) guarantee:

V> 1,POe (L, U))>1-a.




(Vn>1:0€(L,U) =>1—-a.

Equivalent definitions:

L

(IneN:0¢ (L, U)) <La.

L

More

(Joga, vy <a.

neN

generally:

L

(Vh2n,:0 €C)>1—-a.

(Ane2V:0¢ (L, U)) <a.



P (0¢ @, U)h <a.
neN

Some implications:
|.Valid inference at arbitrary stopping times:

For any stoppingtme z: P(@ & (L, U))) < «a.
2.Valid post-hoc inference (in hindsight):
For any random tme T : P(6 & (L, U7)) < .

3. No pre-specified sample size:
can extend or stop experiments adaptively.

Fact: the aforementioned properties imply each other.



Eg.’ It X, X5, ... are 1id Gaussian or bounded in [—1,1],

loglog(2n) + 0.7210g(10.4/a)

n

\)

Howard, Ramdas, McAuliffe, Sekhon "2 |
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Confidence interval: Vn, Pr@eC)> 1 -a).

Confidence sequence: Pr(Vn, 6 C,) > (1-a).
— Pr(0 € C,) > (1 — a) for all stopping times 7



Confidence sequence for fixed quantiles

\/0.73 loglog(2.04¢) + 0.52102(9.97/ )
Define u, := t

Then Pr(VieN: O (1/2—u) <0(1/2) < 0 (112+u))>1—a.

Confidence sequence for all quantiles simultaneously

\/ loglog(et) + 0.75log(34/a)
Define u, := t

Pr(VieN,pe (0.1): Q,(p—u)<0(p)< O (p+u)>1-a.




Confidence bounds for 90%ile

Cauchy distribution
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Eg: sequential covariance matrix estimation

Consider X € R4, EX = 0, | X:| <b.

uniformly w.h.p.
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Outline of second half

‘J) Core definition: confidence sequence

2. A simple, explicit nonparametric example

3. Asymptotic confidence sequences



Let X, X5, ..., beid rv. € [0,1], with mean pu.

Q. How can we construct a confidence interval for u!

| _ log(2/a)
Al. Hoeffding: | X, N [0,1]

2n

26°log(4/a) ~ Tlog(4/a)

n

A2. Empirical Bernstein: | X, & |
n 3(n—1)

A3: Betting — significantly tighter!

Q2. How can we construct a confidence sequence for u!



X; ~ Beta(10, 30)

Time-uniform confidence sequences
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Converting the problem to a game

Initial capital Kém) = | for every (game) m € [0,1].

Foreacht = 1,2,...

For each m € [0,1], statistician declares “bet”/lt(m) < [— o ]

l—m  m

Reality reveals X,
Statistician’s wealth in game m becomes Kt(m) = Kt(f‘l) (1 + /lt(m)(X[ —m))

C,:={me0,1]: K™ < l/a}

(the games In which the statistician did not earn enough wealth)

Theorem: For any betting strategy, (C,),~; Is a confidence sequence
for the true mean u.

Two questions:Why is C, a valid confidence sequence for !
How do we bet so that it Is an efficient (small) set?




|.Foreach m € [0,1], let us test Hém) EplX | Xy .- X ] = m

K™ = H (1 + A"(X; — m)), where A" € [=1/(1 — m),1/m]

1<t

prediz:table

2.C,:={m: Kt(m) < 1/a} yields a confidence sequence for u.

sup P(dreN:u¢&(C) <La.
PeHW



|.For each m € [0,1], let us test Hém) EplX | Xy .- X ] = m

K™ = [ [ (1420, = m)), where 4™ € [=1/(1 — m),1/m].

1<t

K'* is a nonnegative martingale +initial value one
(“test martingale™).

Ville's inequality sup P(dr € N : Kt(”) > 1/a) L a.

PeH"

C, is incorrect only if Kt(’“‘) exceeds 1/a. But this is happens w.p. < a.

2.C,:={m: Kt(m) < 1/a} is a confidence sequence for u.

sup P(dIreN:ug(C) L a.
PeH{"



Betting strategy |: GRAPA

Growth Rate Adaptive to the Particular Alternative

A(P) = arg max pllog(l + AKX, —m)) | F,_4].
A€[—1/(1=m),1/m]

But we don't know P. Approximate solution:

differentiate wrt 4, and set equal to zero (KKT),
aylor expand, and plug-in empirical estimates.

He—m

/6\t2+(/jt\r_m)2 |

A=

(i, and &7 use the first £ — 1 samples)



Betting strategy 2: Mixture

1/m t
H (1 + AX; — m)) dv(}) < 1/a
~1/(1-m) =

C, =<4 mel0,1] :J

In practice, we would discretize the mixture, does not affect validrty.
VWe must make the mixture finer over time to preserve power.

We can use the connection to Cover’s Portfolio Optimization
to analyze its performance (eg: uniform mixture will do).

Waudby-Smith+R (2024)
Jun+QOrabona (2024)

Shekhar+R (2024)



X; ~ Beta(l1, 1)
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In iid settings, lim \/E\/\Adth(cn) — \/E\/\Adth(Bemstem) <0,

n— Qo0

(1.e. we match / beat the leading term of Bernstein's inequality,
even though we do not know ¢ — tight “empirical Bernstein™)

Shekhar + Ramdas (2023, arXiv)



The first sharp closed-form empirical Bernstein bound

Theorem 2 (Predictably-mixed empirical Bernstein CS [PM-EB]).
Suppose that (X;)2, ~ P for some P € P*. For any chosen (0,1)-valued predictable sequence ()52 4,

CPMEB . _ (Zle AiXs | log(2/a) + Yi_, viye(Mi)

Z:=1 Ai Z:=1 \; ) fOTmS a (]_ — a)_C’S fOT‘ I,

PM-EB
CPM-EB,

as does its running intersection, ﬂiSt
lim \/nWidth(C,) — v/nWidth(Bernstein) — 0
n—oo

X; ~ Beta(1, 1)
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Figure 3: Comparison of the variance-adaptive empirical Bernstein CI with Maurer & Pontil’s (MP09)
and Audibert et al.’s (AMS07) empirical Bernstein Cls.



Aside: Kernel two-sample testing by betting (sequential MMD)

Choose a kernel k, say bounded by one for simplicity.

Define K, = H(l + AL F(X) = £(Y)])

where [ is a predmtable function In the RKHS
(based on X{...X,_(, Y, ..., Y o),
and A, is a predictable scalar in [—1,1].

Eg: set f; Z qb(Xj) — ¢(YJ-), or Online Gradient Descent in RKHS,
j<i
and pick A using Online Newton Step, or universal portfolios.

Shekhar+R (2023), Podkopaev et al. (2024)
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@ Core definition: confidence sequence
(J) A simple, explicit nonparametric example

3. Asymptotic confidence sequences



Statistical problem Confidence interval Confidence sequence

Robbins + co. (1967-76)
Parametric inference Wald, Neyman, Fisher Wasserman et al. (2020)
Waudby-Smith & Ramdas (2020)

Sub-Gaussian mean estimation Hoeffding (1963) Eg&vzp dse(t1 2?3)2021)
Hoeffding (1963) Howard et al. (2021)

Bounded mean estimation Waudby-Smith & Ramdas (2024) Waudby-Smith & Ramdas (2024)

Quantiles & CDFs DKW (1956) Howard & Ramdas (2021)
Sampling without reolacement Hoeffding (1963), Waudby-Smith & Ramdas
Ping P Bardenet & Maillard (2015) (2020, 2024)
Heavy-tailed mean estimation Catoni (2012) Wang & Ramdas (2023)
y Lugosi-Mendelson (2014 +) Martinez-Taboada et al. (2025)

Nonasymptotic inference is
impossible, but asymptotic Central limit theorem ?
inference is possible

24



Definition (AsympCS)

(i, £B)” isa(l — a)-AsympCS for y if there exists a
nonasymptotic (1 — a)-CS for u given by (i1, = B/)%,, and
B¥/B, - 1 almost surely.

In words, an AsympCS is an arbitrarily
precise a.s. approximation to a

nonasymptotic CS for large [

25



Why is this a sensible definition”? The canonical

CLT-based asymptotic confidence interval
looks like

\\

(i, £B) where B

ol =a/2)
\/n
Fact: \When invoking the CLT, there exists a

. . . P
nonasymptotic B such that BY/B, — 1 .

In contrast, our definition of AsympCSs

requires BX/B, =5 1.

20



Theorem 1 (AsympCS for the mean of iid random variables)
Suppose (Y))2, "9 P with mean u and finite variance. Then for any

p >0,

2
_ 2(tp? + 1) \/fﬂ +1
: — - log
a0, a

forms a (1 —a)-AsympCS for u.

Paper has Lindeberg-Levy (non-iid, martingale) AsympCS

27



Theorem 2 (Asymptotic time-uniform coverage guarantees)

Suppose we tune p, = \/(—log a+log(—2log @) + 1)/m&? log

and let (C(77)),2 be the AsympCS +p,, in place of p. Then

lim inf P(Vz > m, u € C(m)) = 1—a.

— OO0

As you start (at time m) later and later, the time-uniform

type-| error approaches a. (This could have been an
alternate definition of AsympCSs.)

28



liminfP(u € C,)) = 1—a
AsympCl: e |
< lmsupPu &C,) =a

nm—0

Iim inf P(Vt > m, u € C_ft(m)) =1-a

AsympCS: e )
— lmsupP(dt>m:u & C(m)) =a

mM— 0

29



Now that we have CSs under CLI-like assumptions, we
can do doubly-robust causal inference in sequential
settings at stopping times.

(or, Robbins meets Robins.)

30



Given (X, A, Y) 2, ~ P, wish to estimate

y=EY|A=1)-EX|A=0)

e X — covariates (e.g. age, sex, etc.).
e A — treatment level (e.g. 1 for treatment, O for placebo).
e Y — outcome of interest (e.g. whether patient recovered from sickness)

31



Classical AIPW “doubly robust” estimator (Robins et al. 1994):
1 4
=2

where ft involves estimates (u,, U, , r,) of
regression functions
') =EY | X=xA=a),
and the propensity score
=Pr(A=1|X=x).

32



Theorem (AsympCS for the ATE)
Given observations (X, A,, Y,).2; ~ P, construct a (sequentially) cross-

fit DR estimator 3 . Suppose || £ = “|||| 7—7|| = o(y/logt/1).
Then,

Cl:=|wrXx4[t722t67+ 1) - log (a‘l\/t’a\% + 1)
forms an AsympCS for the ATE y.

*Applies to both randomized expts and observational studies™

The usual fixed-n assumption is 0(\/ 1/¢), incomparable +ours.

33
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Confidence sequences for

the average treatment effect
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Theorem (AsympCS for time-varying treatment effects)
Suppose now that we have the individual treatment effects i, = E(Y — ¥?).

Suppose — Z 1i¢(X) — p )N 7(X) — 2(X) || = o(y/log t/t) ana
=1

Sup ”/jt\?(Xl) — u“X)|| = o(1). Then,

Cr=|wr+ \/I‘Z(Zt/a\t2 + 1) - log (a‘l\/t/o\tz + 1)

forms an AsympCS for the running average of the ITEs y, := — Z .
[

*If treatment effects are constant over time, C captures the ATE!*

36



Our AsympCSs can capture time-varying treatment effects.
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The paper has delta method to extend these bounds to asymptotically linear
estimators (eg: general semiparametric estimation).

37



Outline of second half

@ Core definition: confidence sequence
(J) A simple, explicit nonparametric example

(J’ Asymptotic confidence sequences



Summary

Confidence sequences are sequences of confidence intervals
that are valid at arbitrary stopping times.

2. Sequential estimation and testing are dual problems.All CSs are
obtained by inverting families of sequential tests.

Can construct tight CSs even in nonparametric settings.
4. “Time-uniform central limit theory” and asymptotic CSs allow

for sequential doubly-robust causal inference in observational
settings, and more generally sequential semiparametrics.



Sequential anytime-valid inference (SAVI)

Real-valued measures of evidence Associated with a level a € (0,1)

P-processes Confidence sequences

“invert”

(running supremum) ™! |
a family

“calibration”

INntersection

Threshold at 1/a
E-processes Power-one

Divide b -
e Sequential tests



Game-theoretic methods are very practical

|. Election auditing: the state-of-the-art post-election audits
are now based on betting for sampling without replacement.

2. A/B testing: our A/B tests are being used by Amazon,
Netflix in public-facing software.

3. On and off-policy evaluation: our confidence sequences
are deployed at Adobe, Microsoft in public-facing software.



Adobe’s Statistical Methodology: Any Time Valid Confidence Sequences

A Confidence Sequence is a sequential analog of a Confidence Interval, e.g. if you repeat your experiments one hundred times, and calculate an
estimate of the mean metric and its associated 95%-Confidence Sequence for every new user that enters the experiment. A 95% Confidence
Sequence will include the true value of the metric in 95 out of the 100 experiments that you ran. A 95% Confidence Interval could only be calculated
once per experiment in order to give the same 95% coverage guarantee; not with every single new user. Confidence Sequences therefore allow you

to continuously monitor experiments, without increasing False Positive error rates.

The difference between confidence sequences and confidence intervals for a single experiment is shown in the animation below:

0.70
N : .
'\\ Green lines are upper and lower bounds for the conversion rate
065 \ derived from 95% Confidence Sequences. Unlike standard
‘V Confidence Intervals, these are gauranteed to always include the
‘\‘ true effect in 95% of the experiments you run, even with peeking
LA
0.60 \f £}
".“r'\
‘@

g
o \ ’
g 055 LRVAN
?
uJ -
§ \’""\,¢n~"¢~\‘~/‘\\,,, M o ol N e
O NDEN oo om s o o o o s o« o s T o« o s eV e « e « e « oo + o2 VP WABIE. » e TRl e e et + e T s 1 o « . £ S 2 T e
£ 0.50
®
[
o

045

= Running Empirical Mean
040 - Pointwise-Confidencelnterval
-== ConfidenceSequence
0.35
2 3 <
10 10 10

Number of visitors

src: https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-
calculations.html
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https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-calculations.html
https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-calculations.html
https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-calculations.html

Growthbook is a Y-Combinator startup

GrowthBook's implementation

There are many approaches to sequential testing, several of which are well explained and compared in this

Spotify blogpost.

For GrowthBook, we selected a method that would work for the wide variety of experimenters that we serve,
while also providing experimenters with a way to tune the approach for their setting. To that end, we
implement Asymptotic Confidence Sequences introduced by Waudby-Smith et al. (2023); these are very
similar to the Generalized Anytime Valid Inference confidence sequences described by Spotify in the above
post and introduced by Howard et al. (2022), although the Waudby-Smith et al. approach more

transparently applies to our setting.

src: https://docs.growthbook.io/statistics/sequential

43


https://docs.growthbook.io/statistics/sequential

Stuff not covered in the tutorial

. Multiple hypothesis testing (eg: the e-BH procedure)

. Sequential changepoint detection and localization using
e-processes and CSs (eg: the e-detector)

. Connections to Bayes, empirical Bayes and PAC-Bayes (eg: prior-
posterior ratio martingale, improper priors, compound e-values)

. Martingale concentration (eg: time-uniform Chernoff bounds)
. Multivariate CSs (for vectors, matrices, etc.)
. Universal inference (a simple, general e-value and e-process)

. Decision making with e-values (eg: post-hoc validity)



Some current and future directions

|. For a new (nonparametric) problem, how do we design the
game and learn to bet!

2. When do nontrivial test martingales (not) exist?
When do nontrivial test supermartingales (not) exist?
When do nontrivial e-processes (not) exist?

3. How do we move beyond testing and estimation to, say,
other problems in statistics?

4. How do we tie together game-theoretic statistics with
game-theoretic probability?



o : : .}‘:7‘ < ' 5 Y . ‘ ‘ , N S e ._
Peter GlennVolodya Ruodu Johannes Martin VWouter Shubhanshu Y]

GrunwaldShafer Vovk Wang  Ruf Larsson Koolen Shekhar  Choe

Steve Akshay  Robin Sasha Bcl)ﬁyan Jaehyeok
Howard Balsubramani Dunn Podkopaev Duan Shin

. an - Tudor
White- Waudby- Manole

house Smith

Hongjian  Ben
AU Wang  Chugg



Focus: foundational papers (cutting across problems)

Time-uniform Chernoff bounds via nonnegative supermartingales
Probability Surveys, 2020
Universal inference PNAS, 2020

A unified recipe for deriving (time-uniform) PAC-Bayes bounds
JMLR, 2023

Admissible anytime-valid inference must rely on nonnegative martingales
arXiv, 2020
The numeraire e-variable and reverse information projection
Annals of Stat. 2025

Distribution-uniform anytime-valid inference arXiv

The extended Ville’s inequality for nonintegrable nonnegative supermartingales
Bernoulli, 2025

Randomized & exchangeable improvements of Markov, Chebyshev & Chernoff’s
inequalities Statistical Science, 2025

On the existence of powerful p-values and e-values for composite hypotheses
Annals of Statistics, 2025

A composite generalization of Ville’s martingale theorem using e-processes
Elec. J of Probability, 2023

Combining evidence across filtrations arXiv

Positive semidefinite matrix supermartingales arxiv

On stopping times of power-one sequential tests: tight lower and upper bounds.
arXiv



Focus: testing (specific problems)

Testing exchangeability: fork-convexity, supermartingales and e-processes
Intl J of Approx Reasoning. 2025

Nonparametric two-sample testing by betting IEEE TIT'23
Sequential kernelized independence testing

ICML, 2024
Sequential Monte-Carlo testing by betting JRSSB, 2025
Comparing sequential forecasters Operations Research, 2023
Huber-robust likelihood ratio tests for composite nulls and alternatives
arXiv
Interactive martingale tests for the global nuli EJS’20

Nonparametric iterated-logarithm extensions of the sequential generalized LRT
IEEE J Selected Areas in IT, 2021

Sequential Kernelized Stein Discrepancy AISTATS’25

Anytime-valid t-tests & CSs for Gaussian means with unknown variance
Sequential Analysis, 2025

Sequential predictive two-sample & independence testing

NeurlPS’23
E-variables for hypotheses generated by constraints arXiv
Improving Wald’s (approximate) SPRT by avoiding overshoot arXiv

Anytime-valid inference for double/debiased machine learning of causal parameters
arXiv



Focus: multiple hypothesis testing
False discovery rate control with e-values JRSSB, 2022

Post-selection inference for e-value based confidence intervals
EJS'24

E-values as unnormalized weights in multiple testing
Biometrika, 2023

A unified framework for bandit multiple testing NeurlPS’21
Online multiple testing with e-values AISTATS, 2024
An online generalization of the (e-)BH procedure arXiv
Asymptotic & compound e-values: multiple testing & empirical Bayes.

arXiv
Bringing closure to FDR control: beating the e-BH procedure

arXiv

Active multiple testing with proxy p-values and e-values
arxXiv

Admissible online closed testing must employ e-values arXiv

Anytime-valid FDR control with the stopped e-BH procedure
arXiv

More powerful multiple testing under dependence via randomization
Multiple testing with anytime-valid Monte-Carlo p-values

Merging uncertainty sets via majority vote. arXiv

arXiv
arXiv



Focus: estimation (confidence sequences)

Time-uniform, nonparametric, nonasymptotic confidence sequences
The Annals of Stat., 2021

Estimating means of bounded random variables by betting
J. Royal Stat Society B, 2023 (Discussion paper)

Time-uniform central limit theory and asymptotic confidence sequences
Annals of Stat., 2024

Martingale methods for sequential estimation of convex functionals & divergences
IEEE Trans. Info. Theory, 2023

Off-policy confidence sequences ICML’21

Anytime-valid off-policy inference in contextual bandits
ACM/IMS J. Data Sci.’24

Catoni-style confidence sequences for heavy-tailed mean estimation
Stochastic Proc. & Applications, 2023

Sequential estimation of quantiles with applications to A/B-testing & bandits
Bernoulli, 2022
Huber-robust confidence sequences AISTATS, 2023
Confidence sequences for sampling without replacement
NeurlPS, 2020
Sharp empirical Bernstein bounds for the variance of bounded random variables
arxXiv

On the near-optimality of betting confidence sets for bounded means
arXiv



Focus: estimation (vector or matrix CSs)

Time-uniform, nonparametric, nonasymptotic confidence sequences
The Annals of Stat., 2021

Time-uniform central limit theory and asymptotic confidence sequences
Annals of Stat., 2024

Time-uniform confidence spheres for means of random vectors

TMLR, 2025
Mean estimation in Banach spaces under infinite variance & martingale dependence
arXiv
Sharp matrix empirical Bernstein inequalities arXiv
Empirical Bernstein in smooth Banach spaces arXiv

Time-uniform self-normalized concentration for vector-valued processes
arXiv



Focus: changepoint analysis

E-detectors: a nonparametric framework for online changepoint detection

New England J of Statistics & Data Science, 2023

Reducing sequential change detection to sequential estimation
ICML’24

Sequential change detection via backward confidence sequences
ICML’23

Multiple testing in multi-stream sequential change detection
arXiv

Post-detection inference for sequential changepoint localization

Focus: auditing
Auditing fairness by betting
NeurlPS, 2023

RILACS: risk limiting (election) audits via confidence sequences
EVotelD (Best paper), 2021

Risk-limiting financial audits via weighted sampling without replacement
UAI, 2023

Sequentially auditing differential privacy
In submission

arXiv



Foundational (recent) papers by other authors

Testing by betting JRSSA’20 (Discussion paper)
Safe testing JRSSB’24 (Discussion paper)
E-values: Calibration, combination & applications AoS, 2021
Beyond Neyman-Pearson PNAS’25
The e-posterior Phil. Trans. Royal Society’25
Reverse information projections & optimal e-statistics
IEEE TIT'24
Tight CSs & the regret of universal portfolio IEEE TIT’24

+many old papers by Robbins, Cover, Lai, Siegmund, Vovk, etc.

Surveys and books

Test Martingales, Bayes Factors and p-Values
Statistical Science, 2011

Game-theoretic foundations for probability and finance Wiley 2019
Probability and finance: it’s only a game Wiley 2001

Likelihood, replicability and Robbins’ confidence sequences
Intl. Stat. Review, 2021

Hypothesis testing with e-values Foundations & Trends in Statistics’25

Game-theoretic statistics and safe anytime-valid inference
Statistical Science, 2023



