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Outline of this tutorial

A. First half: game-theoretic hypothesis testing 

B. Second half: game-theoretic estimation

Slides and references at  
 

http://www.stat.cmu.edu/~aramdas/icml25

http://www.stat.cmu.edu/~aramdas


Outline of second half

1. Core definition: confidence sequence

2. A simple, explicit nonparametric example

3. Asymptotic confidence sequences



A “confidence sequence (CS)” for a parameter 
is a sequence of confidence intervals  
that are constructed from the first  samples, and
have a uniform (simultaneous) coverage guarantee.

θ
(Ln, Un)

n

Darling, Robbins ’67, ‘70s
Lai ’76, ’84

Robbins, Siegmund ‘70s

Much stronger than the pointwise (fixed-sample) 
confidence interval (CI) guarantee:

∀n ≥ 1, ℙ(θ ∈ (L̃n, Ũn)) ≥ 1 − α .

ℙ(∀t ≥ 1 : θ ∈ (Lt, Ut)) ≥ 1 − α .

(Another motivation:  should not 
contradict  for any . 

+pointwise CIs, intersection  a.s., 
but +CSs, intersection  w.p. )

(Ln, Un)
(Lm, Um) m > n

= ∅
= θ 1 − α



ℙ(∃n ∈ ℕ : θ ∉ (Ln, Un)) ≤ α .

ℙ(∀n ≥ 1 : θ ∈ (Ln, Un)) ≥ 1 − α .

ℙ( ⋃
n∈ℕ

{θ ∉ (Ln, Un)}) ≤ α .

Equivalent definitions:

More generally:

ℙ(∀n ≥ n0 : θn ∈ Cn) ≥ 1 − α .
ℙ(∃n ∈ 2ℕ : θ ∉ (Ln, Un)) ≤ α .



Some implications: 
1. Valid inference at arbitrary stopping times:
 

2. Valid post-hoc inference (in hindsight):

 
3. No pre-specified sample size: 
   can extend or stop experiments adaptively.

ℙ( ⋃
n∈ℕ

{θ ∉ (Ln, Un)}) ≤ α .

For any stopping time τ : ℙ(θ ∉ (Lτ, Uτ)) ≤ α .

For any random time T : ℙ(θ ∉ (LT, UT)) ≤ α .

Fact: the aforementioned properties imply each other.



Eg:

∑n
i=1 Xi

n
± 1.71

log log(2n) + 0.72 log(10.4/α)
n

If X1, X2, … are iid Gaussian or bounded in [−1,1],

 is a (1 − α) confidence sequence for μ,  as is 

Howard, Ramdas, McAuliffe, Sekhon ’21

⋂
s≤n

∑s
i=1 Xi

s
± 1.71

log log(2s) + 0.72 log(10.4/α)
s

.
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Confidence interval: 
Confidence sequence:

∀n, Pr(θ ∈ ·Cn) ≥ (1 − α) .

Pr(∀n, θ ∈ C̄n) ≥ (1 − α) .
⟺ Pr(θ ∈ C̄τ) ≥ (1 − α) for all stopping times τ .
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Confidence sequence for fixed quantiles

Then Pr(∀t ∈ ℕ : ̂Q t(1/2 − ut) ≤ Q(1/2) ≤ ̂Q t(1/2 + ut)) ≥ 1 − α .

Define ut :=
0.73 log log(2.04t) + 0.52 log(9.97/α)

t

Define ut :=
log log(et) + 0.75 log(34/α)

t

Pr(∀t ∈ ℕ, p ∈ (0,1) : ̂Q t(p − ut) ≤ Q(p) ≤ ̂Q t(p + ut)) ≥ 1 − α .

Confidence sequence for all quantiles simultaneously
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Figure 8: Illustration of covariance matrix confidence sequence given by Theorem 6 based on a simulated sequence
of observations. Observations are drawn i.i.d. taking values ±(

p
2

p
2)T , ±(1/

p
2 � 1/

p
2)T each with probability

1/4, with covariance matrix given by (23), which is represented by the ellipse xT⌃�1x = 1. Confidence ball with
level ↵ = 0.05 is represented by shaded area between ellipses corresponding to elements of the confidence ball with
minimal and maximal trace. Uniform bound from Theorem 6 uses b = 4 and mixture distribution FLIL

1.4 from (16)
with ⌘ = 1.1 and �max = 1/e.

where �(n) = s log log(⌘n) + log d ⇣(s)
↵ log

s ⌘ . Here, we remove the initial time condition Vn � 1 from Theorem 2
via a scaling argument, since Vn is deterministic; see appendix C. In other words,

kb⌃n � ⌃kop -
r

b log(d log n)

n
+

b log(d log n)

n
,

uniformly for all n � 1 with high probability. We are not aware of other results like these for sequential
covariance matrix estimation. Figure 8 illustrates the discrete mixture bound with F

LIL
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so that kxik2  2 and the true covariance is

⌃ =

0
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A . (23)

The true covariance matrix ⌃ is represented by the ellipse x
T⌃�1

x = 1. The orange ellipse represents
the area between the ellipses corresponding to elements of the confidence ball with minimal and maximal
operator norm.

10 Discussion and future work

We have described a general approach to constructing fully sequential, nonasymptotic confidence sequences
under a variety of nonparametric assumptions. The approach can be understood both in relation to Wald’s
sequential probability ratio test and its descendants, as well as to the Cramèr-Cherno↵ technique for con-
centration inequalities. Our methods support open-ended experiments with unbounded sample size and
flexible decision making. By applying our methods to the Neyman-Rubin potential outcomes model, we give
a robust solution to causal inference in sequential experiments which is justified solely by the randomization
mechanism. We further derive novel iterated logarithm laws for matrix martingales and useful sequential
procedures for covariance matrix estimation.

Our consideration of optimality has been limited to the discussion in section 6.5. It would be valuable to
further explore various optimality properties for nonasymptotic uniform bounds. For example:
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Eg: sequential covariance matrix estimation
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uniformly w.h.p.
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Consider X ∈ ℝd, EX = 0, |Xi | ≤ b .
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Let  be iid r.v. , with mean .X1, X2, …, ∈ [0,1] μ

Q1. How can we construct a confidence interval for ?μ

A1. Hoeffding:[Xn ± log(2/α)
2n ] ∩ [0,1]

A2. Empirical Bernstein: Xn ± 2 ̂σ 2 log(4/α)
n

+
7 log(4/α)
3(n − 1)

A3: Betting — significantly tighter!

Q2. How can we construct a confidence sequence for ?μ





Converting the problem to a game

Initial capital  

For each 
      For each , statistician declares “bet” 
      Reality reveals  
      Statistician’s wealth in game  becomes 

K(m)
0 = 1 for every (game) m ∈ [0,1] .

t = 1,2,…
m ∈ [0,1] λ(m)

t ∈ [− 1
1 − m , 1

m ]
Xt

m K(m)
t = K(m)

t−1 ⋅ (1 + λ(m)
t (Xt − m))

 
 

(the games in which the statistician did not earn enough wealth)

Ct := {m ∈ [0,1] : K(m)
t < 1/α}

Theorem: For any betting strategy,  is a confidence sequence  
for the true mean .

(Ct)t≥1
μ

Two questions: Why is  a valid confidence sequence for ?  
How do we bet so that it is an efficient (small) set?

Ct μ



1. For each , let us test .m ∈ [0,1] H(m)
0 : 𝔼P[Xi |X1, …, Xi−1] = m

2.  yields a confidence sequence for .Ct := {m : K(m)
t < 1/α} μ

, where .K(m)
t := ∏

i≤t

(1 + λ(m)
i (Xi − m)) λ(m)

i ∈ [−1/(1 − m),1/m]

predictable

sup
P∈H(μ)

0

P(∃t ∈ ℕ : μ ∉ Ct) ≤ α .



1. For each , let us test .m ∈ [0,1] H(m)
0 : 𝔼P[Xi |X1, …, Xi−1] = m

2.  is a confidence sequence for .Ct := {m : K(m)
t < 1/α} μ

, where .K(m)
t := ∏

i≤t

(1 + λ(m)
i (Xi − m)) λ(m)

i ∈ [−1/(1 − m),1/m]

sup
P∈H(μ)

0

P(∃t ∈ ℕ : μ ∉ Ct) ≤ α .

 is a nonnegative martingale +initial value one 
(“test martingale”).

K(μ)
t

Ville’s inequality sup
P∈H(μ)

0

P(∃t ∈ ℕ : K(μ)
t ≥ 1/α) ≤ α .

 is incorrect only if  exceeds . But this is happens w.p. .Ct K(μ)
t 1/α ≤ α



But we don’t know . Approximate solution: 
differentiate wrt , and set equal to zero (KKT), 
Taylor expand, and plug-in empirical estimates.

 .

(  use the first  samples)

P
λ

λm
t =

̂μ t − m
̂σ 2
t + ( ̂μ t − m)2

̂μ t and  ̂σ 2
t t − 1

Growth Rate Adaptive to the Particular Alternative 
 

λm
t (P) := arg max

λ∈[−1/(1−m),1/m]
𝔼P[log(1 + λ(Xt − m)) | ℱt−1] .

Betting strategy 1: GRAPA



We can use the connection to Cover’s Portfolio Optimization
to analyze its performance (eg: uniform mixture will do).

Betting strategy 2: Mixture

Waudby-Smith+R (2024) 
Jun+Orabona (2024)
Shekhar+R (2024)

Ct := {m ∈ [0,1] : ∫
1/m

−1/(1−m)

t

∏
i=1

(1 + λ(Xi − m)) dν(λ) < 1/α}

In practice, we would discretize the mixture, does not affect validity.
We must make the mixture finer over time to preserve power.



In iid settings, , 
(i.e. we match / beat the leading term of Bernstein’s inequality, 

 even though we do not know  — tight “empirical Bernstein”)

lim
n→∞

nWidth(Cn) − nWidth(Bernstein) ≤ 0

σ
Shekhar + Ramdas (2023, arXiv)



The first sharp closed-form empirical Bernstein bound

lim
n→∞

nWidth(Cn) − nWidth(Bernstein) → 0



Aside: Kernel two-sample testing by betting (sequential MMD)

Shekhar+R (2023), Podkopaev et al. (2024)

Choose a kernel , say bounded by one for simplicity. 

Define ,

where  is a predictable function in the RKHS  
(based on ), 

and  is a predictable scalar in .

k

Kt =
t

∏
i=1

(1 + λi[ fi(Xi) − fi(Yi)])

fi
X1…Xi−1, Y1, …, Yi−1

λi [−1,1]

Observe  and 
 versus 

X1, X2, … ∼ P Y1, Y2, … ∼ Q
H0 : P = Q H1 : P ≠ Q

 is a test martingale for , and its growth rate under any 
alternative can be shown to be .

(Kt)t≥0 H0
∝ MMD(P, Q)

Eg: set , or Online Gradient Descent in RKHS, 

and pick  using Online Newton Step, or universal portfolios.

fi ∝ ∑
j<i

ϕ(Xj) − ϕ(Yj)

λ
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Statistical problem Confidence interval Confidence sequence

Parametric inference Wald, Neyman, Fisher
Robbins + co. (1967-76) 

  Wasserman et al. (2020)
Waudby-Smith & Ramdas (2020)

Sub-Gaussian mean estimation Hoeffding (1963) Robbins (1970)
Howard et al. (2021)

Bounded mean estimation Hoeffding (1963)
Waudby-Smith & Ramdas (2024)

Howard et al. (2021)
Waudby-Smith & Ramdas (2024)

Quantiles & CDFs DKW (1956) Howard & Ramdas (2021)

Sampling without replacement Hoeffding (1963), 
Bardenet & Maillard (2015)

Waudby-Smith & Ramdas 
 (2020, 2024)

Heavy-tailed mean estimation Catoni (2012)  
Lugosi-Mendelson (2014+)

Wang & Ramdas (2023) 
Martinez-Taboada et al. (2025)

Nonasymptotic inference is 
impossible, but asymptotic 
inference is possible

Central limit theorem ?
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Definition (AsympCS) 

 is a -AsympCS for  if there exists a 
nonasymptotic -CS for  given by , and 

.

( ̂μ t ± B̄t)∞
t=1 (1 − α) μ

(1 − α) μ ( ̂μ t ± B̄⋆
t )∞

t=1
B̄⋆

t /B̄t → 1 almost surely

In words, an AsympCS is an arbitrarily 
precise a.s. approximation to a 

nonasymptotic CS for large .t
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Why is this a sensible definition? The canonical 
CLT-based asymptotic confidence interval 
looks like 

( ̂μn ± ·Bn) where ·Bn := ̂σ n
Φ−1(1 − α/2)

n

Fact: When invoking the CLT, there exists a 

nonasymptotic  such that  . 

In contrast, our definition of AsympCSs 

requires .

·B⋆
n

·B⋆
n / ·Bn

P 1

B̄⋆
t /B̄t

a.s. 1
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Theorem 1 (AsympCS for the mean of iid random variables) 
Suppose  with mean  and finite variance. Then for any 

, 

 

forms a -AsympCS for .

(Yt)∞
t=1

iid∼ P μ
ρ > 0

C̄t := ̂μ t ± ̂σ t
2(tρ2 + 1)

t2ρ2
⋅ log

tρ2 + 1

α

(1−α) μ

Paper has Lindeberg-Levy (non-iid, martingale) AsympCS
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Theorem 2 (Asymptotic time-uniform coverage guarantees) 

Suppose we tune  

and let  be the AsympCS +  in place of . Then 

.

ρm = (−log α+log(−2 log α) + 1)/m ̂σ 2
m log m

(Ct(m))∞
t=1 ρm ρ

lim inf
m→∞

ℙ(∀t ≥ m, μ ∈ C̄t(m)) = 1−α

As you start (at time ) later and later, the time-uniform 
type-I error approaches . (This could have been an 
alternate definition of AsympCSs.)

m
α
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lim inf
m→∞

ℙ(∀t ≥ m, μ ∈ C̄t(m)) = 1−α
AsympCS:

lim inf
m→∞

ℙ(μ ∈ ·Cm) = 1−α
AsympCI:

⟺ lim sup
m→∞

ℙ(∃t ≥ m : μ ∉ C̄t(m)) = α

⟺ lim sup
m→∞

ℙ(μ ∉ ·Cm) = α
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Now that we have CSs under CLT-like assumptions, we 
can do doubly-robust causal inference in sequential 
settings at stopping times.

(or, Robbins meets Robins.)
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Given , wish to estimate (Xt, At, Yt)∞
t=1 ∼ P

ψ := 𝔼(Y ∣ A = 1) − 𝔼(Y ∣ A = 0)

•  — covariates (e.g. age, sex, etc.). 
•  — treatment level (e.g.  for treatment,  for placebo). 
•  — outcome of interest (e.g. whether patient recovered from sickness).

X
A 1 0
Y
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ψ̂t :=
1
t

t

∑
i=1

̂ft(Xi, Ai, Yi)

Classical AIPW “doubly robust” estimator (Robins et al. 1994):

where  involves estimates  of 

regression functions 

 , 
and the propensity score  

.

̂ft ( ̂μ1
t , ̂μ 0

t , ̂π t)

μa(x) = 𝔼(Y ∣ X = x, A = a)

π(x) = Pr(A = 1 ∣ X = x)
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Theorem (AsympCS for the ATE) 
Given observations , construct a (sequentially) cross-

fit DR estimator  . Suppose . 
Then, 

 

forms an AsympCS for the ATE .

(Xt, At, Yt)∞
t=1 ∼ P

̂ψ ×
t ∥ ̂μ a

t −μa∥∥ ̂π−π∥ = o( log t/t)

C̄×
t := ̂ψ ×

t ± t−2(2t ̂σ 2
t + 1) ⋅ log (α−1 t ̂σ 2

t + 1)
ψ

*Applies to both randomized expts and observational studies*

The usual fixed-n assumption is , incomparable +ours.oP( 1/t)
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In a randomized experiment, using better regression 
estimators yields tighter AsympCSs, but all are valid, 
permitting inference at stopping times.
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In observational studies, only consistent regression 
estimators yield valid AsympCSs (same as fixed-  setting)n
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Theorem (AsympCS for time-varying treatment effects) 
Suppose now that we have the individual treatment effects . 

Suppose  and 

. Then, 

 

forms an AsympCS for the running average of the ITEs .

ψt = 𝔼(Y1
t − Y0

t )
1
t

t

∑
i=1

∥ ̂μ a
t (Xi) − μa(Xi)∥∥ ̂π (Xi) − π(Xi)∥ = o( log t/t)

sup
i

∥ ̂μ a
t (Xi) − μa(Xi)∥ = o(1)

C̃ ×
t := ̂ψ ×

t ± t−2(2t ̂σ 2
t + 1) ⋅ log (α−1 t ̂σ 2

t + 1)
ψ̃ t :=

1
t

t

∑
i=1

ψi

*If treatment effects are constant over time,  captures the ATE!*C̃ ×
t
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Our AsympCSs can capture time-varying treatment effects.

The paper has delta method to extend these bounds to asymptotically linear 
estimators (eg: general semiparametric estimation).



Outline of second half

1. Core definition: confidence sequence

2. A simple, explicit nonparametric example

3. Asymptotic confidence sequences



Summary

1. Confidence sequences are sequences of confidence intervals  
that are valid at arbitrary stopping times. 

2. Sequential estimation and testing are dual problems. All CSs are 
obtained by inverting families of sequential tests.  

3. Can construct tight CSs even in nonparametric settings.  

4. “Time-uniform central limit theory” and asymptotic CSs allow  
for sequential doubly-robust causal inference in observational 
settings, and more generally sequential semiparametrics.



P-processes

E-processes

Confidence sequences

Power-one
Sequential tests

Sequential anytime-valid inference (SAVI)

“calibration” (running supremum)−1

Threshold at 1/α

Threshold at α
“invert” 
a familyintersection

Dual

Real-valued measures of evidence Associated with a level α ∈ (0,1)

Divide by α



Game-theoretic methods are very practical

1. Election auditing: the state-of-the-art post-election audits 
are now based on betting for sampling without replacement. 

2. A/B testing: our A/B tests are being used by Amazon, 
Netflix in public-facing software. 

3. On and off-policy evaluation: our confidence sequences  
are deployed at Adobe, Microsoft in public-facing software.
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src: https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-
calculations.html

https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-calculations.html
https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-calculations.html
https://experienceleague.adobe.com/docs/journey-optimizer/using/campaigns/content-experiment/experiment-calculations.html
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src: https://docs.growthbook.io/statistics/sequential

Growthbook is a Y-Combinator startup

https://docs.growthbook.io/statistics/sequential


Stuff not covered in the tutorial

1. Multiple hypothesis testing (eg: the e-BH procedure) 

2. Sequential changepoint detection and localization using  
e-processes and CSs (eg: the e-detector) 

3. Connections to Bayes, empirical Bayes and PAC-Bayes (eg: prior-
posterior ratio martingale, improper priors, compound e-values) 

4. Martingale concentration (eg: time-uniform Chernoff bounds) 

5. Multivariate CSs (for vectors, matrices, etc.) 

6. Universal inference (a simple, general e-value and e-process) 

7. Decision making with e-values (eg: post-hoc validity)



Some current and future directions

1. For a new (nonparametric) problem, how do we design the  
game and learn to bet? 

2. When do nontrivial test martingales (not) exist?  
When do nontrivial test supermartingales (not) exist? 
When do nontrivial e-processes (not) exist? 

3. How do we move beyond testing and estimation to, say, 
other problems in statistics? 

4. How do we tie together game-theoretic statistics with  
game-theoretic probability?  



Ruodu  
Wang

Johannes 
Ruf

Wouter 
Koolen

Ian 
Waudby- 

Smith

Neil 
Xu

YJ 
Choe

Akshay 
Balsubramani

Peter 
Grunwald

Glenn 
Shafer

Volodya 
Vovk

Martin 
Larsson

Steve 
Howard

Tudor 
Manole

Hongjian 
Wang

Justin 
White- 
house

Jaehyeok 
Shin

Ben 
Chugg

Sasha 
Podkopaev

Robin  
Dunn

Boyan 
Duan

Shubhanshu 
Shekhar



Universal inference (+L. Wasserman, S. Balakrishnan), PNAS, 2020

Admissible anytime-valid inference must rely on nonnegative martingales 
(+M. Larsson, J. Ruf, W. Koolen), arXiv, 2020
The numeraire e-variable and reverse information projection 
(+M. Larsson, J. Ruf), Annals of Stat. 2025

Focus: foundational papers (cutting across problems)

Distribution-uniform anytime-valid inference (+ I. Waudby-Smith, E. Kennedy), arXiv
The extended Ville’s inequality for nonintegrable nonnegative supermartingales 
(+H. Wang), Bernoulli, 2025
Randomized & exchangeable improvements of Markov, Chebyshev & Chernoff’s 
inequalities (+T. Manole), Statistical Science, 2025
On the existence of powerful p-values and e-values for composite hypotheses 
(+Z. Zhang, R. Wang), Annals of Statistics, 2025
A composite generalization of Ville’s martingale theorem using e-processes 
(+M. Larsson, J. Ruf, W. Koolen), Elec. J of Probability, 2023

Time-uniform Chernoff bounds via nonnegative supermartingales  
(+S. Howard, J. Sekhon, J. McAuliffe), Probability Surveys, 2020

A unified recipe for deriving (time-uniform) PAC-Bayes bounds 
(+B. Chugg, H. Wang), JMLR, 2023

Combining evidence across filtrations (+ YJ. Choe), arXiv
Positive semidefinite matrix supermartingales (+ H. Wang), arXiv
On stopping times of power-one sequential tests: tight lower and upper bounds.  
(+ S. Agrawal), arXiv



Testing exchangeability: fork-convexity, supermartingales and e-processes  
(+M. Larsson, J. Ruf, W. Koolen), Intl J of Approx Reasoning. 2025

Focus: testing (specific problems)

Nonparametric two-sample testing by betting (+ S. Shekhar), IEEE TIT’23
Sequential kernelized independence testing 
(+A. Podkopaev, S. Kasivishwanathan, P. Blöbaum), ICML, 2024
Sequential Monte-Carlo testing by betting (+L. Fischer), JRSSB, 2025
Comparing sequential forecasters (+YJ. Choe), Operations Research, 2023

Interactive martingale tests for the global null (+ B. Duan, L. Wasserman), EJS’20
Nonparametric iterated-logarithm extensions of the sequential generalized LRT 
(+J. Shin, A. Rinaldo), IEEE J Selected Areas in IT, 2021
Sequential Kernelized Stein Discrepancy (+D. Martinez-Taboada), AISTATS’25
Anytime-valid t-tests & CSs for Gaussian means with unknown variance 
(+H. Wang), Sequential Analysis, 2025
Sequential predictive two-sample & independence testing  
(+ A. Podkopaev), NeurIPS’23
E-variables for hypotheses generated by constraints (+ M. Larsson, J. Ruf), arXiv
Improving Wald’s (approximate) SPRT by avoiding overshoot (+ L. Fischer), arXiv
Anytime-valid inference for double/debiased machine learning of causal parameters 
(+ A. Dalal, P. Blöbaum, S. Kasivishwanathan), arXiv

Huber-robust likelihood ratio tests for composite nulls and alternatives  
(+A. Saha), arXiv



Post-selection inference for e-value based confidence intervals  
(+Z. Xu, R. Wang), EJS'24
E-values as unnormalized weights in multiple testing 
(+N. Ignatiadis, R. Wang), Biometrika, 2023

False discovery rate control with e-values (+ R. Wang), JRSSB, 2022
Focus: multiple hypothesis testing

A unified framework for bandit multiple testing (+Z. Xu, R. Wang), NeurIPS’21
Online multiple testing with e-values (+Z. Xu), AISTATS, 2024
An online generalization of the (e-)BH procedure (+L. Fischer, Z. Xu), arXiv
Asymptotic & compound e-values: multiple testing & empirical Bayes. 
(+N. Ignatiadis, R. Wang), arXiv
Bringing closure to FDR control: beating the e-BH procedure 
(+Z. Xu, R. de Heide, L. Fischer, A. Solari, J. Goeman), arXiv

Active multiple testing with proxy p-values and e-values 
(+Z. Xu, C. Wang, L. Wasserman, K. Roeder), arXiv
Admissible online closed testing must employ e-values (+L. Fischer), arXiv
Anytime-valid FDR control with the stopped e-BH procedure 
(+H. Wang, S. Dandapanthula), arXiv
More powerful multiple testing under dependence via randomization (+Z. Xu), arXiv
Multiple testing with anytime-valid Monte-Carlo p-values (+L. Fischer, T. Barry), arXiv
Merging uncertainty sets via majority vote. (+M. Gasparin), arXiv



Estimating means of bounded random variables by betting  
(+I. Waudby-Smith), J. Royal Stat Society B, 2023 (Discussion paper)

Time-uniform, nonparametric, nonasymptotic confidence sequences  
(+S. Howard, J. Sekhon, J. McAuliffe), The Annals of Stat., 2021

Time-uniform central limit theory and asymptotic confidence sequences  
(+I. Waudby-Smith, D. Arbour, R. Sinha, E. Kennedy), Annals of Stat., 2024

Focus: estimation (confidence sequences)

Martingale methods for sequential estimation of convex functionals & divergences  
(+T. Manole), IEEE Trans. Info. Theory, 2023

Anytime-valid off-policy inference in contextual bandits 
(+I. Waudby-Smith, L. Wu, N. Karampatziakis, P. Mineiro), ACM/IMS J. Data Sci.’24
Catoni-style confidence sequences for heavy-tailed mean estimation 
(+H. Wang), Stochastic Proc. & Applications, 2023
Sequential estimation of quantiles with applications to A/B-testing & bandits 
(+S. Howard), Bernoulli, 2022
Huber-robust confidence sequences (+H. Wang), AISTATS, 2023
Confidence sequences for sampling without replacement  
(+I. Waudby-Smith), NeurIPS, 2020

Off-policy confidence sequences (+ N. Karampatziakis, P. Mineiro), ICML’21

Sharp empirical Bernstein bounds for the variance of bounded random variables  
(+D. Martinez-Taboada), arXiv
On the near-optimality of betting confidence sets for bounded means  
(+S. Shekhar), arXiv



Time-uniform central limit theory and asymptotic confidence sequences  
(+I. Waudby-Smith, D. Arbour, R. Sinha, E. Kennedy), Annals of Stat., 2024

Focus: estimation (vector or matrix CSs)

Time-uniform confidence spheres for means of random vectors  
(+B. Chugg, H. Wang), TMLR, 2025

Mean estimation in Banach spaces under infinite variance & martingale dependence  
(+J. Whitehouse, B. Chugg, D. Martinez-Taboada), arXiv

Time-uniform, nonparametric, nonasymptotic confidence sequences  
(+S. Howard, J. Sekhon, J. McAuliffe), The Annals of Stat., 2021

Sharp matrix empirical Bernstein inequalities (+H. Wang), arXiv

Empirical Bernstein in smooth Banach spaces (+D. Martinez-Taboada), arXiv

Time-uniform self-normalized concentration for vector-valued processes 
(+J. Whitehouse, S. Wu), arXiv



Focus: changepoint analysis
E-detectors: a nonparametric framework for online changepoint detection 
(+J. Shin, A. Rinaldo), New England J of Statistics & Data Science, 2023
Reducing sequential change detection to sequential estimation 
(+S. Shekhar), ICML’24
Sequential change detection via backward confidence sequences 
(+S. Shekhar), ICML’23

Focus: auditing
Auditing fairness by betting 
(+B. Chugg, S Cortes-Gomez, B. Wilder), NeurIPS, 2023
RiLACS: risk limiting (election) audits via confidence sequences 
(+I. Waudby-Smith, P. Stark), EVoteID (Best paper), 2021
Risk-limiting financial audits via weighted sampling without replacement 
(+S. Shekhar, Z. Xu, Z. Lipton, P. Liang), UAI, 2023
Sequentially auditing differential privacy 
(+T. Gonzalez-Lara, M. Dulce-Rubio, M. Ribero), in submission

Multiple testing in multi-stream sequential change detection 
(+S. Dandapanthula), arXiv
Post-detection inference for sequential changepoint localization (+A. Saha), arXiv



Foundational (recent) papers by other authors

E-values: Calibration, combination & applications (V. Vovk and R. Wang), AoS, 2021

Testing by betting (G. Shafer), JRSSA’20 (Discussion paper)
Safe testing (P. Grünwald, R. de Heide, W. Koolen), JRSSB’24 (Discussion paper)

Test Martingales, Bayes Factors and p-Values 
(G. Shafer, A. Shen, N. Vereshchagin, V. Vovk), Statistical Science, 2011

Game-theoretic foundations for probability and finance (G. Shafer, V. Vovk), Wiley 2019
Probability and finance: it’s only a game (G. Shafer, V. Vovk), Wiley 2001

Hypothesis testing with e-values (+R. Wang), Foundations & Trends in Statistics’25
Game-theoretic statistics and safe anytime-valid inference  
(+P. Grunwald, V. Vovk, G. Shafer), Statistical Science, 2023

Surveys and books

Likelihood, replicability and Robbins’ confidence sequences 
(L. Pace, A. Salvan), Intl. Stat. Review, 2021

Beyond Neyman-Pearson (P. Grünwald), PNAS’25
The e-posterior (P. Grünwald), Phil. Trans. Royal Society’25
Reverse information projections & optimal e-statistics  

(T. Lardy, P. Grünwald, P. Harremoes), IEEE TIT’24
Tight CSs & the regret of universal portfolio (F. Orabona, KS. Jun), IEEE TIT’24

+many old papers by Robbins, Cover, Lai, Siegmund, Vovk, etc.


