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Outline of this tutorial

A. First half: game-theoretic hypothesis testing 

B. Second half: game-theoretic estimation

Slides and references at  
 

http://www.stat.cmu.edu/~aramdas/icml25

http://www.stat.cmu.edu/~aramdas


Outline of first half

1. “Sequential anytime-valid inference (SAVI)”

2. Testing by betting yields SAVI inference (an example)

3. Kelly betting and log-optimality 

4. Core SAVI concepts: e-values and e-processes 

5. Optimal gambling strategies 



Why test hypotheses? Popper’s legacy

What is a scientific theory or hypothesis? Popper: a claim that is empirically testable 
with data. If it is not (plausibly) testable, it is not a scientific theory/hypothesis.  
Brought data, statistics, etc. bang into the center of philosophy and science. 

After formulating a scientific theory/hypothesis, how does one test it? 

One typically formulates statistical hypotheses that are implied by the scientific 
hypothesis, and test those. So how does one perform statistical hypothesis testing? 

Stochastic proof by contradiction. You assume that your theory is wrong (“null 
hypothesis”).  You then design an experiment & collect data. If data appears to 
contradict the null, you reject the null hypothesis (“make a discovery”).  

This tutorial: a simple and universal way to test a null hypothesis — making money by  
betting against it. Mathematically: e-values, an alternative to p-values.



An infamous instance of  “peeking at p-values” is the 
power-posing controversy (Amy Cuddy, Dana Carney).

“Sampling to a foregone conclusion” — Anscombe (1950s)



Collect data  
(increase sample size) Check if P(n) ≤ α

“peek”

“optional continuation”
Stop, 

Report

“optional stopping”

Start

With commonly-taught p-values,  
false positive rate ≫ α .

What is the problem with continuous monitoring?



Let P(n) be a classical p-value (eg: t-test),
 calculated using the first n samples.

Let τ be the stopping time of the experiment.

Under the null hypothesis (no treatment effect),

∀n ≥ 1, Pr(P(n) ≤ α)

prob. of false positive

≤ α .

Unfortunately, Pr(P(τ) ≤ α) ≰ α .

Often, τ depends on data, eg: τ := min{n ∈ ℕ : P(n) ≤ α} .

Not special to p-values. Same holds for confidence intervals.

usually = 1.



Collect data  
(increase sample size)

Check if 0 ∉ (1 − α) CI

“peek”

“optional continuation”

Stop

“optional stopping”

Start

Again, false positive rate ≫ α .

Stop, 

Same issue with confidence intervals



Let (L(n), U(n)) be any classical (1 − α) CI,
 calculated using the first n samples.

Let τ be the stopping time of the experiment.

When trying to estimate the treatment effect θ,

∀n ≥ 1, Pr(θ ∈ (L(n), U(n)))

prob. of coverage

≥ 1 − α .

Unfortunately, Pr(θ ∈ (L(τ), U(τ))) ≱ 1 − α .

Again, τ may depend on data, eg: τ := min{n ∈ ℕ : L(n) > 0} .

usually = 0.



We want “safe, anytime-valid inference” (SAVI) methods

SAVI methods are those that yield valid inference at  
arbitrary stopping times, possibly not specified or anticipated in advance. 

SAVI methods allow for continuous monitoring and analysis of data, 
adaptive decisions to halt or continue experiments (for any reason), 
all without violating the validity of the claims. 

Provides a lot of flexibility to the statistician (“peeking”),  
useful for a lot of exploratory settings, or those without oversight 
(like university labs and tech industry).



Outline of this talk

1. “Sequential anytime-valid inference (SAVI)”

2. Testing by betting yields SAVI inference (an example)

3. Kelly betting and log-optimality 

4. Core SAVI concepts: e-values and e-processes 

5. Optimal gambling strategies 



Muriel BristolRonald Fisher

The lady tasting tea (1920s)

Would you like some tea?

No, T in M  M in T≠

Can you really tell them apart?

Indeed, yes!

Scientific claim (Muriel): big difference between MT and TM. 

Statistical null hypothesis (negation of Muriel’s claim):  
Muriel unlikely to make many correct guesses.



The lady tasting tea (1920s)

T M M M MT T T

However, the odds were stacked against Muriel from the start!

The probability that a chance guess would yield at most one error is 
17/70 , which is not so impressive.≈ 0.24

With the benefit of 100 years of hindsight, I would have (and did)  
run the experiment quite differently…

What’s the probability that a chance guess would be perfect? 1/70
This is a p-value for  there is no difference between MT and TM. 

Randomization-based causal inference, design of experiments…
H0 :



The lady keeps tasting coffee (2020)

Leila Wehbe(self)

Let’s play a game

Umm…sure…?

It involves coffee

Sure!

Statistical null hypothesis: there is no difference between  
“espresso in milk” and “milk in espresso” (not mixed).

We will set up a betting game in which,  
if the null is true, Leila should not be able to make money.



The lady keeps tasting coffee (2020, betting)

R1 = − 1 λ1 = 0.2 (on heads)

L1 = L0 ⋅ (1 + λ1R1) = 0.8

λ2 = 0.4 (on heads)R2 = + 1

L2 = L1 ⋅ (1 + λ2R2) = 1.12

, where  are “predictable”  bets in [0,1].Lt :=
t

∏
i=1

(1 + λiRi) (λi)

…

Under the null,   is a nonnegative martingale (“fair game”).(Lt)t∈ℕ

L0 = 1
Result?



The lady keeps tasting coffee (2020,  betting)

, where  are “predictable”  bets in [0,1].Lt :=
t

∏
i=1

(1 + λiRi) (λi)

Under the null,   is a nonnegative martingale (“fair game”).(Lt)t∈ℕ

At any stopping time ,  — optional stopping theorem.τ 𝔼H0
[Lτ] ≤ 1

Ville’s inequality (time-uniform Markov’s for nonneg. supermartingales)
Pr(∃t ∈ ℕ : Lt ≥ 1/α) ≤ α .

If the null holds, then Leila is unlikely to turn one pound into fifty
•  directly measures evidence against  (“e-process”).
•  is an “anytime-valid p-value” or “p-process”.

•  is a level-  sequential test for 

Lt H0
inf
s≤t

1/Ls

1{Lt ≥ 1/α} α H0 .
Wald, Robbins, Shafer, Vovk, Grunwald, Ramdas, …



Why is this interesting?

(a) simple and clean approach to sequential experimental design 

(b) can express doubt naturally 
 
(c) cooperation between subject and statistician allowed between rounds 
 
(d) flexible (can design many games for each problem) 
 
(e) make up the game (and extend the game) on the fly 
 
(f) evidence only depends on what did occur, not on hypothetical worlds



In order to test a hypothesis, one sets up a game such that:  
if the null is true, no strategy can systematically make (toy) money, 

but if the null is false, then a good betting strategy can make money.
 

Wealth in the game is directly a measure of evidence against the null.
 

Each strategy of the statistician = a different estimator or test statistic.  
So there are “good” and “bad” strategies for betting, 

just as there are good and bad estimators or test statistics.

Testing (and estimation) == game and strategy design. 

Testing by betting Shafer & Vovk
(+ Ville, Robbins, Cover)

Kelly’s game corresponds to  against H0 : fair coin H1 : bias p
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Suppose we observe iid coin flips  of bias  (for known ).

We start with one dollar, and can make “double or nothing” bets.
In each round, we bet some fraction  of our wealth on heads.

Then we observe the coin toss.
If H, we earn that amount, and if  T, we lose that amount.

Bi p > 1/2 p

λ

 is wealth after  rounds. 

What fraction  of our wealth should we bet at each step? 
(Think of the extremes of 0,1.)

Wt(λ) :=
t

∏
i=1

(1 + λ(2Bi − 1)) t

λ

Kelly’s game



 is wealth after  rounds. Wt(λ) :=
t

∏
i=1

(1 + λ(2Bi − 1)) t

Wt = exp (
t

∑
i=1

log(1 + λBi)) = exp (t𝔼[log(1 + λB)] + o(t))

Kelly: choose  to maximize .λ lim
t→∞

𝔼 log Wt(λ)
t

= 𝔼[log(1 + λB)]

Solution: bet  on heads.λ* = 2(p − 1/2)

Optimal Wealth ,
where  is the relative entropy (KL divergence) 

 o.w

Equivalently, .

Wt(λ*) = exp(t ⋅ H(p |0.5)+o(t))
H

H(Q |P) := 𝔼Q [log
dQ
dP ]  if Q ≪ P, ∞

𝔼[log Wt]/t = H(p |0.5)

Kelly’s solution: log-optimality



Generalizes Kelly betting to other settings.

Proves that the Kelly criterion also asymptotically optimizes 
a) Expected time to reach a threshold wealth
b) Expected wealth at some threshold time
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Hypothesis testing formalism

The “null hypothesis”  is a set of distributions 
defined on some filtered measurable space . 

A filtration is a sequence of nested -algebras  
representing the accumulation of information over time. 

Eg: .
The “alternative hypothesis”  is a set of distributions .

H0 𝒫
(Ω, ℱ)

σ ℱ1 ⊂ ℱ2…

ℱt = σ(X1, …, Xt)
H1 𝒬 ⊆ 𝒫c

We observe .
When we are “testing  against ”, we are asking whether  

 or .

X1, X2, … ∼ P
𝒫 𝒬

H0 : P ∈ 𝒫 H1 : P ∈ 𝒬

In statistical practice, the null has a special role (eg: “no effect”).
Rejecting the null may correspond to an interesting scientific 

phenomenon (described by the alternative). 
Thus the first goal is to calibrate/control errors under .𝒫



An e-process for  is a sequence of e-values 𝒫 (et)t≥1
s.t. for any stopping time τ, P ∈ 𝒫 : 𝔼P(eτ) ≤ 1.

Howard, Ramdas, et al. (2018-2021)  
Grunwald et al. (2019-2021) 

Shafer (2020), Vovk & Wang (2021)

An e-value for  is a -valued r.v.  s.t. 
 (e for evidence or expectation)

H0 : P ∈ 𝒫 [0,∞] e
∀P ∈ 𝒫, 𝔼P(e) ≤ 1.

 is a test supermartingale for  if , , 
, -a.s. , .

Test martingale for : replace  by =

M 𝒫 M ≥ 0 M0 = 1
𝔼P[Mt |M1, …, Mt−1] ≤ Mt−1 P ∀P ∈ 𝒫 t ≥ 1

𝒫 ≤



Sequential testing with e-processes

If  is an e-process for ,  Ville’s inequality implies that 
 for all .

L 𝒫
P(∃t ≥ 1 : Lt ≥ 1/α) ≤ α P ∈ 𝒫

Thus, thresholding an e-process (for ) at  , 
i.e. defining , 

yields a level  test (for ).

𝒫 1/α
τ𝒫 = inf{t ≥ 1 : Lt ≥ 1/α}

α 𝒫

Theorem: Every level-  sequential test (for any ) can be obtained  
by thresholding some e-process (for ) at .

α 𝒫
𝒫 1/α

Thus, e-processes are fundamental objects, 
worthy of independent study.



Nontrivial e-processes exist
Any  that is sequentially testable𝒫
Exchangeability* (in original filtration)
T-test (in original filtration)

Nontrivial test supermartingales exist
SubGaussian distributions* (or any bounded MGF)
Robust, heavy-tailed mean estimation*

Nontrivial test martingales exist
Testing symmetry*
Two-sample testing*
Bounded means*

Exchangeability* (in shrunk filtration)
Independence testing* (in shrunk filtration)

T-test (in shrunk filtration)

* : no reference measure 
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Simple nulls and alternatives
 versus H0 : Xi ∼ P H1 : Xi ∼ Q

The log-optimal bet is . 

 is the log-optimal wealth process: 

— it is a positive test martingale under ,  
—  is maximized by these bets, equals 

St(x) =
q(x)
p(x)

W*T =
T

∏
i=1

q(Xi)
p(Xi)

P 𝔼P[Wτ] ≤ 1,𝔼P[log Wτ] ≤ 0.
𝔼Q[log WT] > 0 T ⋅ H(Q |P)

Answer: likelihood ratio of Q to P

Shafer (2021, JRSSA discussion paper)

What is the log-optimal betting strategy?

Initial capital  

For each 
      Statistician declares “bet”  s.t. 
      Reality reveals  
      Statistician’s wealth becomes 

W0 = 1

t = 1,2,…
St : 𝒳 → [0,∞) 𝔼P[St(X) |X1, …, Xt−1] ≤ 1

Xt
Wt = Wt−1 ⋅ St(Xt)

What is the game?



Next setting: Composite null vs. Simple alternative

• We have a composite null hypothesis  and a point 
alternative hypothesis .  The data is either drawn from some 

 in  (the null is true), or from  (the null is false). 

• A valid bet is an “e-variable”, which is a  such that 
 for every . Think of  as being the multiplier 

of your wealth in each round of a multi-round game. 

• Question: What is the optimal one-round bet ? Is it unique? 
Can we characterize/derive it? 

• Answer: It is the likelihood ratio of  to a special element , 
which we call the Reverse Information Projection (RIPr).

𝒫
Q

P 𝒫 Q

X ≥ 0
𝔼P[X] ≤ 1 P ∈ 𝒫 X

X*

Q P*

Coming up: a complete story about .(X*, P*)
Larsson et al. (2025, AoS)



Introducing , the “numeraire” e-variableX*

Theorem: Under no assumptions on null  and alternative , 
there always exists a special e-variable (bet)  which satisfies 
two properties:

A. First,  and  (the e-variable 
or fair bet property)

B. Second, for any e-variable , we have  (the 
“numeraire property”)

Further,  is unique up to -nullsets. In fact,  is the numeraire 
if and only if it is log-optimal.

𝒫 Q
X*

X* ≥ 0 𝔼P[X*] ≤ 1, ∀P ∈ 𝒫

X 𝔼Q[X/X*] ≤ 1

X* Q X*

Applying Jensen’s inequality, we get two other interpretable 
implications: for any e-variable , we have  
and  (log-optimality!)

X 𝔼Q[X*/X] ≥ 1
𝔼Q[log(X/X*)] ≤ 0



Introducing , the reverse information projectionP*
Definition: Define a measure  by defining its likelihood ratio 
(Radon-Nikodym derivative) with respect to :

P*
Q

dP*/dQ := 1/X*

• This is understood to be zero on .
•  by definition. Also  by definition. 
•  is not a probability measure in general, it is a sub-probability 

measure, meaning that .

•  lies in the bipolar of , which is defined as follows.
A. The polar is , 

which is simply the set of all e-variables.
B. The bipolar is , 

which we also call “the effective null hypothesis”.

{X* = ∞}
P* ≪ Q X* = dQ/dP*
P*

∫ dP* ≤ 1

P* 𝒫
𝒫∘ := {X ≥ 0 : 𝔼P[X] ≤ 1 for all P ∈ 𝒫}

𝒫∘∘ := {P ≥ 0 : 𝔼P[X] ≤ 1 for all X ∈ 𝒫∘}



Theorem: Assume  for simplicity.  Let  be the numeraire 
and let  be the RIPr.  Then, one has the strong duality:

,

where these quantities may equal .

Q ≪ 𝒫 X*
P*

𝔼Q[log X*] = sup
X∈𝒫∘

𝔼Q[log X] = inf
P∈𝒫∘∘

H(Q |P) = H(Q |P*)

+∞

•  : whenever  for every , we also have 
.  Very weak assumption! Not required (see paper). 

• One can also write a benchmarked strong duality theorem, with 
all quantities finite.  The numeraire is benchmark-invariant.

Q ≪ 𝒫 P(A) = 0 P ∈ 𝒫
Q(A) = 0

Strong duality of (X*, P*)

Generalizes Li (1999), Grünwald et al. (2024), etc.



𝒫

Q 𝒫∘∘
P*H(Q |P*)

Theorem:  is the only e-variable which can be written as the 
likelihood ratio of  to some element in .

X*
Q 𝒫∘∘

Thus, the numeraire is a “composite likelihood ratio”, 
it is log-optimal, and is the only e-variable that is a likelihood ratio.



Let  denote the data, in this case real-valued.

Note that  has no dominating reference measure.  

Suppose  has a Lebesgue density . 
(In the paper, we generalize further.) 

Older theory does not apply in this case. But we can easily show
 is the RIPr density. 

It is a probability density iff  has symmetric support. 
 

Thus, we get that  is the numeraire.

Z
𝒫 := {P ∈ M1 : Z and  − Z have the same distribution under P}

𝒫

Q q

p*(z) =
q(z) + q(−z)

2
1{q(z) > 0}

Q

X* =
2q(Z)

q(Z) + q(−Z)

Example 1: Symmetric distributions



 
Above condition implies that  for all .  

Let  for some known .
 

Once more,  has no reference measure.  
So older theory does not apply.  

But we can easily show that  is the numeraire  
and  is the RIPr.

𝒫 := {P ∈ M1 : 𝔼P[eλZ−λ2/2] ≤ 1 for all λ ≥ 0}
𝔼P[Z] ≤ 0 P ∈ 𝒫

Q = N(μ,1) μ > 0

𝒫

exp(μZ − μ2/2)
N(0,1)

Example 2: 1-Sub-Gaussian distributions



Simple null vs. Composite alternative

    versus  H0 : Xi ∼ P H1 : Xi ∼ {Qθ}θ∈Θ

WT = ∫Θ

T

∏
i=1

qθ(Xi)
p(Xi)

dπ(θ)

Mix (hedge your bets) with “prior” πOption 1:

Option 2:

WT =
T

∏
i=1

q ̂θi
(Xi)

p(Xi)

Plug-in a representative  in each round̂θi ≡ θi(X1, …, Xi−1)

Typically, ,  

which is the best possible “growth rate”, even without knowing .

lim
T→∞

𝔼Q*[log WT]/T = 𝔼Q* [log
q*(X)
p(X) ]

Q*
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To end, a few miscellaneous slides.



Multiple testing under arbitrary dependence and optional stopping

Wang, Ramdas (JRSSB’22), Ignatiadis et al. (arXiv)

k* := max {k : E[k] ≥
K
kα } .

Reject the  hypotheses with largest e-values.k*

The e-BH procedure: Given e-values  for  hypotheses, defineE1, …, EK K

Theorem:  The e-BH procedure controls the FDR at level  
under arbitrary dependence between the e-values.  

In fact, , allowing post-hoc choice of .

For e-processes, the FDR guarantee holds at any stopping time.

α

𝔼 [ sup
α∈(0,1)

FDRα

α ] ≤ 1 α

In fact, every FDR procedure can be written as an application of e-BH 
on a set of “compound” e-values!



Likelihood of alternative Pν

Likelihood of null Pθ

E-processes for composite null vs. composite alternative?

Mixture or plug-in (alt) likelihood
Maximum (null) Likelihood 

Maximum (alt) likelihood
Maximum (null) Likelihood 

Mixture (alt) likelihood
Mixture (null) Likelihood 

“Frequentist” Bayes Game-theoretic 
(wealth in a game)

Can use “prior” information to bet 
on the alternative. 

But evidence is compared to best null.

Only the last option is an e-process (the “universal inference” e-process).
It has the asymptotically optimal growth rate (Dixit-Martin’23).

Universal Inference (PNAS 2020) and Testing exchangeability (IJAR’22)



WT =
Mixture/Plug-in (alt) likelihood
Maximum (null) Likelihood 

=
T

∏
i=1

q ̂θi
(Xi)

p ̂θT
(Xi)
 is an e-process.

Dixit and Martin (2023, arXiv)

Also if the numerator is nonparametrically chosen smartly, then 
universal inference (above) is also asymptotically growth rate optimal! 

 
Under mild conditions, 𝔼[log WT]/T → K(Q*, 𝒫)

(Continued: “universal inference”)

As an e-value, it is always worse than the numeraire, 
but the numeraire is an e-value, while universal inference is an e-process. 

 
Open problem: determine when the sequence of numeraires (at 

increasing sample sizes) does or does not yield an e-process.



Summary

1. E-processes are sufficient for sequential testing. Every  
sequential test can be recovered by thresholding an e-process. 

2. E-processes are necessary for sequential testing composite nulls. 
Nonnegative martingales and supermartingales do not suffice. 

3. Testing by betting is a practical and powerful approach for  
statistical testing, even in nonparametric settings. 

4. Log-optimal betting strategies always exist without any  
assumptions, and are intimately connected to coding/info theory. 

5. The e-BH procedure is a universal procedure for controlling 
the false discovery rate, when used with “compound” e-values.


