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Outline of this tutorial

A. First half: game-theoretic hypothesis testing

B. Second half: game-theoretic estimation

Slides and references at

http://www.stat.cmu.edu/~aramdas/icml25



http://www.stat.cmu.edu/~aramdas

Outline of first half

| “Sequential anytime-valid inference (SAVI)”

2. Iesting by betting yields SAVI inference (an example)

3. Kelly betting and log-optimality

4. Core SAVI concepts: e-values and e-processes

5. Optimal gambling strategies




Why test hypotheses? Popper’s legacy

What is a scientific theory or hypothesis! Popper: a claim that is empirically testable
with data. If it 1s not (plausibly) testable, it is not a scientific theory/hypothesis.
Brought data, statistics, etc. bang into the center of philosophy and science.

After formulating a scientific theory/hypothesis, how does one test It/

One typically formulates statistical hypotheses that are implied by the scientific
hypothesis, and test those. So how does one perform statistical hypothesis testing!

Stochastic proof by contradiction. You assume that your theory is wrong (“null
hypothesis’™). You then design an experiment & collect data. If data appears to
contradict the null, you reject the null hypothesis (“make a discovery™).

This tutorial: a simple and universal way to test a null hypothesis — making money by
betting against it. Mathematically: e-values, an alternative to p-values.



An Infamous Instance of “‘peeking at p-values™ is the
power-posing controversy (Amy Cuddy, Dana Carney).

C' | ® faculty.haas.berkeley.edu/dana_carney/pdf_My%20position%200n%20power%20poses.pdf ©} * =@
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4. The data are flimsy. The effects are small and barely there in many cases.

5. Initially, the primary DV of interest was risk-taking. We ran subjects in chunks and checked the effect along the
way. It was something like 25 subjects run, then 10, then 7, then 5. Back then this did not seem like p-hacking. It
seemed like saving money (assuming your effect size was big enough and p-value was the only issue).

6. Some subjects were excluded on bases such as “didn’t follow directions.” The total number of exclusions was 5.
The final sample size was N = 42.

7. The cortisol and testosterone data (in saliva at that point) were sent to Salimetrics (which was in State College,
PA at that time). The hormone results came back and data were analyzed.

8. For the risk-taking DV: One p-value for a Pearson chi square was .052 and for the Likelihood ratio it was .05. The
smaller of the two was reported despite the Pearson being the more ubiquitously used test of significance for a

“Sampling to a foregone conclusion” — Anscombe (1950s)



What is the problem with continuous monitoring?

Collect data Check if
(Increase sample size)

“optional continuation”

With commonly-taught p-values,

false positive rate > « . “optional stopping”



Let P be a classical p-value (eg: t-test),

calculated using the first n samples.

Under the null hypothesis (no treatment effect),

Vn > 1, Pr(P" < a) <a.

proB. of false poéitive

Let 7 be the stopping time of the experiment.

Often, r depends on data, eg: 7 := min{n € N : P™ < o} .

Unfortunately, Pr(P"” < a) £ «a.
usually = 1.

Not special to p-values. Same holds for confidence intervals.



Same issue with confidence intervals

. Collect data . Check if
(Increase sample size)

“optional continuation”

Again, false positive rate > .  ©ptional stopping’



Let (LY, U™) be any classical (1 — a) Cl,

calculated using the first n samples.

When trying to estimate the treatment effect 6,

Vvn>1, Pr(@e (L, UY))>1-a.
\prob. of vcoveragel

Let 7 be the stopping time of the experiment.

Again, T may depend on data, eg: 7 := min{n € N : L™ > 0} .

Unfortunately, Pr(6 & (L, UDY) >1—-a.
usually = 0.



VWe want “safe, anytime-valid inference” (SAVI) methods

SAVI methods are those that yield valid inference at
arbitrary stopping times, possibly not specified or anticipated in advance.

SAVI methods allow for continuous monrtoring and analysis of data,

adaptive decisions to halt or continue experiments (for any reason),
all without violating the validity of the claims.

Provides a lot of flexibility to the statistician (“'peeking™),
useful for a lot of exploratory settings, or those without oversight
(like universrity labs and tech industry).




Outline of this talk

(J) “Sequential anytime-valid inference (SAVI)"

2. Iesting by betting yields SAVI inference (an example)

3. Kelly betting and log-optimality

4. Core SAVI concepts: e-values and e-processes

5. Optimal gambling strategies




VWould you like some tea?

No,TinM#MinT
—

Can you redlly tell them apart!
_——————————

Indeed, yes!
. — ° °
Ronald Fisher Muriel Bristol

w¥ 'Www . 0O

Scientific claim (Muriel): big difference between MT and TM.

Statistical null hypothesis (negation of Muriel's claim):
Muriel unlikely to make many correct guesses.



The lady tasting tea (1920s)

w¥ 'ww ' )/

T M T 1 M M M T

What's the probability that a chance guess would be perfect! /70

This is a p-value for H, : there is no difference between MT and TM.
Randomization-based causal inference, design of experiments. ..

owever, the odds were stacked against Muriel from the start!

The probabillity that a chance guess would yield at most one error is
17/70 =~ 0.24, which is not so impressive.

With the benefit of 100 years of hindsight, | would have (and did)
run the experiment quite differently...



The lady keeps tasting coffee (2020)

Let's play a game
 EE—

Umm...sure...?
—

't iInvolves coffee
- Sure! WA R
D B .
(self) Leila Wehbe

Statistical null hypothesis: there Is no difference between
“espresso In milk and "milk in espresso” (not mixed).

We will set up a betting game In which,
if the null is true, Leila should not be able to make money.



The lady keeps tasting coffee (2020, betting)

Result?

R, =-1 m Q Ay = 0.2 (on heads)
Li=Ly-(1+A4R)=0.8

R, =+1 $ ;! 4, = 0.4 (on heads)

(I +AHR) =112
A
— H(l + A;R), where (4,) are “predictable” bets in [O,].

Under the null, <Lt>t€N s a nonnegative martingale (“fair game’).



The lady keeps tasting coffee (2020, betting)

[
L, = H(l A.R.), where (4;) are “predictable” bets in [0, ].
i=1

Under the null, <Lf>zeN S a nonnegative martingale (“'fair game’).

At any stopping time 7, £y [L;] < 1 — optional stopping theorem.

It the null holds, then Lella is unlikely to turn one pound into fifty

- L, directly measures evidence against H,, ("e-process”).

. igf 1/L, is an “anytime-valid p-value” or “p-process”.
SI

» 1{L, > 1/a} is a level-a sequential test for H,y .

Wald, Robbins, Shafer,Vovk, Grunwald, Ramdas, ...




Why is this interesting?

(a) simple and clean approach to sequential experimental design
(b) can express doubt naturally

(c) cooperation between subject and statistician allowed between rounds
(d) flexible (can design many games for each problem)

(e) make up the game (and extend the game) on the fly

(f) evidence only depends on what did occur, not on hypothetical worlds



Shafer & Vovk
i (+ Ville, Robbins, Cover)

lesting by betting

In order to test a hypothesis, one sets up a game such that:
it the null Is true, no strategy can systematically make (toy) money,
but If the null Is false, then a good betting strategy can make money.

VWealth in the game Is directly a measure of evidence against the null.
Fach strategy of the statistician = a different estimator or test statistic.

S0 there are “good” and “bad’’ strategies for betting,
just as there are good and bad estimators or test statistics.

Testing (and estimation) == game and strategy design.

Kelly's game corresponds to Hyy : fair coin against H; : bias p



Outline of this talk

(V() “Sequential anytime-valid inference (SAVI)”

( V{’ Testing by betting yields SAVI inference (an example)

3. Kelly betting and log-optimality

4. Core SAVI concepts: e-values and e-processes

5. Optimal gambling strategies




A New Interpretation of Information Rate
reproduced with permission of AT&T

By J. L. KELLY, JR.

(Manuscript received March 21, 1956)

If the input symbols to a communication channel represent the outcomes of a
chance event on which bets are available at odds consistent with their probabilities
(i.e., “fair” odds), a gambler can use the knowledge given him by the received
symbols to cause his money to grow exponentially. The maximum exponential
rate of growth of the gambler’s capital is equal to the rate of transmission of
information over the channel. This result is generalized to include the case of
arbitrary odds.




Kelly’s game

Suppose we observe iid coin flips B; of bias p > 1/2 (for known p).

We start with one dollar, and can make “double or nothing” bets.
In each round, we bet some fraction A of our wealth on heads.
Then we observe the coin toss.

f H, we earn that amount, and if T, we lose that amount.

[
W) = H(l + A(2B; — 1)) is wealth after f rounds.
i=1
What fraction A of our wealth should we bet at each step?
(Think of the extremes of O, |.)



Kelly’s solution: log-optimality

[
W(A) = H(l + A(2B; — 1)) is wealth after  rounds.

=1

[
W, = exp ( Z log(1 + /”tBl-)> = exp (t

=1

Kelly: choose A to maximize lim

[— 00

= log Wi(4) B

[

E[log(1 + AB)] + o(1))

“[log(1 + AB)].

Solution:bet A* = 2(p — 1/2) on heads.

Optimal Wealth W(4*) = exp(z - H(p|0.5)4+0(?)),
where H is the relative entropy (KL divergence)

d
H(Q|P) :=E, [logd—g

] f O <K P, ow

Fquivalently, E[log W]/t = H(p|0.5).




OPTIMAL GAMBLING SYSTEMS FOR
FAVORABLE GAMES

L. BREIMAN
UNIVERSITY OF CALIFORNIA, LOS ANGELES

1. Introduction

Assume that we are hardened and unscrupulous types with an infinitely
wealthy friend. We induce him to match any bet we wish to make on the event
that a coin biased in our favor will turn up heads. That is, at every toss we have
probability p > 1/2 of doubling the amount of our bet. If we are clever, as well
as unscrupulous, we soon begin to worry about how much of our available for-
tune to bet at every toss. Betting everything we have on heads on every toss
will lead to almost certain bankruptcy. On the other hand, if we bet a small,
but fixed, fraction (we assume throughout that money is infinitely divisible) of
our available fortune at every toss, then the law of large numbers informs us
that our fortune converges almost surely to plus infinity. What to do?

Generalizes Kelly betting to other settings.

Proves that the Kelly criterion also asymptotically optimizes
a) Expected time to reach a threshold wealth
b) Expected wealth at some threshold time
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Hypothesis testing formalism

The “null hypothesis” Hy is a set of distributions &
defined on some filtered measurable space (€2, F).

A filtration Is a sequence of nested o-algebras &, C &#,...
representing the accumulation of information over time.

Fo. F, = 0(X{, ..., X).
The “alternative hypothesis” H; is a set of distributions @ C &°.

We observe X, X,, ... ~ P.
When we are “testing & against @"', we are asking whether
Hy:Pe PorH,:Peql.

In statistical practice, the null has a special role (eg:"no effect”).
Rejecting the null may correspond to an interesting scientific
phenomenon (described by the alternative).
hus the first goal is to calibrate/control errors under &.




An e-value for H, : P € & is a [0,00]-valued r.v. e s.t.
VP € &P, Ep(e) < 1. (e for evidence or expectation)

An e-process for & is a sequence of e-values (€)r>1

s.t. for any stoppingtme 7, P € & : Ep(e,) < 1.

M is a test supermartingale for & if M > 0, M, = 1,
_P[Ml“Ml’ ""Mt—l] S Mt_l,P'a.S. VP — @,t Z 1

Test martingale for &°: replace < by =

Howard, Ramdas, et al. (2018-2021)
Grunwald et al. (2019-2021)
Shafer (2020),Vovk & Wang (2021)




Sequential testing with e-processes

f L is an e-process for &, Ville's inequality implies that
P(dt>1:L >1/a) L aforal P e £

Thus, thresholding an e-process (for &) at 1/a,
.e.defining g =1nf{r > 1: L > 1/a},
vields a level a test (for 9’).

Theorem: Every level-a sequential test (for any &) can be obtained
by thresholding some e-process (for ) at 1/a.
Thus, e-processes are fundamental objects,
worthy of independent study.




*:no reference measure
Any & that is sequentially testable
Exchangeabllity® (in original filtration)
I-test (in original filtration)

SubGaussian distributions™ (or any bounded MGF)

Robust, heavy-tailled mean estimation®

Testing symmetry™*

ITwo-sample testing™

Bounded means*
I-test (In shrunk filtration)

-xchangeabllity™ (in shrunk filtration)

ndependence testing™ (in shrunk filtration)
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Simple nulls and alternatives
Hy: X, ~Pversus H; : X; ~ 0

What Is the game!
Initial capital W, =1

Foreacht = 1,2,...

Statistician declares “bet” S, : & — [0,00) st Ep[S(X) | X;, ..., X1 < 1
Reality reveals X,
Statistician’s wealth becomes W, = W,_, - $(X))

\/\/ha i I—timaleingtraey? - Answer I|I<e||hood ratloon to P

The log-optimal bet is $,(x) = &
px)
X.
W2 = H 9x) s the log-optimal wealth process:
- PX))

;" — it is a positive test martingale under P, Ep[W_] < 1,Ep[log W] < 0.
. [EQ[log WT] > O E ma><|m|zed b}/ these bets equals I H(Q | P) '

Shafer (ZOZI JRSSA d|scu35|on paper)




Next setting: Composite null vs. Simple alternative

» We have a composite null hypothesis & and a point
alternative hypothesis (). The data is either drawn from some
P in & (the null is true), or from Q (the null is false).

« A valid bet is an “e-variable”, which is a X > 0 such that

ol X] < 1 forevery P € . Think of X as being the multiplier
of your wealth in each round of a multi-round game.

» Question:What is the optimal one-round bet X*? Is it unique?
Can we characterize/derive it?

 Answer: It is the likelihood ratio of Q to a special element P*,
which we call the Reverse Information Projection (RIPr).

Coming up: a complete story about (X*, P*).

Larsson et al. (2025, AoS)



Introducing X*, the “numeraire” e-variable

Theorem: Under no assumptions on null & and alternative Q,
there always exists a special e-variable (bet) X* which satisfies

two properties:

A. First, X* > 0 and Ep[X*] < 1, VP € & (the e-variable

or fair bet property)
B. Second, for any e-variable X, we have

‘numeraire property”)

EOIX/X#] < 1 (the

Further, X* Is unique up to Q-nullsets. In fact, X* is the numeraire

it and only it it I1s log-optimal.

Applying Jensen’s iInequality, we get two ot
implications: for any e-variable X, we have

and [E,[log(X/X*)] < 0 (log-optimality!)

ner Iinterpretable




Introducing P*, the reverse information projection

Definition; Define a measure P* by defining its likelihood ratio
(Radon-Nikodym derivative) with respect to Q:

dP*/dQ = 1/X*

» This is understood to be zero on {X* = o0 }.
» P* < Q by definition. Also X* = dQ/dP* by definition.
» P* s not a probability measure in general, it is a sub-probability

measure, meaning that | dP* < 1.

» P* lies in the bipolar of &, which is de

A. The polaris ° :={X >0:E

P

which 1s simply the set of all e-varia

B. The bipolaris &#* :={P >0 :

P

which we also call “‘the effective nul

ined as follows.
X

]<1forall P e 9},
ples.
X] <1foral X € &°},

hypothesis'.



Strong duality of (X*, P*)

Theorem; Assume O <« & for simplicity. Let X* be the numeraire
and let P* be the RIPr. Then, one has the strong duality:

Eollog X*] = sup EyllogX] = int H(Q|P) = H(Q|P¥),
XeP pPesr

where these quantities may equal + oo.

+ 0 <K P :whenever P(A) = 0 for every P € &, we also have
O(A) = 0. Very weak assumption! Not required (see paper).

» One can also write a benchmarked strong duality theorem, with
all quantrties finite. The numeraire 1s benchmark-invariant.

Generalizes Li (1999), Grinwald et al. (2024), etc.



e@Oo

yp*
Q

Theorem: X* is the only e-variable which can be written as the
ikelihood ratio of O to some element in 9P,

Thus, the numeraire Is a “‘composite likelihood ratio’,
it 1s log-optimal, and Is the only e-variable that is a likelihood ratio.




Example |: Symmetric distributions

Let Z denote the data, in this case real-valued.
P .={PeM,:Zand — Z have the same distribution under P}
Note that & has no dominating reference measure.

Suppose Q has a Lebesgue density g.
(In the paper; we generalize further.)

Older theory does not apply in this case. But we can easily show

p*(z) = 92) +4(=2) 1{g(z) > 0} is the RIPr density.

2
[t Is a probability density iff O has symmetric support.

2q(Z)

Thus, we get that X* = s the numeraire.
q(Z) + q(=2)




Example 2: |-Sub-Gaussian distributions

P ={PeM,: -P[e’lz_’lz/z] < Il forall4 > 0}
Above condition implies that E,[Z] < 0 forall P € &,
Let Q = N(u,1) for some known u > 0.

Once more, & has no reference measure.
S0 older theory does not apply.

But we can easily show that exp(uZ — u*/2) is the numeraire
and N(0O,1) is the RIPr.



Simple null vs. Composite alternative

Hy:X;~P versus H : X, ~ {OQp}pceo

Option | Mix (hedge your bets) with “prior” z

T
%)(Xi)
! J@ i=1 p(Xl) ]z.( )

Option 2: Plug-in a representative éi = 0(X;,...,X;_;) in each round

L g él.(Xi)
e pX))

WT —

| - q*X)
Typically, lim [ «[log Wr]/T = [« |log ,

T— o0 p(X) ]
which is the best possible “growth rate”, even without knowing Q.




Outline of this talk

@ “Sequential anytime-valid inference (SAVI)”

@ Testing by betting yields SAVI inference (an example)
@/ Kelly betting and |og-optimality

@/ Core SAVI concepts: e-values and e-processes
@ Optimal gambling strategies

To end, a few miscellaneous slides.



Multiple testing under arbitrary dependence and optional stopping

The e-BH procedure: Given e-values E, ..., Ex for K hypotheses, define

K
k* = max{k:E[k] 2—}.
ko

Reject the k* hypotheses with largest e-values.

Theorem: The e-BH procedure controls the FDR at level o
under arbitrary dependence between the e-values.

FDR, | |
Infact, £ | sup < 1, allowing post-hoc choice of a.
ac(0,1) &

For e-processes, the FDR guarantee holds at any stopping time.

In fact, every FDR procedure can be written as an application of e-BH
on a set of “‘compound” e-values!

Wang, Ramdas (JRSSB22), Ignatiadis et al. (arXiv)



E-processes for composite null vs. composite alternative?

Likelihood of alternative P,

Likelihood of null Py

‘i : 1 Game—theore-UC
"requentst Sayes (wealth in a game)

Maximum (alt) likelihood Mixture (alt) likelihood Mixture or plug-in (alt) likelihood

Maximum (null) Likelihood Mixture (null) Likelihood Maximum (null) Likelihood

Can use “prior’ information to bet
on the alternative.
But evidence I1s compared to best null.

Only the last option Is an e-process (the “universal inference’ e-process).
't has the asymptotically optimal growth rate (Dixit-Martin23).

Universal Inference (PNAS 2020) and Testing exchangeability (I|AR22)



(Continued: “universal inference”)

Mixture/Plug-in (alt) likelihood v 96X
= , —— = H IS an e-process.
Maximum (null) Likelihood P Pa (X))

Also If the numerator is nonparametrically chosen smartly, then
universal inference (above) is also asymptotically growth rate optimal

Under mild conditions, E[log W, |/T — K(Q%*, &)

Dixit and Martin (2023, arXiv)

As an e-value, It Is always worse than the numeraire,
but the numeraire Is an e-value, while universal inference Is an e-process.

Open problem; determine when the sequence of numeraires (at
increasing sample sizes) does or does not yield an e-process.




Summary

E-processes are sufficient for sequential testing. Every
sequential test can be recovered by thresholding an e-process.

E-processes are necessary for sequential testing composite nulls.
Nonnegative martingales and supermartingales do not suffice.

Testing by betting is a practical and powerful approach for
statistical testing, even in nonparametric settings.

Log-optimal betting strategies always exist without any
assumptions, and are intimately connected to coding/info theory.

The e-BH procedure is a universal procedure for controlling
the false discovery rate, when used with “compound” e-values.



