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A brief recap of key definitions and facts in the non-sequential setting. References are from the E-book.

Hypothesis. A hypothesis (null or alternative) is a set of distributions defined on a common underlying measure
space (€, F). A hypothesis is simple if the set is a singleton, otherwise it is composite.

E-variables and e-values. Given a null hypothesis P, an e-variable E is a nonnegative random variable such
that Ep[E] < 1 for all P € P. Its realization is called an e-value.

Betting interpretation. An e-variable is a bet against the null hypothesis. The corresponding e-value is the
return received on each dollar that was bet. By definition, if the null is true, it is not profitable to bet against it.

Hypothesis test. A level-a test for P is a {0,1}- or [0, 1]-valued function ¢ such that Ep[¢] < « for all P € P.

From e to test. Every e-variable F can be converted to a level-a test I(E > 1/a), or simply (aF) A 1. The
test’s validity follows by Markov’s inequality: P(E > 1/a) < « for all P € P.

Universality. Every level-a test ¢ can be recovered by thresholding an e-variable Ey at 1/a. Indeed, Ey := ¢/a.
Thus, e-variables are fundamental, and the study of e-variables for P is implicitly the study of tests for P.

P-variables and p-values. Given a null hypothesis P, a p-variable P is a [0, 1]-valued random variable such
that P(P <t) <t for all P € P and t € [0,1]. Its realization is called an p-value.

Calibrator (Ch. 2.3). If F is an e-variable, then P = 1/F is a p-variable. Similarly, any p-variable P can be
converted to an e-variable E = h(P) using a calibrator: a decreasing function h such that fol h(u)du = 1.

Combining e-values. The only admissible way to combine arbitrarily dependent e-values is to take their
(weighted) average (with nonnegative weights). Products of independent e-values are e-values.

The above concepts did not utilize the alternative hypothesis. Let’s now bring that in.

E-power (Ch. 3.3). Given a simple alternative Q, the e-power of an e-variable E (for P) is defined as Egllog EJ.

Numeraire, GRO, log-optimal e-variable (Ch. 6.1). When testing P against Q, the numeraire E* is an
e-variable for P such that, for every other e-variable E, we have Eg[E/E*] < 1. It always exists and is Q-a.s.
unique. It is also called the log-optimal or GRO e-variable, and it maximizes e-power (which could be infinite).

Reverse information projection (RIPr, Ch. 6.3). The sub-probability measure P* <« Q defined by
dP*/dQ = 1/E* is called the RIPr due to the strong duality Egllog E*] = supg Eg[log E] = infp KL(Q,P) =
KL(Q,P*), where the inf is taken over the bipolar of P (the effective null) and sup is over all e-variables for P.

Likelihood ratio (Ch. 3.5, 6.4, 6.5). When testing P against Q < P, the numeraire is their likelihood ratio
dQ/dP. For composite P, the universal inference e-variable defined by infpep dQ/dP is often easier to compute
and is asymptotically log-optimal, but is dominated by the numeraire. The numeraire E* = dQ/dP* is the only
e-variable that can be expressed as a likelihood ratio between Q and some element of the effective null hypothesis.

The sequential setting (Ch. 7) considers distributions P on filtered spaces (€2, F), where F = (F%) is a filtration.

Test supermartingales for P. A test supermartingale for P is a nonnegative F-adapted process M such that
My =1 and Ep[My|Fi—1] < M;_q, P-as. for every P € P. (It is a test martingale if = replaces <.) Every test
(super)martingale can be written as the product of (sequentially dependent) e-variables F; = M;/M;_1 (0/0=0).

E-processes for P (Ch. 7.2). An e-process for P is a nonnegative F-adapted process F such that Epep[E,;] < 1
for all F-stopping times 7. (We can restrict to bounded or finite stopping times.) By the optional stopping
theorem, all test supermartingales are e-processes, but not vice versa. Under weak assumptions, admissible
e-processes for P can be written as E = infpep MT, where MY is a test martingale for PP.

Sequential test. A level-a sequential test for P is a binary adapted sequence ¢; such that P(3t > 1: ¢ = 1) < «
for all P € P. Equivalently, for every stopping time 7, suppcp P(¢r = 1) < a.



e Ville’s inequality states that for any e-process M for P, P(3 > 1: M; > 1/a) < « for all P € P. This implies
that ¢ = [(M; > 1/a) yields a level-a sequential test.

e Universality. Fvery level-a sequential test for P can be recovered by thresholding an e-process for P at 1/a.
The same does not hold true for test supermartingales. A more general concept than e-processes is not required.

e Log-optimality (Ch. 7.5). One can define log-optimal (or numeraire) e-processes, and show that the likelihood
ratio test martingale is log-optimal amongst all e-processes for sequentially testing P against Q.

e Method of mixtures (Ch. 3.7). For composite alternatives Q, a single e-process cannot be simultaneously
log-optimal for all Q € Q. The method of mixtures is a general technique that delivers asymptotic log-optimality
(and regret bounds). The mixture e-process for P against Q is formed by considering base e-processes for P
against QQ, and considering their weighted average (an integral wrt some mixture distribution over Q).

e UI vs RIPr (Ch. 7.7, 7.9). The sequence of universal inference e-variables is actually an e-process, but the
sequence of RIPr e-variables is in general not an e-process, but can be “time-mixed” to yield an e-process.

e Confidence sequences (Ch. 13.1). A (1 — «)-confidence sequence for a functional ¢ (like the mean/median)
is an adapted sequence of sets Cy such that for every P € P, P(Vt > 1: ¢(P) € C}) > 1 — «, or equivalently that
P(y(P) ¢ C;) < a for all stopping times 7. A universal way to construct these is to define an e-process E? to
test {P : ¢(P) = 0}, for every possible value of 8, and define C; = {0 : EY < 1/a}.

For multiple testing (Chapter 9), we consider testing K different null hypotheses Py, ..., Pk.

e Compound e-values. A set of nonnegative random variables E, ..., Ex are called compound e-variables for
Pi,..., Pk if for all P € |J,, Pk, we have >, pop Ep[Ex] < K.

e e-BH procedure. Given compound e-values Ei,..., EFx, the e-BH procedure runs the Benjamini-Hochberg
procedure on (1/E1,...,1/Ek) to make k* := max{k : Ej) > K/(ak)} rejections, where Epy is the k-th largest
e-value. This controls the false discovery rate below a under arbitrary dependence between the e-values.

¢ E-collection. {Es}gc(k) is an e-collection if Eg is an e-variable for NxecgPy for all S C [K]:= {1,..., K}. For
example, given e-values Ei, ..., Ex, define the mean e-collection Eg =, o Ey/[S].

¢ Closed e-BH procedure. Given an e-collection {Es}gcix), define C = {R C [K] : Ea > [AN R|/(|R|a)},
treating 0/0=0. The closed e-BH procedure rejects any largest set R* in C. This can be shown to control FDR
below a under arbitrary dependence within the e-collection.

e Universality. Every procedure that controls FDR (in any setting, under any assumptions) can be expressed as
an instance of the e-BH procedure applied to certain compound e-variables, and also as an instance of the closed
e-BH procedure applied to some e-collection. When the mean e-collection is used, e-BH is identical to closed
e-BH if Fy, ..., Ex are compound e-values, but if they are e-values, closed e-BH improves e-BH.

There are several other miscellaneous topics worth mentioning.

e Randomization (Ch. 2.4, 9.5) can improve the power of (multiple) testing. The randomized Markov’s
inequality states that if E is an e-variable for P and U is a uniform [0, 1] random variable independent of F,
then P(E > U/a) < a. In other words, U/FE is also a valid p-value. Finally, given any e-value F and any grid
of positive reals, it is possible to stochastically round E to this grid while maintaining the e-value property.

e Asymptotic e-values (Ch. 10) It is possible to define approximate and asymptotic e-values in a natural way
that requires the e-value property to only hold asymptotically. It possible to construct asymptotic e-values
in settings where one cannot construct any nontrivial nonasymptotic e-value. In particular, one can construct
asymptotic compound e-values using Empirical Bayes techniques and compound decision theory.

e Post-hoc validity (Ch. 4). When used for (multiple) testing, e-values not only guarantee type-I error (or
FDR) control at a fixed level a, but allow for choosing « in a data-dependent fashion. In fact, any (multiple)
test with such level-post-hoc control must be based on e-values.



