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A brief recap of key definitions and facts in the non-sequential setting. References are from the E-book.

• Hypothesis. A hypothesis (null or alternative) is a set of distributions defined on a common underlying measure
space (Ω,F). A hypothesis is simple if the set is a singleton, otherwise it is composite.

• E-variables and e-values. Given a null hypothesis P, an e-variable E is a nonnegative random variable such
that EP[E] ≤ 1 for all P ∈ P. Its realization is called an e-value.

• Betting interpretation. An e-variable is a bet against the null hypothesis. The corresponding e-value is the
return received on each dollar that was bet. By definition, if the null is true, it is not profitable to bet against it.

• Hypothesis test. A level-α test for P is a {0, 1}- or [0, 1]-valued function ϕ such that EP[ϕ] ≤ α for all P ∈ P.

• From e to test. Every e-variable E can be converted to a level-α test I(E ≥ 1/α), or simply (αE) ∧ 1. The
test’s validity follows by Markov’s inequality : P(E ≥ 1/α) ≤ α for all P ∈ P.

• Universality. Every level-α test ϕ can be recovered by thresholding an e-variable Eϕ at 1/α. Indeed, Eϕ := ϕ/α.
Thus, e-variables are fundamental, and the study of e-variables for P is implicitly the study of tests for P.

• P-variables and p-values. Given a null hypothesis P, a p-variable P is a [0, 1]-valued random variable such
that P(P ≤ t) ≤ t for all P ∈ P and t ∈ [0, 1]. Its realization is called an p-value.

• Calibrator (Ch. 2.3). If E is an e-variable, then P = 1/E is a p-variable. Similarly, any p-variable P can be

converted to an e-variable E = h(P ) using a calibrator : a decreasing function h such that
∫ 1

0
h(u)du = 1.

• Combining e-values. The only admissible way to combine arbitrarily dependent e-values is to take their
(weighted) average (with nonnegative weights). Products of independent e-values are e-values.

The above concepts did not utilize the alternative hypothesis. Let’s now bring that in.

• E-power (Ch. 3.3). Given a simple alternative Q, the e-power of an e-variable E (for P) is defined as EQ[logE].

• Numeraire, GRO, log-optimal e-variable (Ch. 6.1). When testing P against Q, the numeraire E∗ is an
e-variable for P such that, for every other e-variable E, we have EQ[E/E

∗] ≤ 1. It always exists and is Q-a.s.
unique. It is also called the log-optimal or GRO e-variable, and it maximizes e-power (which could be infinite).

• Reverse information projection (RIPr, Ch. 6.3). The sub-probability measure P∗ ≪ Q defined by
dP∗/dQ = 1/E∗ is called the RIPr due to the strong duality EQ[logE

∗] = supE EQ[logE] = infP KL(Q,P) =
KL(Q,P∗), where the inf is taken over the bipolar of P (the effective null) and sup is over all e-variables for P.

• Likelihood ratio (Ch. 3.5, 6.4, 6.5). When testing P against Q ≪ P, the numeraire is their likelihood ratio
dQ/dP. For composite P, the universal inference e-variable defined by infP∈P dQ/dP is often easier to compute
and is asymptotically log-optimal, but is dominated by the numeraire. The numeraire E∗ = dQ/dP∗ is the only
e-variable that can be expressed as a likelihood ratio between Q and some element of the effective null hypothesis.

The sequential setting (Ch. 7) considers distributions P on filtered spaces (Ω,F), where F = (Ft) is a filtration.

• Test supermartingales for P. A test supermartingale for P is a nonnegative F-adapted process M such that
M0 = 1 and EP[Mt|Ft−1] ≤ Mt−1, P-a.s. for every P ∈ P. (It is a test martingale if = replaces ≤.) Every test
(super)martingale can be written as the product of (sequentially dependent) e-variables Et =Mt/Mt−1 (0/0=0).

• E-processes for P (Ch. 7.2). An e-process for P is a nonnegative F-adapted process E such that EP∈P [Eτ ] ≤ 1
for all F -stopping times τ . (We can restrict to bounded or finite stopping times.) By the optional stopping
theorem, all test supermartingales are e-processes, but not vice versa. Under weak assumptions, admissible
e-processes for P can be written as E = infP∈P M

P, where MP is a test martingale for P.

• Sequential test. A level-α sequential test for P is a binary adapted sequence ϕt such that P(∃t ≥ 1 : ϕt = 1) ≤ α
for all P ∈ P. Equivalently, for every stopping time τ , supP∈P P(ϕτ = 1) ≤ α.
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• Ville’s inequality states that for any e-process M for P, P(∃ ≥ 1 :Mt ≥ 1/α) ≤ α for all P ∈ P. This implies
that ϕt = I(Mt ≥ 1/α) yields a level-α sequential test.

• Universality. Every level-α sequential test for P can be recovered by thresholding an e-process for P at 1/α.
The same does not hold true for test supermartingales. A more general concept than e-processes is not required.

• Log-optimality (Ch. 7.5). One can define log-optimal (or numeraire) e-processes, and show that the likelihood
ratio test martingale is log-optimal amongst all e-processes for sequentially testing P against Q.

• Method of mixtures (Ch. 3.7). For composite alternatives Q, a single e-process cannot be simultaneously
log-optimal for all Q ∈ Q. The method of mixtures is a general technique that delivers asymptotic log-optimality
(and regret bounds). The mixture e-process for P against Q is formed by considering base e-processes for P
against Q, and considering their weighted average (an integral wrt some mixture distribution over Q).

• UI vs RIPr (Ch. 7.7, 7.9). The sequence of universal inference e-variables is actually an e-process, but the
sequence of RIPr e-variables is in general not an e-process, but can be “time-mixed” to yield an e-process.

• Confidence sequences (Ch. 13.1). A (1− α)-confidence sequence for a functional ψ (like the mean/median)
is an adapted sequence of sets Ct such that for every P ∈ P, P(∀t ≥ 1 : ψ(P) ∈ Ct) ≥ 1− α, or equivalently that
P(ψ(P) /∈ Ct) ≤ α for all stopping times τ . A universal way to construct these is to define an e-process Eθ to
test {P : ψ(P) = θ}, for every possible value of θ, and define Ct = {θ : Eθ

t < 1/α}.

For multiple testing (Chapter 9), we consider testing K different null hypotheses P1, . . . ,PK .

• Compound e-values. A set of nonnegative random variables E1, . . . , EK are called compound e-variables for
P1, . . . ,PK if for all P ∈

⋃
k Pk, we have

∑
k:P∈Pk

EP[Ek] ≤ K.

• e-BH procedure. Given compound e-values E1, . . . , EK , the e-BH procedure runs the Benjamini-Hochberg
procedure on (1/E1, . . . , 1/EK) to make k∗ := max{k : E[k] ≥ K/(αk)} rejections, where E[k] is the k-th largest
e-value. This controls the false discovery rate below α under arbitrary dependence between the e-values.

• E-collection. {ES}S⊆[K] is an e-collection if ES is an e-variable for ∩k∈SPk for all S ⊆ [K] := {1, . . . ,K}. For
example, given e-values E1, . . . , EK , define the mean e-collection ES =

∑
k∈S Ek/|S|.

• Closed e-BH procedure. Given an e-collection {ES}S⊆[K], define C = {R ⊆ [K] : EA ≥ |A ∩ R|/(|R|α)},
treating 0/0=0. The closed e-BH procedure rejects any largest set R∗ in C. This can be shown to control FDR
below α under arbitrary dependence within the e-collection.

• Universality. Every procedure that controls FDR (in any setting, under any assumptions) can be expressed as
an instance of the e-BH procedure applied to certain compound e-variables, and also as an instance of the closed
e-BH procedure applied to some e-collection. When the mean e-collection is used, e-BH is identical to closed
e-BH if E1, . . . , EK are compound e-values, but if they are e-values, closed e-BH improves e-BH.

There are several other miscellaneous topics worth mentioning.

• Randomization (Ch. 2.4, 9.5) can improve the power of (multiple) testing. The randomized Markov’s
inequality states that if E is an e-variable for P and U is a uniform [0, 1] random variable independent of E,
then P(E ≥ U/α) ≤ α. In other words, U/E is also a valid p-value. Finally, given any e-value E and any grid
of positive reals, it is possible to stochastically round E to this grid while maintaining the e-value property.

• Asymptotic e-values (Ch. 10) It is possible to define approximate and asymptotic e-values in a natural way
that requires the e-value property to only hold asymptotically. It possible to construct asymptotic e-values
in settings where one cannot construct any nontrivial nonasymptotic e-value. In particular, one can construct
asymptotic compound e-values using Empirical Bayes techniques and compound decision theory.

• Post-hoc validity (Ch. 4). When used for (multiple) testing, e-values not only guarantee type-I error (or
FDR) control at a fixed level α, but allow for choosing α in a data-dependent fashion. In fact, any (multiple)
test with such level-post-hoc control must be based on e-values.
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