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Preface

An e-value is a nonnegative test statistic whose expected value is at most one under the null hypothesis. This
book is written to offer a humble, but unified, treatment of e-values for education and research in statistics
and its applications. In our opinion, the need for such a book at this time can be explained by at least
four reasons: (a) e-values have been named, utilized, and studied as a stand-alone concept only in the last
few years, and a large body of its potential users do not know what they are; (b) e-values are fundamental
objects at the core of hypothesis testing and estimation, that are both under-studied and under-utilized;
(c) the application domains in the natural and social sciences would benefit from knowing and adopting
methodologies based on e-values in certain contexts to improve scientific reproducibility; (d) there has been
an explosion of exciting research over the past few years, and we think the time is ripe to collate resources in
a self-contained and concise manner. We expand on these reasons below.

(a) As we discuss in more detail in the introduction, e-values (and their sequential extensions: nonnegative
supermartingales and e-processes) have been around, either explicitly or implicitly, in the statistics and
probability literature for the better part of a century. However, they have not been studied under a unified
umbrella or terminology until recent years — indeed, even the terms e-value and e-process are less than five
years old. As a result, the e-value is not a ‘household concept’ and statisticians often do not know much
beyond its definition (if that).

(b) E-values are a fundamental concept/tool in hypothesis testing. We make four points to justify this,
which will be clear from the content of the book. First, we will show that a powered test exists if and only if a
powered e-value exists. Second, when moving beyond binary accept/reject decisions as encountered in testing,
if we have more than two actions, or the losses are data-dependent, then all decisions that guarantee risk
control must be based on thresholding e-values. Third, for many simple-to-state and fundamental composite
testing problems (for example, testing if data comes from a mixture of Gaussians), the only test we are
aware of proceeds by constructing an e-value (this technique is called universal inference). Further, there
is a unique and well-defined notion of a log-optimal e-value (called the numeraire), even when testing any
arbitrary composite null hypothesis (with no restriction). Fourth, when it comes to anytime-valid inference
(in a sequential testing context) and combining dependent test statistics (in a multiple testing context),
methods based on e-values and e-processes are the only admissible ones to maintain statistical validity.

(c) The recent crisis of scientific reproducibility — largely related to the use and misuse of p-values (espe-
cially peeking at p-values and optional stopping and continuation of experiments) — calls for methodologies
that are statistically justifiable under various new and complicated environments. E-values are one tool
(though certainly not the only one) to address this challenge, because they benefit from their simple definition,
natural connections to game-theoretic probability and statistics, flexibility and robustness in multiple testing
under dependence, and their central role in anytime-valid statistical inference. Equipping applied statisticians
with the knowledge of e-values has visible benefits to the sciences and for information technology companies,
and for that purpose an accessible technical book is useful.

(d) Within the first half of this decade (2020s), research on e-values has been published at all the major
venues in statistics, machine learning, information theory, and related fields — the Annals of Statistics, the
Journal of the American Statistical Association, the Journal of the Royal Statistical Society, Biometrika,
Proceedings of the National Academy of Sciences, IEEE Transactions on Information Theory, Bernoulli,
Statistical Science, Management Science, Operations Research, Journal of Machine Learning Research, Neural
Information Processing Systems, International Conference on Machine Learning, and many more. There
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have been 3 discussion papers on e-values in the Journal of the Royal Statistical Society within this period.
These high-quality modern materials are scattered in different venues, sometimes with different notations and
terminologies, due to the fast development. Thus, there is a significant value in collating a good portion of
them in one place.

We hope that, by putting the materials together in this book, the concept of e-values becomes more
accessible for educational, research, and practical use. It is thus also the hope to stimulate both young and
established researchers, especially the next generation of statisticians, to contribute to this exciting and
rapidly developing field, and to benefit the application domains of safe and valid statistical inference in the
natural and social sciences. From the educational perspective, the book should be teachable to graduate
students in statistics, probability, or computer science programs with good mathematical background, or
strong undergraduate students who have a good knowledge of probability theory and statistics.

We do not anticipate this book to be the last word on the topic. In fact, we made the intentional choice
to focus on hypothesis testing, and not on estimation. There is a rich and historied literature on confidence
sequences that we only briefly touch on in this book (Chapter 13), but which is intimately connected to
e-values. Further, except for Chapter 7, we also do not get into sequential hypothesis testing. This is for many
reasons, part of which is that the optimality theory there is less well understood, and many fundamental
questions related to filtrations remain open. We anticipate books dedicated to these topics in future years.
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Lists of notation, conventions, and
examples

Standard Mathematics Notation

Symbol for ... Meaning
R set of real numbers (−∞,∞)

R+ set of nonnegative real numbers [0,∞)

N set of positive integers {1, 2, . . . }
N0 set of nonnegative integers {0, 1, 2, . . . }
[K] K ∈ N {1, . . . ,K}
|S| countable set S cardinality of S
a ∨ b a, b ∈ R max(a, b)

a ∧ b a, b ∈ R min(a, b)

a+ a ∈ R a ∨ 0

a− a ∈ R (−a) ∨ 0

e exp(1)

log natural logarithm to the base e

∆K K ∈ N {(λ1, . . . , λK) ∈ [0, 1]K :
∑K
k=1 λk = 1}

ℓK K ∈ N
∑K
k=1 k

−1

2S set S powerset of S (the set of all subsets of S)
x(k) x1, . . . , xK ∈ R, k ∈ [K] k-th ascending order statistic of x1, . . . , xK
x[k] x1, . . . , xK ∈ R, k ∈ [K] k-th descending order statistic of x1, . . . , xK
⌈x⌉ x ∈ R smallest integer n with n ≥ x

⌊x⌋ x ∈ R largest integer n with n ≤ x

MK K ∈ N the arithmetic average function⊕K
k=1 ϕk functions ϕ1, . . . , ϕK the function (x1, . . . , xK) 7→

∑K
k=1 ϕk(xk)
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Standard Probability Notation

Symbol for ... Meaning
Ω sample space
F a σ-algebra over Ω, or a filtration over Ω

X the set of all random variables on (Ω,F)

M1 the set of all probability measures on (Ω,F)

M+ the set of all nonnegative measures on (Ω,F)

M1(R) the set of all Borel probability measures on R
P, Q probability measures on (Ω,F)

Pn P ∈ M1, n ∈ N the n-fold product measure of P on Ω× · · · × Ω

Q ≪ P P,Q ∈ M+ Q is absolutely continuous with respect to P
EP[X] P ∈ M+, X ∈ X

∫
XdP; it is the expectation under P if P ∈ M1

varP(X) P ∈ M1, X ∈ X variance of X under P
σ(X) X ∈ X the σ-algebra generated by X
P, Q sets of probability measures on (Ω,F)

Conv(P) P ⊆ M1 convex hull of P
X

d∼ µ µ ∈ M1(R), X ∈ X X is distributed as µ (under some P from context)
U[a, b] a < b uniform distribution on [a, b]

N(µ, σ2) µ ∈ R, σ ∈ R+ normal distribution with parameter (µ, σ2)

1A A ∈ F binary-valued indicator function of event A
δx x ∈ R or x ∈ Rn Dirac delta distribution at x
Φ standard normal cumulative distribution function

Notation Specific to the Book

Symbol for ... Meaning
E, E(P) P ⊆ M1 the set of all e-variables for P
U, U(P) P ⊆ M1 the set of all p-variables for P

E E ⊆ E a generic set of e-variables
U U ⊆ U a generic set of p-variables
E E ∈ E a generic e-variable
P P ∈ U a generic p-variable
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Abbreviations

Abbreviation Meaning
iid independent and identically distributed
pdf probability density function
cdf cumulative distribution function
pmf probability mass function
wrt with respect to
KL Kullback-Leibler (divergence), also called the relative entropy
BH Benjamini-Hochberg (procedure)
CI confidence interval
CS confidence sequence
BY Benjamini-Yekutieli (procedure)

SAVI sequential anytime-valid inference

Conventions

1. Scalar constants and functions are usually represented by small letters, such as a, p, e, f , or x.

2. The constants e (often a realized e-value) and e (exponential of 1) are different, and we avoid using
them in the same place.

3. Boldface letters like x refer to vectors, and we refer to its k-th entry as xk (not xk).

4. Capital letters such as X and E are usually reserved for random variables and functions, but there are
exceptions made for important constants (such as the number of hypotheses K in multiple testing).
Random vectors are denoted like X and E. We sometimes also use X to represent the entire data,
which could be one-dimensional or multi-dimensional.

5. Terms like “increasing” and “decreasing” are in the non-strict (weak) sense. Terms like “positive” and
“negative” are in the strict sense.

6. Inequalities between vectors are always understood componentwise.

7. The summation
∑

over the empty set is 0, and the product
∏

over the empty set is 1.

8. The set inclusion is written as ⊆ and the strict set inclusion is written as ⊊.

9. When EP[F (X)] appears, the suitable measurability of F is tacitly assumed.

10. We sometimes omit the domain of integrals and it should be understood as the natural domain (e.g., R
or Ω), which should be clear from context.

11. When we do not provide the proof of a nontrival result, we will point to its proof in the literature in
the bibliographical note section of the corresponding chapter.

12. We generally rely on standard conventions such as 0 · x = 0 for x ∈ [−∞,∞] and x · ∞ = ∞ for
x ∈ (0,∞], as well as log(0) = −∞ and log(∞) = ∞. When evaluating ratios of [0,∞]-valued random
variables we often use the following convention: x/∞ = 0, ∞/x = ∞ for x ∈ [0,∞), and ∞/∞ = 1.

13. As standard in probability theory, we remind the reader that conditional expectations like EP[Y |X] for
random variables X,Y and EP[Y |F ] for a σ-algebra F are defined only in the P-almost sure sense.

14. If E[·] or var(·) appears without the probability specified, it is with respect to the true data generating
probability.
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List of examples of e-values

Context Null Alternative Section
Likelihood ratio P Q 1.5
Soft-rank e-value exchangeable data otherwise 1.6
Normal two-sided N(0, 1) N(µ, 1), µ ̸= 0 2.1
Monotone likelihood ratio pθ : θ ≤ θ0 pθ : θ ≥ θ1 2.6.1; 6.7.2
Symmetry symmetry around zero otherwise 2.6.2; 6.7.3
Mean with nonnegative data E[X] ≤ µ, X ≥ 0 E[X] > µ 2.6.3
Mean and variance E[X] = µ, var(X) ≤ σ2, var(X) > σ2 2.6.3; 10.3
SubGaussian distributions subGaussian, mean ≤ 0 otherwise 2.6.4; 6.7.5
SubGaussian distributions subGaussian, mean = 0 otherwise 2.6.4
Likelihood ratio bounds dP/dP0 ≤ γ for given P0 Q 2.6.5; 6.7.6
Exchangeability exchangeable data Q 2.6.6; 6.7.7
Mixture method P Q 3.7
Plug-in method P Q 3.7
T-test (unknown σ) N(0, σ2), σ unknown N(µ, σ2), µ ̸= 0 3.7
Universal inference e-value P Q 5.2
Numeraire P Q 6.1
Exponential family pθ : θ ≤ θ0 pθ1 with θ1 > θ0 6.7.1
Mean with support [0, 1] E[X] ≤ µ E[X] > µ 6.7.4
Likelihood ratio process P Q 7.5
Universal inference e-process P Q 7.7
Empirically adaptive e-process P Q 7.8
Time-mixture e-processes P Q 7.9
Multi-armed bandit testing E[Xk,j |Fj−1] ≤ 1 ∀j E[Xk,j |Fj−1] > 1 ∃j 9.1.1
Separable compound e-values {S : Sk = Pk}, k ∈ [K] Qk, k ∈ [K] 9.3.2
Asymptotic zero-mean E[X] = 0, var(X) ∈ (0,∞) otherwise 10.3
Compound t-test (unknown σk) N(0, σ2

k), k ∈ [K] N(µk, σ
2
k), k ∈ [K] 10.4.4

Testing the β-quantile (VaRβ) VaRβ(X) ≤ r VaRβ(X) > r 16.3.2
Testing an expected loss E[ℓ(X)] ≤ r E[ℓ(X)] > r 16.3.2
Testing the risk measure ES ESβ(X) ≤ r, VaRβ(X) = z ESβ(X) > r 16.3.3
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Chapter 1

Introduction

An e-value is a nonnegative test statistic whose expected value is at most one under the null hypothesis.
We begin this chapter by offering high-level discussions on the concept of e-values and its comparison to

p-values in Sections 1.1 and 1.2. Formal mathematical notation and conventions are introduced in Section 1.3,
and formal definitions of e-values, p-values, and tests are given in Section 1.4. The first examples are then
discussed in Sections 1.5 and 1.6. Historical context on e-values is provided in Section 1.7, and a road map
for the rest of the book is described in Section 1.8.

Below are some simple messages, all formally treated in the book. E-values, or e-variables as we usually
refer to the underlying random variables, are a fundamental tool for hypothesis testing. E-values are directly
interpreted as evidence against the null: the larger the e-value, the more evidence that the null is false. The
“e” in e-value could stand for expectation (their defining property) or for evidence (their interpretation).

The most straightforward way to view e-values is that they are composite generalizations of likelihood
ratios. For testing a simple null hypothesis, all e-values are likelihood ratios (or are dominated by them).
For testing a composite null hypothesis, building such “generalized likelihood ratios” (which are e-values) is
always possible but not simple, and we will spend several chapters of the book discussing methodology and
theory in this case.

E-values are named as such in order to evoke a comparison to p-values, which are a much more classical
statistical tool within hypothesis testing. The naming analogy is that under the null hypothesis,

e-values are expectation constrained vs p-values are probability constrained,

since p-values must be uniformly distributed (or stochastically larger) under the null. Another analogy is
that e-values can be seen as certain conditional expectations on data, and p-values can be seen as certain
conditional probabilities on data. One important interpretational difference is that for p-values, smaller values
suggest that the null hypothesis is false, but it is the opposite for e-values.

Writing conventions.

Similarly to the situation of “p-value”, which has several variants, it is possible that different
authors might write “e-value” differently.

Our default choice of writing convention, also our recommendation to other authors, is to
write “e-value” (as well as related terms) with the small letter “e”, and without making it italic.
When it is the initial letter of a title or a sentence, “E” (instead of writing “e-Value”) should be
capitalized just like in a usual English word; otherwise we do not capitalize it. This convention
is adapted by the authors of this book and most of their co-authors.

Some journals have specific styles. For instance, some may require both “e” in e-values and
“p” in p-values to be italic, so it is possible to see “e-value” in journal publications.
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1.1 The three roles of e-values

Our book will attempt to elaborate on three somewhat distinct roles that e-values play in statistical inference:
as methodological tools with advantages in particular applications, as technical tools to prove other results of
independent interest, and as fundamental tools lying at the very heart of statistics. We elaborate on these
now, pointing forward to which angles are elaborated in which chapters.

1. Methodological. E-values easily yield the more common inferential tools of p-values and hypothesis
tests: indeed, the inverse of an e-values is a p-value (e-to-p calibration; Chapter 2), and rejecting the
null when the e-value exceeds 1/α is a valid level-α test (Markov’s inequality; Chapter 2). In fact,
sometimes e-values yield the only known path to performing statistical inference: Chapter 5 presents a
general technique called universal inference to derive e-values for (possibly) irregular testing problems,
for which no other inferential methods are known. Chapter 6 then shows that for a fixed alternative,
universal inference can be improved to a unique “log-optimal” e-value, which always exists without
regularity assumptions. Chapter 7 demonstrates how e-values enable sequential anytime-valid inference.
E-values play a key role in selective inference by providing simple methods to control the false discovery
rate (Chapter 9) and false coverage rate (Chapter 13), and they also yield nonparametric tests for risk
measure forecasts (Chapter 16).

2. Technical. E-values appear as technical tools to solve problems that may appear to have nothing
to do with e-values in their problem statement. For example, we will show that every procedure that
controls the false discovery rate is actually an instance of the e-Benjamini-Hochberg procedure applied
to certain compound e-values (Chapter 9). As far as we know, this is not true for p-values or the original
Benjamini-Hochberg procedure procedure. These (compound) e-values may not be of direct interest in
and of themselves, but appear as intermediate technical tools towards some other aim, such as combining
inferences across many multiple testing procedures or derandomizing multiple testing procedures that
utilize external randomness. Similarly, when combining arbitrarily dependent p-values into a single
combined p-value, all admissible merging functions must employ e-values under the hood (Chapter 12).
Methods based on e-values are intimately connected to other theories in modern mathematics, notably
the reverse information projection (Chapter 6) and nonnegative (super)martingales (Chapter 7); once
more, e-values arise centrally in both settings, whether or not one is interested in them.

3. Fundamental. Chapter 3 points out that for testing any composite null P against any composite
alternative Q, without restriction, there exists a powered test (a test with a prespecified level under any
null, and power greater than that level against any alternative) if and only if there exists a bounded
powered e-variable (a variable with expected value at most one under any null, and expected value
larger than one under any alternative). Chapter 4 shows that for general decision-making problems
with more than two decisions, or with data-dependent loss-functions, any decision that guarantees risk
control must be (implicitly) based on e-values.

Overall, we view the current book as providing the building blocks, namely e-values, of a theory of evidence.
This is contrast to, say, a theory of decision making as developed by Neyman, Pearson, Wald and Savage.
While the two are not at complete odds, they are also not in complete agreement.

Given that one might argue that p-values also play similar roles in the literature as written above, we
next address the relationship of e-values to p-values.

1.2 P-values versus e-values

The book does not seek to displace or eliminate the use of p-values. Instead, we argue that e-values are
complementary to p-values, and indeed it a critical part of the modern statistician’s toolkit. We also argue
that e-values and p-values should be studied on an equal footing, and that they may each have advantages in
different settings.
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1.2.1 E-values and p-values are statistical cousins

P-values have a long and rich history in statistics, long considered a standard tool in theory, methodology
and applications. E-values, by contrast, have been relatively late to enter the scene, and are not currently
considered by common scientists to be as fundamental on all three aforementioned fronts. However, we argue
that e-values and p-values should in fact be mentioned in the same breath — they are closely related, equally
fundamental, and we would like both to occupy an equal footing in the literature.

This is a tall ask, but e-values are up to the challenge. It is immediately apparent from their definitions
that p-values and e-values are rather different objects: they are both test statistics of the data but with
entirely different properties. Thus, we will focus here on the commonalities between e-values and p-values, in
order to make the case that one should view them as statistical “cousins”:

• First, as classes of objects, p-variables, e-variables and tests exist under exactly the same conditions.
Theorem 3.8 proves that there exists a bounded powered e-variable if and only if there exists a powered
level-α test for some (or every) α. This holds without restriction on the (possibly composite) null
hypothesis being tested, or on the composite alternative. Further, under a very mild assumption (U)
that there exists a random variable that is uniformly distributed under every null and alternative,
independent of all other random variables, the preceding existence statements are also equivalent to the
claim that a powered p-variable exists.

• Second, as mentioned earlier, e-variables and p-variables can be transformed to each other by “calibration”
(Section 2.3). While e-values and p-values are in general just real-valued measures of evidence, they can
be thresholded to yield rejection decisions of the null hypothesis with guaranteed type-I error control.
While e-to-p calibration with e 7→ 1/e preserves the final decision (for any α, the calibrated p-value
is below α if and only if the original e-value is above 1/α), this is in general not true for all p-to-e
calibrators. Nevertheless, the particular p-to-e calibrator p 7→ 1{p≤α}/α results in the all-or-nothing
e-value that preserves the final decision at a fixed level α.

Despite the above similarities, some key differences are as follows:

• E-values allow for post-hoc decision making. For testing, the level α can be chosen to depend
on the data while maintaining a nontrivial guarantee (Section 4.1). More generally, if one needs to
make decisions beyond just accept/reject, e-values allow handling of data-dependent loss functions
(Section 4.2). Critically, this is true for all e-values, and while this may be true for some p-values (like
those derived from e-values), it is provably not true for all p-values.

• E-values allow for optional continuation of experiments. Suppose a scientist collects some
data that appears promising but inconclusive to make a clear decision of rejecting a null hypothesis.
Seeing this result, another scientist may then be inspired to run their own follow-up experiment, and
their e-values can be merged by a simple multiplication. On the other hand, sequentially obtained
p-values are difficult to merge, because the very existence of the latter studies may depend on the
p-value obtained from the first experiment, creating a subtle form of dependence that could lead to
incorrect meta-analyses. These issues are discussed in detail in Sections 4.3. This is also related to
“p-hacking” (Section 7.1), for which e-processes provide a compelling solution.

• E-values are suitable for unknown sampling scheme. The construction and validity of p-values
rely crucially on a completely specified design of the experiment, in particular the data collecting
procedure. If a dataset is simply handed to us without specifying how it was collected, one may not be
able to correctly calculate a p-value, but we may often be able to calculate an e-value. This is illustrated
in Example 1.3.

• Compound e-values are central to multiple hypothesis testing. Chapter 9 shows that every
multiple testing procedure that controls the false discovery rate can be written an instance of the
e-Benjamini-Hochberg procedure with certain compound e-values, while Chapter 11 shows that every
admissible way for combining dependent p-values must proceed via converting them to e-values and
averaging those e-values. Chapter 13 illustrates how e-values are useful in constructing and combining
dependent confidence intervals.
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There are other differences one can point out in more specific settings. For example, when testing whether
a Gaussian mean is nonpositive, there is a uniformly most powerful p-value which does not depend on the
(positive) alternative mean. This is not true for e-values, whose e-power typically depends on the alternative,
even in special situations such as the one considered. In contrast, for a fixed alternative, a log-optimal
(“uniformly most e-powerful”) e-value always exists for any composite null (Chapter 6), but this uniformly
most powerful p-values do not exist outside of very special cases.

Thus, p-values and e-values are very different test statistics with several contrasting properties; Chapter 14
contains more such contrasts. At a high level, p-values may be better choices in certain rigid and constrained
settings, but e-values may be better choices in more open-ended or flexible settings. Yet, they are strongly
related as families of objects, and can be converted to each other. This justifies our calling them “statistical
cousins”.

1.2.2 Power and e-power

A question that arises very often, perhaps the first question of many users, is

Are e-values more or less powerful than p-values?

This question requires some pause to carefully interpret and answer. E-values and p-values are summary
statistics and do not have “power” by themselves. Power refers to the probability of rejection under some
specific alternative hypothesis. The questioner often means if I construct a level-α test by rejecting an e-value
when it exceeds 1/α, does it have lower power than the level-α test that rejects when a p-value is smaller
than α. Or, if I embed an e-value in a decision making (e.g., multiple testing) procedure, will I make better
decisions (e.g., more discoveries)? This question does not specify which p-values and e-values one is using.
So our answer can be split into four cases:

1. If the p-value P was itself derived from the e-value E (since 1/E is a p-value; see Chapter 2), then
clearly the two tests are identical and there is no difference in power.

2. If one starts with a p-value P , and uses it to define the e-value E = 1{P≤α}/α, then clearly the resulting
test has the same power at level-α as that based on the original p-value.

3. If a given p-value P is converted to an e-value E using a different p-to-e calibrator than above (Chapter 2),
then the probability that E exceeds 1/α will be smaller than the probability that P is below α (see
also Section 2.8).

4. When the p-value and e-value are not derived from each other in the above ways, no general comparisons
can be made.

The second point above can be generalized to an important, though pedantic, observation — any level-α
test (even those that may or may not be based on p-values) can be recovered by thresholding an appropriate
e-variable at 1/α (Chapter 3). Indeed, if A is the rejection region of some level-α test, meaning that we reject
when the data lies in A, then E = 1A/α is an “all-or-nothing” e-value that equals or exceeds α exactly when
the original test rejects. Thus, clearly, using e-values does not by itself lose expressibility or power in any way.

It is worth emphasizing that while we repeatedly use 1/α as the “default” threshold for converting e-values
to level-α tests, one must be somewhat more careful, keeping the following points in mind:

• Full information, possible randomization. If the distribution of the e-value under the null
hypothesis is known (and it could be different under each element of the null), then it is possible to
design a threshold smaller than 1/α (Section 2.2). If the null hypothesis is simple or if the e-value is
pivotal, meaning that its distribution is invariant under the composite null hypothesis, then this type-I
error can be made exactly α (possibly using randomization, as in the classical Neyman-Pearson lemma).

• No information, randomization. If is always possible to reduce the threshold for rejection (from 1/α)
by a random amount using the randomized Markov’s inequality (Section 2.4). One could equivalently
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view this as converting the e-value to smaller randomized p-value, or equivalently stochastically rounding
the e-value to an ‘all-or-nothing’ e-value that has larger probability of exceeding 1/α (power) than the
original (Section 9.5).

• Partial information, no randomization. If partial information is available about the e-value, for
example if the null distribution of the e-value satisfies certain shape constraints, then one can utilize
thresholds that are below 1/α (Chapter 15).

• Multiple e-values, possible randomization. If multiple exchangeable e-values must be combined
(which could occur when the e-values are calculated using a randomized procedure, such as sample
splitting), then simply averaging them and thresholding at 1/α is suboptimal, and one can improve
on it by using an exchangeable improvement of Markov’s inequality (Chapter 5). If the e-values are
arbitrarily dependent, they can be made exchangeable by applying a uniformly random permutation,
and then the previous sentence applies.

The above points may not be alleviate all concerns. Indeed, users who may naively plug in specific e-values
from this book into their favorite decision procedures (that are currently based on p-values) may indeed find
that the e-value procedures are less powerful. Why is that? Here is the main reason.

The typical e-values in this book are optimizing a different criterion than power. Indeed, the
preferred criterion in this book is called “e-power” (Chapter 3), and corresponds to the expected logarithm of
the e-value under the alternative Q, that is, EQ[log(E)]. On that note, we make the following two observations:

• If we were to optimize for power at level α, we would simply get an all-or-nothing e-value 1A/α for
some set A. These have e-power equal to minus infinity, because they take on the value zero with
non-negligible probability, which is infinitely penalized by the logarithm.

• Log-optimal e-values, in contrast, are those which maximize the e-power against Q (these always exist,
even for composite nulls; Chapter 6). Log-optimal e-values obviously avoid the value zero: they are
Q-almost surely strictly positive.

Since our “preferred” e-values are log-optimal, they are rather different from the ones that maximize power.
Thus, directly plugging them into the reader’s favorite procedures (which may be judging the results by
more traditional metrics like power), may lead to disappointment. This is not a fault of e-values, but of
which e-values one chooses to use. Carefully aligning the optimality criterion of the e-value with that of the
procedure within which they are used is likely to return more favorable results. Indeed, we already pointed
out that you certainly cannot lose anything by thinking in terms of e-values instead of p-values.

The reader may then wonder: what makes us prefer e-power (and log-optimality) as the criterion of
choice? Indeed, one could take any increasing function f and ask for the e-value E that optimizes EQ[f(E)];
power at level α and the logarithm are only two such choices. Nevertheless, the logarithm is a natural choice
if you take into account that e-values are interpreted as measures of evidence against the null, and one that is
particularly easy to update when more evidence is collected.

For example, consider the optional continuation setting in Section 1.2.1. Suppose a sequence of scientists
collect e-values E1, E2, . . . against the null; then

∏n
i=1Ei is also an e-value. Now it may be immediately

apparent why one wants to avoid zeros: if E3 = 0, no future multiplication of large e-values will ever result in
large evidence.

Further, note that
∏n
i=1Ei = exp(n · logE1:n), where logE1:n =

∑n
i=1 logEi/n, so that the product

increases to infinity whenever logE1:n converges to a positive constant. Further, in that case, the product
converges to infinity exponentially fast, and choosing the e-values to maximize EQ[logE1:n] (under the
alternative) also maximizes the rate at which the product approaches infinity. Here, the logarithm was
not simply a “convenient choice of a utility function”, but arises naturally in reasoning about a sequence of
products. We also offer an axiomatic derivation of the logarithm in Chapter 3.

We are now ready to begin with the formal mathematical framework of concepts in the book.
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1.3 Mathematical notation and conventions

We begin with a sample space Ω equipped with a σ-algebra F , and the set M1 of all probability measures
(called distributions) on (Ω,F). Formally, a random variable is a measurable function from (Ω,F) to R or
[−∞,∞]. When we allow for a random variable to infinite values, we will write it explicitly; otherwise it takes
values in R. We assume that some distribution P† ∈ M1 governs our data X (which is a random variable).
Note that X could be a vector (X1, . . . , Xn). The variables X1, . . . , Xn could be independent and identically
distributed (iid) under P†, but they need not necessarily be so. We use Xt as a shorthand for the first t data
points (X1, . . . , Xt).

Definition 1.1

A hypothesis is a set of probability measures in M1. A hypothesis is simple if it is a singleton, such as
{P} and {Q}. Otherwise it is composite.

We will always use P for the null hypothesis and Q for the alternative hypothesis. We will also write
H0 as the null hypothesis that P† ∈ P, and H1 the alternative hypothesis that P† ∈ Q; that is, we interpret
a hypothesis both as a mathematical object P and as a statistical statement H0. For a simple hypothesis
P = {P}, we say “testing H0”, “testing P”, and “testing P” interchangeably. The sets P and Q are always
assumed to be non-intersecting. Let Conv(P) denote the convex hull of P.

As alluded above, we always use P,Q for sets of distributions, and P,Q for a single distribution. In the
context of a hypothesis P, statements on independence, distribution, and almost-sure equalities are meant
to hold under each member. We say that Q is absolutely continuous with respect to P, denoted Q ≪ P,
if P(A) = 0 implies that Q(A) = 0 for any measurable set A. In this case, we use dQ/dP to refer to the
likelihood ratio (or, more generally, the Radon-Nikodym derivative) between Q and P. Letting q and p
represent the densities of Q and P with respect to some reference measure L (often the Lebesgue measure,
hence the symbol), we can write (dQ/dP)(x) = q(x)/p(x).

Some notation will be used throughout. The set N = {1, 2, . . . } is set of all positive integers, and
R = (−∞,∞) is the set of all real numbers. We say that a random variable X is stochastically larger (under
P, sometimes omitted if clear from the context) than a distribution on R, represented by its cumulative
distribution function (cdf) F , if P(X ≤ x) ≤ F (x) for all x ∈ R. We write X d∼ F if the distribution of X is
F under a probability measure P that should be clear from context. For a positive integer K, we denote by
[K] = {1, . . . ,K} and by ∆K the standard simplex in RK , that is,

∆K =

{
(v1, . . . , vK) ∈ [0, 1]K :

K∑
k=1

vk = 1

}
.

The Euler number exp(1) is denoted by e (please note that this is different from the variable e, but of course
we will avoid using both in the same equation whenever possible).

All terms like “increasing” and “decreasing” are in the non-strict sense. We write x ∧ y and x ∨ y for the
minimum and the maximum of real numbers x, y respectively.

We will introduce some more specific notation in different chapters, and a list of commonly used notation
and convention is collected separately in the beginning of the book.

1.4 Definitions of e-variables, p-variables, and tests

As above, let P ⊆ M1 be a set of probability measures representing the null hypothesis.
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Definition 1.2: E-variables, p-variables, and tests

(i) An e-variable E for P is a [0,∞]-valued random variable satisfying EP[E] ≤ 1 for all P ∈ P. An
e-variable E is exact if EP[E] = 1 for all P ∈ P.

(ii) A p-variable P for P is a [0,∞)-valued random variable satisfying P(P ≤ α) ≤ α for all α ∈ (0, 1)
and all P ∈ P. A p-variable P is exact if P(P ≤ α) = α for all α ∈ (0, 1) and all P ∈ P

(iii) A test ϕ is a [0, 1]-valued random variable. A test is binary if its range is {0, 1}. The type-I error
(rate) of a test ϕ for P is EP[ϕ]. A test ϕ has level α ∈ [0, 1] for P if its type-I error is at most α
for every P ∈ P.

We denote by E = E(P) (Fraktur E) the set of all e-variables for P and by U = U(P) (Fraktur U)
the set of all p-variables for P, with P often omitted.

Above, we use U (hinting at “uniform”) instead of Fraktur P to avoid overloading the letter “P”, which is
already used for p-variables (P ), probability measures (P), and null hypotheses (P).

The value taken by the e-variable or p-variable on observing the data is called an e-value or a p-value. As
such, we can see that e/p-values are actually not mathematically rigorously defined objects, although they
are common terms in the statistical literature. In this book, we always use “e/p-variables” when making a
mathematical statement or result about the corresponding random variables, and mention “e/p-values” when
their statistical interpretation is more important. In the latter case, an e/p-value may refer to the random
variable or its realized value, and this should be clear from the context.

Some immediate remarks are made below, but the reader may directly jump to Section 1.5 to see a simple
example of an e-variable, which is understandable without reading the following remarks.

1. Our definition of a test allows for external randomization: on observing the data, the realized value of a
test ϕ is interpreted as the probability of rejecting the null hypothesis. More explicitly, one imagines
drawing a uniform random variable U independent of the data, and reject the null if U ≤ ϕ. With this
randomization mechanism, the type-I error for P, EP[ϕ], is precisely the unconditional probability of
rejecting the null hypothesis P, when the data is drawn from P. A binary test rejects or does not reject
without using randomization.

2. A p-variable is precisely a random variable that is stochastically larger than a uniform random variable
on [0, 1] under all P ∈ P . A p-variable is often truncated at 1; this usually does not affect our discussions.
We occasionally mention that a random variable P is a p-variable even if it can take the value ∞ (such
as one over an e-variable; see Proposition 2.1), but it should be understood as saying that P ∧ 1 is a
p-variable.

3. A large realized e-variable is interpreted as evidence against the null hypothesis (because their expected
value is no larger than 1 under the null). Similarly, if we observe a small realized p-variable, then we
have evidence against the null hypothesis. This interpretation will be kept throughout the book. Two
results in Chapter 14 will show that e-variables are naturally represented by conditional expectations,
whereas p-variables are naturally represented by conditional probabilities.

4. We sometimes use the phrase “an e-variable for H0” to mean “an e-variable for P” where the hypothesis
H0 is identified by P (as in Definition 1.1). If P = {P}, then we also say “an e-variable for P”.

5. Most tests that we will deal with are binary, with 1 representing rejection and 0 representing no rejection.
Any level-0 test ϕ0 must satisfy ϕ0 = 0 P-almost surely for every P ∈ P , and we typically choose ϕ0 = 0.
As standard in hypothesis testing, the general aim is that we hope to not reject the null hypothesis
H0 when the data are generated by some element in P, and we hope to reject H0 when the data are
generated by elements in Q.

6. An e-variable is allowed to take the value ∞; observing E = ∞ for an e-variable E means that we are
entitled to reject the null hypothesis; this corresponds to observing 0 for a p-variable. However, E must
be P-almost surely finite for every P ∈ P (otherwise its expectation would not be bounded by 1 under
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P). In particular, E is allowed to be infinite only on P-nullsets (which are sets of measure zero under
every P ∈ P), which correspond to events that are impossible under the null (but may be possible under
some alternative). At least one e-variable always exists for any P: the trivial e-variable that always
equals 1 (P-almost surely for every P ∈ P). Of course, any constant smaller than one also yields a valid
e-variable, but such an e-variable would be dominated by 1.

7. The definition immediately gives the following two convenient properties of e-variables. For a null
hypothesis P, the arithmetic average of e-variables is an e-variable, and the product of independent
e-variables is an e-variable. These convenient properties are not shared by p-variables. The combination
of e-values and that of p-values are formally treated in Chapters 8 and 12, respectively.

Although we defined e-variables and p-variables together, the concept and methodologies of e-values are
not dependent on those of p-values. We will formally connect the two concepts in Chapter 2, due to the
familiarity of p-values to the statistical community, while we should keep in mind that testing with e-values
without relying on p-values is the main purpose of this book. Moreover, in Chapters 9, 11, and 13, we will
see how e-values are fundamental for multiple testing, both with and without p-values.

E-variables are also useful, or arguably even central, to sequential hypothesis testing, as we will define
and discuss formally later. Informally, a finite or infinite sequence E1, E2, . . . of e-variables (adapted to an
underlying filtration) is called an e-process if for every stopping time τ (with respect to that filtration), Eτ is
also an e-value. This definition, despite its simplicity, is rather nontrivial and hides some deep connections to
the theory of nonnegative (super)martingales that we discuss and explore in Chapter 7.

Next, we first discuss two natural examples of e-values, and many more examples for various hypotheses
will be given throughout the book.

1.5 A first example: likelihood ratio

Suppose that we are testing a simple null hypothesis P versus a simple alternative hypothesis Q, assuming
Q ≪ P. For this setting, a natural e-variable is the likelihood ratio E = (dQ/dP)(X) where we treat the
likelihood ratio as a function of the observed data X. For any Q ≪ P, the likelihood ratio dQ/dP is always
an e-variable for P.

We specialize in two simple settings to help the reader to keep concrete examples in mind. In what follows,
X1, . . . , Xn are real-valued iid data points from P or Q, and we denote by Sn =

∑n
i=1Xi their sum.

The most standard example is testing P = N(0, 1) against Q = N(µ, 1) for a known µ > 0. Rigorously,
P and Q are the product measure on the data sample X1, . . . , Xn (which are iid normal), but we slightly
abuse the notation here and later, which should be clear from the context. In this setting, the likelihood ratio
e-variable is given by

En = exp
(
µSn − nµ2/2

)
=

n∏
i=1

exp(µXi − µ2/2). (1.1)

It is straightforward to check that EP[En] = 1, and hence the e-variable En is exact (in fact, each of its
building blocks exp(µXi−µ2/2) is an exact e-variable). This e-variable is not an ad-hoc choice; it has certain
optimality that will be formally studied in Chapter 3. Write δ = µ

√
n, which measures the strength of

the signal under the alternative hypothesis, and Z = Sn/
√
n, which is N(0, 1)-distributed under the null

hypothesis. The e-variable in (1.1) can be rewritten as

En = exp
(
δZ − δ2/2

)
. (1.2)

The Neyman–Pearson p-variable is computed as Pn = Φ(−Sn/
√
n) = Φ(−Z), where Φ is the standard normal

cdf. Clearly, the e-value is increasing in Sn and the p-value is decreasing in Sn, both confirming the intuition
that a larger observed Sn favours Q over P.

A simple calculation shows that En is an e-variable for any choice of δ ∈ R (not just for δ = µ
√
n used

earlier). Suppose that we are now testing N(0, 1) against N(µ, 1) for an unknown µ > 0. We can choose a
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parameter δ > 0, which affects the power of the e-variable, as discussed in Chapters 2 and 3. We can also
test the two-sided alternative hypothesis: N(µ, 1) for an unknown µ ̸= 0. In this case, a simple e-variable is

En =
exp

(
δZ − δ2/2

)
+ exp

(
−δZ − δ2/2

)
2

, (1.3)

for a parameter δ > 0 free to choose. We discuss how to pick δ (in a more general context) in Section 3.7.
The corresponding p-variable is given by

Pn = 2Φ(−|Z|). (1.4)

Another simple example is testing P = Bernoulli(p) against Q = Bernoulli(q), where the parameters
p, q ∈ (0, 1) are known. It is without loss of generality to only consider the case q > p. In this setting, a
natural e-variable for a sample of size n ∈ N is given by the likelihood ratio

En =

(
q

p

)Sn
(
1− q

1− p

)n−Sn

. (1.5)

The Neyman–Pearson p-variable is computed as Pn = 1 − Fn,p(Sn) where Fn,p is the cdf of the binomial
distribution with parameters (n, p). Again, the e-variable En is exact, and noting that q > p, the e-value
is increasing in Sn and the p-value is decreasing in Sn. The above e-variables (En)n∈N in fact also form
e-processes, introduced in Chapter 7.

The point that e-values can be used in unknown sampling scheme, mentioned in Section 1.2.1, is illustrated
in the following example, based on the e-value in (1.5).

Example 1.3: Unknown sampling scheme

Consider testing P = Bernoulli(1/2) against Q = Bernoulli(q), where q > 1/2 with n iid data points.
Suppose that a scientist is presented with the dataset (1, 1, 0, 1, 1, 1, 1, 1) without explaining how
the data collection was designed (e.g., from older experiments). Consider two possibilities: (a) it
was designed such that 8 data points are collected; (b) it was designed such that data points are
collected until 5 heads in a roll are observed. In case (a), the standard p-value is computed by
P(N8 ≥ 7) = 0.035, considered as significant in some areas of science. In case (b), the standard p-value is
P(observing 5 heads in a roll at or before n = 8) = 0.078, often considered as insignificant. The subtle
point here is that if only the data are presented to the scientist but not the design (the data collector
may not even have a design in mind when collecting data, and decided to stop without a plan), there is
no way for the scientist to distinguish between the cases (a), (b), and other possible cases. This is a
possible problematic situation in scientific practice. On the other hand, En = qSn(1 − q)n−Sn/2n in
(1.5) is a valid e-variable regardless of how the data collecting procedure is designed, due to the fact
that (En)n≥1 is an e-process (formally treated in Chapter 7).

1.6 A second example: the soft-rank e-value

There is a large class of classical and modern testing procedures that use some form of Monte Carlo sampling
in order to produce test statistics that are exchangeable under the null, and use the rank of the original test
statistic as a corresponding p-value. Below we give an abstract problem setup, then an explicit example—a
permutation test for independence—and then describe how to build a natural e-value in this context.

Consider testing some hypothesis P and let L0 be the test statistic calculated from the original data (a
larger value of L0 indicates evidence against the null). Further, suppose we can calculate B new statistics
L1, . . . , LB, that are constructed to be exchangeable together with L0 under the null P. Recall that
random variables L0, . . . , LB are called exchangeable if the joint distribution of (L0, . . . , LB) equals that of
(Lσ(0), . . . , Lσ(B)) for any permutation σ of {0, . . . , B}.

For example, suppose that our observed data consist of pairs (Xi, Yi), i ∈ [n], which are assumed to be iid
from some joint distribution. Consider testing whether X is independent of Y (H0 : X ⊥ Y ; H1 : X ̸⊥ Y ).
We can reframe this as testing whether X1, . . . , Xn are iid conditional on Y1, . . . , Yn. Consider a simple test
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statistic defined as the sample correlation between (X1, . . . , Xn) and (Y1, . . . , Yn), denoted by L0. In order
to see whether the sample correlation is sufficiently large to be statistically significant, we would compare
against the sample correlation Lσ computed on the permuted data, (Xσ(1), . . . , Xσ(n)) and (Y1, . . . , Yn). We
draw B such independent random permutations σ1, . . . , σB, and the corresponding sample correlations are
denoted by L1, . . . , LB . The key property is that under the null hypothesis, L0, L1, . . . , LB are exchangeable.

Returning to our abstract formulation in order to build an e-value, we transform the statistics L0, L1, . . . , LB
into some nonnegative scores R0, R1, . . . , RB while preserving their order and exchangeability. An explicit
transformation is given in Example 1.4 below. Define

E =
(B + 1)R0∑B

b=0Rb
,

where we define E = 1 if
∑B
b=0Rb = 0. The fact that E is an e-variable is guaranteed by EP[R0|

∑B
b=0Rb] =∑B

b=0Rb/(B + 1) for P ∈ P due to the assumed exchangeability of R0, R1, . . . , RB under P. We will later
see in Section 6.7.7 that the log-optimal e-variable against a simple alternative (called the numeraire) also
takes the above form.

Example 1.4

Let r > 0 be a prespecified constant. Define L∗ = minb=0,...,B Lb to be the smallest of the (B + 1) test
statistics. For b = 0, . . . , B, define the transformed statistic

Rb =
exp(rLb)− exp(rL∗)

r
.

This transformation is performed to ensure that Rb is nonnegative while the ordering amongst the test
statistics is preserved. Note that L∗ can be replaced by a constant lower bound on Lb. We also allow
the limiting case of r = 0, which yields Rb = Lb − L∗ ≥ 0. If L1, . . . , LB are assumed nonnegative,
we can choose Rb = Lb, i.e., using 0 as the lower bound with r = 0; all of these choices guarantee
exchangeability and nonnegativity of {Rb}Bb=0.

Contrasting E with the usual p-variable P defined by

P =

∑B
b=0 1{Lb≥L0}

B + 1
,

we find that

P =

∑B
b=0 1{Rb≥R0}

B + 1
≤
∑B
b=0Rb/R0

B + 1
= 1/E.

(If R0 = 0 and Rb > 0 for some b, then the above 1/E is interpreted as ∞.) Since P quantifies the rank of
L0 amongst L0, . . . , LB , we see that 1/E can be seen as a smoothed notion of rank, or “soft-rank” for short
(much like the “soft-max” is achieved by exponentiation in Example 1.4). Hence, we call E as the soft-rank
e-value and 1/E as the soft-rank p-value. Since the direct p-value P is always smaller than the soft-rank
p-value 1/E, there is apparently no advantage to using the latter for testing a single hypothesis with the
same threshold α. Nevertheless, later in Chapters 8–11, we will see that e-values enjoy several advantages
over p-values in the contexts of multiple testing and constructing confidence intervals.

1.7 Historical context

This section summarizes our historical view on hypothesis testing with e-values for the interested reader.

1.7.1 Who invented e-values?

In some sense, the question of who invented (or, discovered?) the concept of an e-value or e-variable is
impossible to answer. As already mentioned in brief at the start of the chapter, and as we will discuss in
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later chapters, if P = {P} is a singleton, then all optimal e-values take the form of dQ/dP, that is likelihood
ratios of Q against P, for some (implicit or explicit) alternative Q. So, technically e-values have been around
for 100 years, in the form of likelihood ratios. Similarly, for simple nulls and composite alternatives, Bayes
factors are also likelihood ratios, and hence e-values. Likelihood ratios are central objects in parametric and
nonparametric statistics, in both frequentist and Bayesian as well as other paradigms. Therefore, in some
sense, e-values have always been everywhere in modern statistics. But this is only a part of the story.

The recent coining and usage of the term “e-value” is simply to recognize the importance of a more general
concept that has utility much beyond point/simple nulls. Indeed, beyond the case of simple hypotheses,
e-values can be viewed as nonparametric/composite generalizations of likelihood ratios to complex settings
involving nonparametric and composite nulls and alternatives. Frequentists often use the generalized likelihood
ratio (the ratio between the maximum likelihoods over the alternative and the null), which is not an e-value.
Bayesians (or at least those who consider testing hypotheses) typically generalize Bayes factors by using the
ratio of mixture likelihoods, picking a different distribution over the alternative and the null, and this is also
not always an e-value. As we will later see, constructing e-values for composite nulls and alternatives is a
key and central topic in the literature, and we dedicate two chapters to it in this book: Chapters 5 and 6.
Informally, the former chapter points out that the ratio of the mixture likelihood over alternative to the
maximum likelihood over the null (a curious mixture of frequentist and Bayesian approaches) is always an
e-variable. The latter chapter effectively (if only implicitly) points out that sometimes Bayes factors are
indeed e-variables, if the mixture distributions are chosen in a very particular manner.

There are perhaps five central authors who we would like to centrally credit for the development of
e-values, either explicitly or implicitly through their work on sequential testing, on betting, on the very
related theory of nonnegative (super)martingales, or on the theory of log-optimality. These are Ville, Wald,
Kelly, Robbins and Cover (in that historical order). They each had fundamental works that are intimately
connected to the topics in this book, even if our motivation, treatment, and usage may substantially differ
from all of them.

In its modern avatar, there have been several other central contributors to the philosophy, theory,
methodology, and applications of e-values, and more generally to the subfield now called game-theoretic
statistics and sequential anytime-valid inference (SAVI): Vovk, Shafer, Grünwald, and if we may say so, the
authors of this book. It was in the 2018-20 period that several independent works by these authors (and
their collaborators) were posted to arXiv, each with highly aligned motivation, philosophy and techniques,
but using different terminology. This instigated a joint videoconferencing call in 2020 where these 5 authors
jointly decided on using the term “e-value” whenever it is meant in a measure-theoretic context (as in this
book). Of course, all of these authors have had many collaborators who have made key contributions, and
they will be appropriately cited in place.

Research on e-values has blossomed recently, often without acknowledgment of its roots. We hope that
the above historical context, and the bibliographical accompaniments below are helpful for the reader.

This particular book will focus mainly on the non-sequential context, primarily because there is already
so much to say, but also because there is much more basic work to be done in the sequential context before
a book can be written about it. Needless to say, such a book will be written in due course. Nevertheless,
Chapter 7 is dedicated to the sequential setting, giving readers a glimpse of the broader framework.

1.7.2 Ville, Wald, Kelly, Robbins, Cover, and Vovk

We now discuss some of the key contributions of the aforementioned authors within the context of e-values and
game-theoretic statistics (and its SAVI applications). The references are not intended to be comprehensive,
but are often just exemplary of an influential line of work. We hope they serve as starting points for the
reader who wishes to dig more deeply.

Ville brought martingales to the front and center of modern measure-theoretic probability theory [Ville,
1939]. He proved that for any event of measure zero, there exists a nonnegative martingale (with respect to
that measure) which explodes to infinity on that event. Ville designed betting strategies that test the law
of large numbers or the law of the iterated logarithm. We will encounter some of Ville’s contributions in
this book. While our literature is certainly inspired by Ville, he was not actually motivated by statistical
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inference (either testing or estimation), issues around optional stopping and continuation, and so on. As the
title of his thesis suggests, he was interested in a completely different goal: pointing out some basic flaws
in Richard von Mises’ theory of collectives. The book chapter by Shafer [2022] provides a much broader
historical context for his work.

Wald invented sequential analysis [Wald, 1945]. Nonnegative martingales, in particular the likelihood
ratio process, play a central role in Wald’s methodology and theory (though he originally did not use that
terminology, since the modern theory of martingales was also being developed in parallel to his work by Doob,
who was aware of Ville’s work). Wald emphasized his sequential test, specified in terms of a single stopping
time, that optimally trades off type-I and type-II errors. In contrast, we emphasize the underlying process
(the nonnegative supermartingale, or more generally, the e-process), and focus on guarantees that hold at any
stopping time, possibly not defined or anticipated in advance.

Kelly proposed the key notion of log-optimality [Kelly, 1956]. A few years after Shannon had developed
information theory, Kelly’s paper pointed out a fundamental connection between gambling and information
theory. Kelly pointed out that when playing a repeated game with binary outcomes and favorable odds, it is
possible to bet in such a way that your wealth grows exponentially fast, and thus it is natural to wish to
optimize the rate of growth of that wealth. This immediately leads to the criterion of wanting to optimize
the expected logarithm of the wealth, which we call log-optimality in this book. Breiman [1961] made a key
contribution in generalizing Kelly’s work beyond the binary case, and pointing out that the same criterion
also asymptotically optimizes two other related criteria: minimizing the expected time needed to reach a
threshold wealth (as the threshold goes to infinity), and maximizing the expected limiting wealth (as the time
goes to infinity); the latter is often called competitive optimality. While their works were not written in terms
of statistical hypothesis testing, we borrow their intuition when setting up the “testing by betting” framework.
There, a testing problem is transformed into a game with unfavorable odds under the null but favorable odds
under the alternative, and thus a natural goal becomes to aim for log-optimality under the alternative.

Robbins defined the fundamental concept of confidence sequences [Darling and Robbins, 1967], the natural
sequential extension of confidence intervals, and developed its duality to “power-one” tests Robbins [1970]. He
recognized and utilized that the product of e-values yields nonnegative supermartingales (despite not using
the term “e-value”), and constructed these in some nonparametric settings. Robbins’ philosophical motivations
were most directly aligned with ours, in that he moved away from Wald’s design of a single stopping rule, to
the design of anytime-valid tests and confidence sequences. However, there are still some subtle philosophical
differences. Robbins focused on level-α concepts, whether tests or confidence sequences, while our theory
emphasizes the underlying objects (e-values and e-processes), which by themselves are measures of evidence,
even if they are not explicitly thresholded to Robbins’ tools.

Finally, Cover developed the framework of log-optimal portfolios for financial trading [Cover, 1984].
Without making distributional assumptions, he developed regret bounds that compare the log-wealth of a
gambler that can adaptively rebalance their portfolio in every round (reassign their current wealth to the set
of available stocks) to the best constant rebalanced portfolio in hindsight (in turn which offers better returns
than the best stock in hindsight). Cover’s work does not show up as centrally as the others in this book, but
this is because we only provide glimpses of the sequential setting.

Ville, Wald, Robbins and Cover all implicitly or explicitly employed mixture or plug-in betting strategies
(or likelihood ratios, or nonnegative supermartingales). The plug-in principle and the method of mixtures
will be our standard go-to methods for handling composite alternatives in this work, and they can both be
traced back to ideas presented by all of these authors.

Vovk spearheaded the modern development of these ideas. The core ideas underlying what is now known
as game-theoretic probability were presented in Vovk [1993]. Vovk and V’yugin [1993] defined and used
essentially e-values in the context of algorithmic complexity and randomness (though in this context e-values
had been introduced earlier by Levin and Gacs, which can then be traced back to Martin-Löf and then to
Ville). Gammerman, Vovk, and Vapnik [1998] had an explicit instance of an e-value for the composite null
hypothesis of testing exchangeability in the context of conformal prediction. Following that, Shafer and
Vovk [2001] wrote a book on viewing probability and finance game-theoretically. Many central ideas for
game-theoretic statistics were contained in Shafer, Shen, Vereshchagin, and Vovk [2011].
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1.7.3 Recent progress on e-values

As mentioned earlier, the current resurgence of interest in this topic can be attributed to a series of works that
were first made public the 2018-2020 period. We discuss about ten such works in their order of appearance
(typically on arXiv) below. We also omit a dozen of our own papers that appeared during this period, as well
as several papers by other authors. This has resulted in an incomplete and biased list. But we still think that
this is a list that will retrospectively be viewed as containing works that developed key ideas in this space in
a short time span of around two years.

• In Aug–Oct 2018, Howard, Ramdas, McAuliffe, and Sekhon [2020, 2021] identified one of the defini-
tions of an e-process for composite nulls: a nonnegative process that is upper bounded by a family
of supermartingales. They combined these with Ville’s inequality to unify and improve a host of
nonparametric Chernoff-style concentration inequalities. They developed several variants of the method
which yielded computationally and statistically efficient nonparametric confidence sequences, extending
and generalizing Robbins’ extensive work on the topic.

• In Mar 2019, Shafer [2021] wrote an expository article promoting the use of betting in scientific
communication, and arguing for the adoption of the log-optimality criterion. The paper thoroughly
develops the story for testing a simple null against a simple alternative, proving that the log-optimal
bet is their likelihood ratio.

• In Mar 2019, Shafer and Vovk [2019] published a book on the game-theoretic foundations of probability
and finance, providing a solid philosophical and mathematical basis for these fields. Many ideas in
game-theoretic statistics owe their philosophical or methodological roots to ideas presented in this book.
Certainly, this book predates all papers mentioned here as Mar 2019 is its publication time.

• In Jun 2019, Grünwald, De Heide, and Koolen [2024a] identified what we now recognize as the simpler
of the two definitions of an e-process for composite nulls: a nonnegative process that is an e-value at any
stopping time. They also argued for the log-optimality criterion, pointed out the key role played by the
reverse information projection in the design of log-optimal e-variables, and argued that meta-analysis
(of an increasing number of studies) is a particularly sensible application area for these concepts.

• In Dec 2019, Vovk and Wang [2021] developed fundamental results related to combining e-values, and
transforming e-values to p-values or vice versa (calibrators). For instance, they prove that the arithmetic
average is essentially the only admissible symmetric function that can combine dependent e-values,
and that inverting an e-value is the only admissible way to convert it to a p-value. Before this paper,
authors used different names for the same concept, but following this paper, there was a joint agreement
amongst authors to use the term “e-value”.

• In Dec 2019, Wasserman, Ramdas, and Balakrishnan [2020] developed particularly simple and broadly
applicable e-variables and e-processes within their framework of “universal inference”. They proved
that whenever the maximum likelihood under the (composite) null hypothesis can be calculated, an
e-variable can be constructed, leading to a valid (fixed-time or sequential) test by Markov’s inequality.

• In Jul 2020, Vovk, Wang, and Wang [2022] showed that admissible ways of merging p-values under
arbitrary dependence have to go through e-values. This result is based on a classic optimal transport
duality that converts probability constraints under arbitrary dependence into expectation constraints.
Using this connection, many admissible methods of merging p-values are constructed from merging
e-values.

• In Sep 2020, Wang and Ramdas [2022] developed an analog of the Benjamini-Hochberg (BH) procedure
that employed e-values instead of p-values (e-BH). They showed that unlike BH, the e-BH procedure
controlled the false discovery rate under arbitrary dependence between the e-values.

• In Sep 2020, Ramdas, Ruf, Larsson, and Koolen [2020] identified necessary and sufficient conditions for
admissibility for SAVI tools (e-processes, p-processes, confidence sequences, sequential tests), and prove
that all admissible SAVI methods must be based on nonnegative martingales. They also prove that the
two definitions of e-processes mentioned above are actually equivalent.
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• In Oct 2020, Waudby-Smith and Ramdas [2024] employed a nonparametric testing by betting approach
to produce state-of-the-art solutions to the classic problem of estimating a bounded mean (when
sampling with or without replacement). In doing so, they provide a universal representation for all
composite nonnegative martingales, and a simple betting strategy that easily extends to other problems.

The pace and quality of progress did not stop here, and this book aims to collect many of the results
presented in these above works, and many others that followed them. The bibliographic notes after each
chapter mention many relevant papers in addition to the above, but they are by no means exhaustive.

1.7.4 Unfortunate name clashes: other e-values in the literature

Given the popularity of p-values, many other terms have been created in the literature by swapping the p in
p-value for other letters. All the above authors had already repeatedly contemplated other options, such as
the s-value (s for safe), v-value (v to honor Ville and Vovk), b-value (b for bet), m-value (m for martingale),
and i-value (i for integral). In fact, the name i-value was used informally by a few individuals in the 1990s to
describe a concept that is essentially an e-value in a different context, where the constraint is an integral
(more general than an expectation) bounded by 1.

In the end, we as a community stuck with e-value, because it was defined by its expectation, and is directly
interpreted as evidence against the null. There was also a consideration of its pronunciation and contrast to
p-values. However, as time has passed, we have discovered many other e-values in the literature that we were
initially unaware of. We mention them below to avoid confusions for the casual reader, who may search for
the term e-value and may mistakenly wander into a different literature with other goals and definitions. We
apologize for any unintentional misrepresentations of their concepts, on which we are not experts.

Importantly, terms like “e-variable” and “e-process” do not have known clashes, and the reader is reassured
when these terms accompany “e-value”, so we recommend mentioning them in papers wherever suitable.

1. BLAST E-value. BLAST [Altschul et al., 1990] is an extremely popular software tool used in
bioinformatics. In the context of sequence alignment given a database of sequences, the BLAST
E-value (E for Expect) is the number of expected hits of similar quality (score) that could be found
just by chance. Their E-value appears to be a particular calibrator applied to a particular p-value:
E = − log(1− P ). This appears to keep E-values and p-values on the same scale (lower E-values point
towards statistically significance). This is related to Greenland’s definition of an S-value (S for surprisal
or Shannon information), which is − log(P ), which would be a special case of our e-value.

2. Sensitivity E-value. VanderWeele and Ding [2017] introduced E-values in the particular context of
sensitivity analysis in causal inference. The E-value is defined as the minimum strength of association,
on the risk ratio scale, that an unmeasured confounder would need to have with both the treatment
and the outcome to fully explain away a specific treatment-outcome association, conditional on the
measured covariates. A large E-value implies that considerable unmeasured confounding would be
needed to explain away an effect estimate. A small E-value implies little unmeasured confounding
would be needed to explain away an effect estimate. This notion has become extremely popular in
applied causal inference.

3. Bayesian E-value. The e-value ev(H|X) — the epistemic-value of hypothesis H given observations
X, or the evidence-value of observations X in favor (or in support) of hypothesis H — is a Bayesian
statistical significance measure introduced together with the Full Bayesian Significance Test [Pereira
and Stern, 1999]. Concise entries about the e-value and the FBST are available at the International
Encyclopedia of Statistical Science and online at Wiley’s StatsRef. The recent survey by Stern et al.
[2022] points to rich and growing literature on the topic over the last 25 years.

1.8 Road map

The rest of this book is organized into three parts. The first part, Fundamental Concepts, includes four
chapters (including the current one) that introduce the basic concepts.
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• Chapter 2 concerns the properties of e-values under the null hypothesis, including key concepts such as
Markov’s inequality, calibrators, and randomized tests. It presents tools to convert e-values to p-values
and tests, and vice versa. It also presents explicit e-variables several simple examples. This chapter
focuses on validity (under the null), leaving questions of statistical efficiency to the following chapter.

• Chapter 3 concerns the properties of e-values under the alternative hypothesis, including topics of e-
power, log-optimality, existence of powered e-values, and mixture and plug-in methods. As an important
result, the log-optimal e-variable for a simple null against a simple alternative is their likelihood ratio.
It provides methods to derive “good” or “useful” e-values, and shows how e-values, p-values and tests
are fundamentally connected via a unified existence result.

• Chapter 4 demonstrates that e-values play a fundamental role in post-hoc testing and decision making,
where some parts of the testing problem, available decisions, or data collection depend on the current
data. While the previous chapters focused on putting e-values and p-values on a similar footing, this is
the first chapter to clearly separate their utility: what one can do with e-values versus what one can (or
cannot) do with p-values.

The second part, Core Ideas, includes five chapters.

• Chapter 5 introduces the general method of universal inference for constructing e-variables for general
composite nulls and alternatives. This method is very simple to apply, and provides the first known
test for many “irregular” testing problems. However, it is inadmissible in a strong sense: it is always
dominated by the e-variable constructed in the next chapter.

• Chapter 6 contains a key result: for a given composite null and simple alternative, there always exists
a unique log-optimal e-variable (called the numeraire), and presents a strong duality result with the
reverse information projection (RIPr) of that alternative onto the null. Remarkably, the numeraire
is also the only e-variable that is a likelihood ratio between the alternative and some element of the
(effective) null.

• Chapter 7 presents the framework of sequential anytime-valid inference (SAVI), emphasizing key concepts
such as e-processes, testing by betting, optional stopping and Ville’s inequality. It also discusses key
differences between SAVI and Wald’s sequential testing paradigm, as well as the problematic practice
of peeking at p-values.

• Chapter 8 discusses merging e-values via averages (arbitrary dependence) or products (independence or
“sequential” dependence), as well as the trade-offs in choosing merging methods.

• Chapter 9 presents the notion of compound e-values in the context of multiple hypothesis testing,
introduces the e-Benjamini-Hochberg (e-BH) procedure, and proves that every FDR controlling procedure
can be seen as applying e-BH to some set of compound e-values.

The third part, Advanced Topics, has seven chapters.

• Chapter 10 studies approximate and asymptotic p-values and e-values, as well as their counterparts
in multiple testing. This chapter provides a bridge between classical statistics, which often relies on
asymptotics, and most our book, which is nonasymptotic.

• Chapter 11 shows that the only admissible way to combine dependent e-values is by (weighted) averaging.
It also develops methods to combine a p-value and an e-value, which give rise to an e-weighted BH
procedure.

• Chapter 12 derives methods for combining multiple dependent p-values, which are proved to rely on
e-values through optimal transport duality, and also ways to improve on such combination rules by
using random and exchangeable improvements of Markov’s inequality.

• Chapter 13 defines e-confidence intervals (e-CI), and presents the e-Benjamini-Yekutieli (e-BY) procedure
to control the false coverage rate after selecting a subset of e-CIs to report. It also discusses how to
merge dependent confidence intervals using (various versions of) majority vote.
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• Chapter 14 offers further contrasts between p-values and e-values, including a duality between them,
a representation of e-variables and p-variables as conditional expectations and probabilities, and an
existence result on powered exact e-values and p-values.

• Chapter 15 shows how Markov’s inequality can be improved under additional conditions on the shape
of the distribution of a single e-variable or on the dependence between multiple e-variables.

• Chapter 16 studies the connection between e-values and risk measures, and offers some nonparametric
methods for testing the forecast of general statistical functions (such as the mean, the variance, or a
quantile) using e-values.

In terms of the goal of each chapter, all chapters can be grouped in the following three categories.

1. Understanding the foundation of e-values: Chapters 2, 4, 10, and 14.

2. Constructing good and powerful e-values in single hypothesis testing: Chapters 3, 6, and 15.

3. Designing inference methods with e-values: Chapters 5, 7, and 16.

4. Designing methods for multiple testing with e-values: Chapters 8, 9, 11, 12, and 13.

In the first two categories, we are interested in e-values themselves, whereas in the second categories, we are
primarily interested in the specific statistical problem.
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Chapter 2

Validity: E-values under the null
hypothesis

In this chapter, we study fundamental issues on e-values, in particular, on their connection to p-values,
validity, and tests. For this reason, the alternative hypothesis Q does not appear and plays no role.

2.1 Testing using Markov’s inequality

As mentioned before, e-values can be interpreted in their own right as evidence against the null hypothesis
without resort to other concepts. However, the reader may naturally be curious how exactly e-values may
be transformed (perhaps with some loss of efficiency) into the more classical concepts of level-α tests and
p-values. It is in this context that a central role will be played by Markov’s inequality (though it apparently
was discovered by Chebyshev, Markov’s advisor).

Markov’s inequality guarantees that a test rejecting an e-value larger than 1/α yields a level-α test.

Proposition 2.1: Markov’s inequality

Let E be an e-variable for P. We have P(E ≥ 1/α) ≤ α for all P ∈ P and α ∈ (0, 1]. Hence, 1/E is a
p-variable, (αE) ∧ 1 is a level-α test, and 1{E≥1/α} is a level-α binary test.

The proof follows directly from the simple inequality 1{x≥1} ≤ x for all x ≥ 0, by observing that

P(E ≥ 1/α) = EP[1{αE≥1}] ≤ αEP[E] ≤ α.

For an e-variable E and a p-variable P , even though 1/E is a p-variable, 1/P is generally not an e-variable;
in fact 1/P has infinite mean if P is exact. The p-variable 1/E is conservative since it cannot be uniformly
distributed on [0, 1], and typically far away from being so. As a consequence, the type-I error of the test
1{E≥1/α} for P is usually smaller than α unless E is distributed on the two points 0 and 1/α with mean 1
under P.

Proposition 2.1 can be generalized in several different directions relevant for testing with e-values; some
are presented in Section 2.4 and Chapters 5 and 15. A sequential generalization, called Ville’s inequality, is
presented in Chapter 7.

With a p-variable P and an e-variable E for the same hypothesis, the tests 1{E≥1/α} and 1{P≤α} are
in general different.1 To understand how these two tests differ, we consider the two-sided normal test in
Section 1.5, where a family of e-variables En is given by (1.3), indexed by δ > 0, and the p-variable Pn

1However, if one desires, one can always make the sets {P ≤ α} and {E ≥ 1/α} identical, by choosing E = 1{P≤α}/α. One
can easily verify that E is indeed an e-variable. Section 3.1 has more details on such e-variables.
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Figure 2.1: A comparison of e-values and p-values for the two-sided normal test in Section 1.5. The curves
represent the e-values or p-values as a function of the test statistic Z = x. The top four horizontal dotted lines
correspond to 10β with β ∈ {2, 1.5, 1, 0.5} for e-values. The bottom two horizontal dotted lines correspond to
α ∈ {0.05, 0.01} for p-values. (The reason why e-values are compared with levels 10β with β ∈ {2, 1.5, 1, 0.5}
is formally explained in Section 2.8).

is given by (1.4). We treat both the e-variables and the p-variable as functions of the value x taken by
the statistic Z. Figure 2.1 illustrates two intervals [A1, A2] and [B1, B2], which correspond to Pn(x) = 0.01
for x = A1 or x = A2 and En(x) = 100 for x = B1 or x = B2, with δ = 3. Here, A2 = |A1| ≈ 2.58 and
B2 = |B1| ≈ 3.27. Other choices of δ lead to different intervals, as shown in Figure 2.1. We can see that it
is harder for an e-value to reach 100 compared to a p-value to reach 0.01, and this is because the Markov
inequality is generally conservative. It is generally unfair to directly compare the values of E and 1/P . See
Section 2.8 for more discussions on this point.

2.2 Testing using distributional knowledge

Proposition 2.1 implies that for an e-variable E and α ∈ (0, 1), we can always reject the null hypothesis by
using the level-α test 1{E≥1/α}. If the distribution of E under the null hypothesis is known or computable
(there may be multiple distributions if the null is composite), then we can find thresholds that are smaller
than 1/α to test based on E. Denote by S(·;P) the left-continuous survival function of E under P ∈ P, that
is,

S(x;P) = P(E ≥ x)

for x ∈ R. If S(·;P) is the same across P ∈ P , then E is called pivotal (this will appear again in Section 14.3).
For a threshold t > 0, we would like the test 1{E≥t} to have level α. Clearly, choosing t ≥ 1/α is sufficient,

but we can do better. Indeed, by definition, as long as supP∈P S(t|P) ≤ α, t is a valid threshold for the test
1{E≥t} with level α. If supP∈P S(t|P) is continuous, then the smallest t that satisfies this condition is

t∗ = inf

{
t > 0 : sup

P∈P
S(t|P) ≤ α

}
,
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which is also equal to the largest left α-quantile of E over P ∈ P (Lemma 15.1 in Section 15.1). In particular,
if P = {P} is simple, then we can easily see that

t∗ = inf {t > 0 : P(E ≥ t) ≤ α} = inf {t > 0 : P(E > t) ≤ α} ,

which is the left α-quantile of E under P. The level-α guarantee of 1{E≥t∗} requires t 7→ supP∈P S(t|P) to be
continuous at t∗; otherwise we can use the test 1{E>t∗}, or a suitable randomization between 1{E>t∗} and
1{E≥t∗} (analogously to the Neyman–Pearson lemma).

Reducing the threshold in the above manner is in fact no different from treating the e-value as any other
test statistic and picking the threshold appropriately to derive a level-α test, as is standard in classical
statistics.

Even in situations where S(·;P) is difficult to fully specify or compute, bounds on t∗ may be obtained
based on partial information of the distribution of the e-value. Several concrete cases will be studied in
Chapter 15.

2.3 Relating p-values and e-values using calibrators

P-values and e-values can be converted between each other, via calibrators. Below, when we say “any
hypothesis”, we mean any specification of the sample space (Ω,F) and hypothesis P on the space.

Definition 2.2: Calibrators

(i) A p-to-e calibrator is a decreasing function f : [0,∞) → [0,∞] satisfying f = 0 on (1,∞) such
that for any hypothesis, f(P ) is an e-variable for any p-variable P .

(ii) An e-to-p calibrator is a decreasing function g : [0,∞] → [0,∞) such that for any hypothesis, g(E)
is a p-variable for any e-variable E.

(iii) A calibrator f is said to dominate a calibrator g if f ≥ g (p-to-e) or f ≤ g (e-to-p), and the
domination is strict if further f ̸= g. A calibrator is admissible if it is not strictly dominated by
any other calibrator.

We often omit “p-to-e” in “p-to-e calibrators” and simply call them calibrators, for a reason that will be
made clear soon in Propositions 2.3 and 2.4.

The interval [0,∞) can be safely replaced by [0, 1] in the above definitions since p-values with values
larger than 1 are not interesting for testing.

A probability is called atomless if there exists a continuously distributed random variable (e.g., uniform,
normal) on this space. In Definition 2.2, the property of calibrators needs to hold for any hypothesis.
Nevertheless, it suffices to consider one atomless probability P on some (Ω,F), because if for the simple
hypothesis P, f(P ) is an e-variable for any p-variable P , then it holds also for any other, simple or composite,
hypotheses. This observation will be useful in several places throughout. A formal justification of this
simplification is presented in Appendix A.1.

In the next two results we characterize all admissible calibrators in both directions. We first look at
the simpler direction. The following proposition says that there is, essentially, only one e-to-p calibrator,
f : t 7→ min(1, 1/t), that is offered by Markov’s inequality.

Proposition 2.3

The function f : [0,∞] → [0, 1] defined by f(t) = min(1, 1/t) is an e-to-p calibrator. It dominates every
other e-to-p calibrator. In particular, it is the only admissible e-to-p calibrator.

VERSION SPRING BREAK, 2025
20



Proof.

The fact that t 7→ min(1, 1/t) is an e-to-p calibrator follows from Markov’s inequality in
Proposition 2.1. On the other hand, suppose that g is another e-to-p calibrator. It suffices to
check that g is dominated by t 7→ min(1, 1/t). Suppose g(t) < min(1, 1/t) for some t ∈ [0,∞].
Fix a simple atomless probability P. Consider two cases:

(a) If g(t) < min(1, 1/t) = 1/t for some t > 1, fix such t and consider an e-variable E that is
equal to t with probability 1/t and 0 otherwise under P. Then g(E) is g(t) < 1/t with
probability 1/t, whereas it would have satisfied P(g(E) ≤ g(t)) ≤ g(t) < 1/t had it been a
p-variable.

(b) If g(t) < min(1, 1/t) = 1 for some t ∈ [0, 1], fix such t and consider the e-variable E = t.
Then g(E) = g(t) < 1, and so it is not a p-variable.

Instead of working with the set of all e-variables, we can also consider conditional e-to-p calibrators that
are valid only on some subset E of e-variables, which is a weaker requirement, and such calibrators depend on
the choice of E . This topic is treated in Chapter 15.

In sharp contrast to the uniqueness of the admissible e-to-p calibrator, the class of p-to-e calibrators is
much richer.

Proposition 2.4

A decreasing function f : [0,∞) → [0,∞] with f = 0 on (1,∞) is a p-to-e calibrator if and only if∫ 1

0
f(p)dp ≤ 1. It is admissible if and only if f is upper semicontinuous, f(0) = ∞, and

∫ 1

0
f(p)dp = 1.

In the context of this proposition, being upper semicontinuous is equivalent to being left-continuous.

Proof.

The first “only if" statement is obvious. To show the first “if” statement, suppose that∫ 1

0
f(p)dp ≤ 1, P is a p-variable for an atomless probability P, and P ′ is uniformly distributed

on [0, 1]. Since P(P ≤ x) ≤ x ∧ 1 = P(P ′ ≤ x) for all x ≥ 0 and f is decreasing, we have

P(f(P ) > x) ≤ P(f(P ′) > x)

for all x ≥ 0, which implies

EP[f(P )] ≤ EP[f(P ′)] =

∫ 1

0

f(p)dp ≤ 1.

Both necessity and sufficiency in the second statement of Proposition 2.4 are straightforward.

Simple examples of admissible p-to-e calibrators (we only specify them on (0, 1], as they are ∞ at 0 and 0
on (1,∞)) include the power form

f(p) = κpκ−1 for some κ ∈ (0, 1), (2.1)

the mixture of (2.1),

f(p) =

∫ 1

0

κpκ−1dκ =
1− p+ p ln p

p(− ln p)2
, (2.2)
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and some special simple forms

f(p) = 2(1− p); (2.3)

f(p) = p−1/2 − 1; (2.4)
f(p) = − log p. (2.5)

Converting a p-value to an e-value using a p-to-e calibrator and then back to p-value using an e-to-p
calibrator generally loses quite a lot of evidence. For instance starting with p = 0.01, a conversion with the
p-to-e calibrator p 7→ p−1/2 − 1 gives e = 9, and another conversion with the e-to-p calibrator e 7→ min(1/e, 1)
yields p′ = 1/9. Therefore, it is not recommended in practice to calibrate iteratively in both directions.

A possible interpretation of results on the calibrators is that e-variables and p-variables are connected
via a very rough relation 1/e ∼ p. In one direction, the statement is precise: the reciprocal (truncated
to 1 if needed) of an e-variable is a p-variable by Proposition 2.3. On the other hand, using a calibrator
f(p) = κpκ−1 in (2.1) with a small κ > 0 and ignoring positive constant factors, we can see that the reciprocal
of a p-variable is approximately an e-variable; this is also the case of (2.2). In fact, f(p) ≤ 1/p for all p when
f is a calibrator; this follows from Proposition 2.4. However, f(p) = 1/p for a fixed p is only possible in the
extreme case f : q 7→ 1{q∈[0,p]}/p.

In the rest of the book, we omit “p-to-e” when mentioning calibrators. Although all calibrators in
(2.1)–(2.5) are admissible, some are more useful. In hypothesis testing, very small p-values and very large
e-values are interesting. Calibrators in (2.3), (2.4) and (2.5) penalize very small p-values more than (2.2),
which can be seen from their asymptotic behaviour as p ↓ 0, and therefore they are less likely to produce very
large e-values; the calibrator in (2.3) is even bounded by 2 for p ̸= 0. Nevertheless, they may be useful when
we take the product of many independent e-values.

We end this section with a simple property of admissible calibrators. It also explains why we choose the
domain of the calibrators as [0,∞) instead of [0, 1], although its value is set to 0 for input p-values larger
than 1. This result will be useful for later results in Chapter 12.

Proposition 2.5

If f is an admissible calibrator, then so is the mapping x 7→ af(ax) for any a ≥ 1.

Proof.

Denote by g : x 7→ af(ax). We need to check a few properties in Proposition 2.4. First, it
follows from f(p) = 0 for p > 1 that g(p) = af(ap) = 0 for p > 1, and further∫ 1

0

g(x)dx =

∫ 1

0

af(ax)dx =

∫ 1/a

0

af(ax)dx =

∫ 1

0

f(p)dp = 1.

Upper semicontinuity and g(0) = ∞ follow directly from those properties of f .

The next result states that, any e-variable E for an atomless probability P can be seen as some calibrator
applied to an exact p-variable. Indeed, as we see from the proof of the result below, this calibrator is a
transform of the quantile function of E.

Proposition 2.6

Let E be an e-variable for an atomless probability measure P. Then, there exists a calibrator f and an
exact p-variable P for P such that E = f(P ), P-almost surely. Moreover, if E is exact, then we can
require the calibrator f to be admissible.
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Proof.

For p ∈ (0, 1], let f(p) be given by f(p) = inf{x ∈ R : P(E ≤ x) > 1− p}, that is, the right
quantile of E at level 1− p, and further we set f(0) = ∞ and f(x) = 0 for x > 1. By a standard
property of the quantile function (formally stated in Lemma A.10 in Appendix A.2), there exists
an exact p-variable P such that E = f(P ) almost surely. In case E is exact, the admissibility
of this calibrator follows from Proposition 2.4 and the fact that the right quantile function is
upper semicontinuous.

Example 2.7

In Section 1.5, for testing P = N(0, 1) against Q = N(µ, 1) with n observations, the likelihood ratio
e-value in (1.2) is E = exp

(
δZ − δ2/2

)
, and the Neyman–Pearson p-variable is P = Φ(−Z), where

Z is N(0, 1)-distributed, Φ is the standard normal cdf, and δ = µ
√
n. Both E and P are exact. It is

straightforward to see E = f(P ) with the admissible calibrator f given by

f(p) = exp
(
−δΦ−1(p)− δ2/2

)
.

2.4 Randomized tests and calibrators

A randomized test is a test that utilizes independent external randomization. It is possible to improve
Markov’s inequality using external randomization, and this has direct implications for converting e-variables
into tests or p-variables.

Theorem 2.8: Randomized Markov inequality

Fix P ∈ M1. Let Y be a nonnegative random variable and U d∼ U[0, 1] be independent of Y . Then, for
any α > 0,

P(Y ≥ U/α) = EP[min(αY, 1)] ≤ αEP[Y ]. (2.6)

In particular, if Y is an e-variable for P, then P(Y ≥ U/α) ≤ α for any P ∈ P.

The proof is simple. Since U is uniform and independent of Y , we get

P(Y ≥ U/α) = EP[P(U ≤ αY | Y )] = EP[min(αY, 1)],

yielding the claim. The first equality in (2.6) becomes an inequality ≤ if U is stochastically larger than
standard uniform, and in particular U = 1 yields an alternative proof of Markov’s inequality. Also, if Y is
bounded, that is Y ∈ [0, C] almost surely for some C > 0, then the inequality in (2.6) holds with equality
for any α ≤ 1/C. In contrast, Markov’s inequality holds with equality only for distributions supported on
{0, 1/α}.

The following corollary is a direct consequence of Theorem 2.8, which offers additional interpretations of
the relation between p-variables and e-variables and randomization.

Corollary 2.9

For any hypothesis P, if a p-variable P and an e-variable E are independent, then P/E is a p-variable.
In particular, if E is an e-variable, then U/E is a p-variable, where U d∼ Unif(0, 1) is independent of E.

Since U < 1 almost surely, U/E is a strictly smaller p-value than 1/E in all but degenerate cases. Thus,
the corresponding randomized test is typically strictly more powerful than the non-randomized one. Said
differently, e 7→ (U/e) ∧ 1 can be seen as a randomized e-to-p calibrator that dominates e 7→ (1/e) ∧ 1, the
latter only being admissible among non-randomized e-to-p calibrators (Proposition 2.3).

A more general treatment of combining a p-value and an e-value is presented in Section 11.3.
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2.5 Admissible e-variables for P are likelihood ratios

This section makes a straightforward but important observation: For simple nulls, every admissible e-variable
can be written as a likelihood ratio. We fix a simple hypothesis {P} in this section, and omit “for P” when
mentioning e-variables.

An e-variable E is said to be admissible if E′ ≥ E implies that E′ = E for any other e-variable E′,
where the equalities or inequalities are interpreted P-almost surely. Said differently, we say an e-variable E1

dominates another e-variable E2 if E1 ≥ E2 and P(E1 > E2) > 0. An e-variable is admissible if it is not
dominated by another e-variable.

The above definition does not use any alternative Q, but if P and Q are mutually absolutely continuous,
then E1 being admissible means that one cannot find another e-variable E2 such that Q(E1 ≥ E2) = 1
and Q(E1 > E2) > 0. Indeed, P(E1 > E2) > 0 is equivalent to Q(E1 > E2) > 0, and P(E1 ≥ E2) = 1 is
equivalent to Q(E1 ≥ E2) = 1.

Proposition 2.10

For testing a simple null P, an e-variable E is admissible if and only if it is exact. Further, any exact
e-variable equals a likelihood ratio dS/dP P-almost surely for some distribution S ≪ P.

Proof.

Assume, for the sake of contradiction, that an admissible E is not exact, meaning that
EP[E] < 1. If EP[E] = 0 then it is dominated by the constant 1. Otherwise, defining E′ =
E/EP[E], we see that E′ > E, while E′ is still an e-value. Thus, E is inadmissible, contradicting
the assumption. Thus, admissible e-values must be exact. To show the converse, it suffices to
note that if E2 dominates an exact e-variable E1, then EP[E2] > 1. For the last statement, we
can define S via the equality dS/dP = E, and because E is nonnegative and exact, we know
that S is a distribution absolutely continuous with respect to P.

2.6 More examples of e-values

Continuing from the examples in Chapter 1, we now provide several simple examples of e-values for different
testing problems. Some of these e-values also enjoy a notion of optimality, introduced in Chapter 3 and
analyzed in detail in Chapter 6, so these examples will be revisited later in the book.

In most examples below, we consider a single random observation (statistic) Z in a measurable space Z
and the sample space is chosen as (Ω,F) = (Z, σ(Z)). Recall that M1 is the set of all probability measures
on F .

2.6.1 Monotone likelihood ratio

Let (Pθ)θ∈Θ be a parametric family of distributions with their density functions of the test statistic Z given
by (pθ)θ∈Θ, where Θ ⊆ R and Z = R. Assume that monotone likelihood ratio holds: for all θ < θ′, the
likelihood ratio pθ′(z)/pθ(z) exists and is increasing (or decreasing) in z.
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Proposition 2.11

Consider testing P = {Pθ : θ ≤ θ0} against Q = {Pθ : θ ≥ θ1}, where θ1 > θ0. Under the monotone
likelihood ratio assumption, for any θ′ > θ0, the random variable

E =
pθ′(Z)

pθ0(Z)

is an e-variable for P.

The following short proof uses Chebyshev’s association inequality, which states that, assuming integrability,
EP[f(X)g(X)] ≥ EP[f(X)]EP[g(X)] for any increasing functions f, g and random variable X.

Proof.

Write Eθ for EPθ . For any θ ≤ θ0 < θ′, we have

1 = Eθ0
[
pθ′(Z)

pθ0(Z)

]
= Eθ

[
pθ′(Z)

pθ0(Z)

pθ0(Z)

pθ(Z)

]
≥ Eθ

[
pθ′(Z)

pθ0(Z)

]
Eθ
[
pθ0(Z)

pθ(Z)

]
= Eθ

[
pθ′(Z)

pθ0(Z)

]
,

where the inequality follows from Chebyshev’s association inequality. This gives Eθ[E] ≤ 1 for
all θ ≤ θ0, as required.

The same conclusion in Proposition 2.11 holds true for testing P = {Pθ : θ ≥ θ0} against Q = {Pθ : θ ≤ θ1}
with θ0 > θ1; moreover, either inequality (or both) in P and Q can be replaced by a strict inequality. The
same e-variable can also be used to test P = {Pθ : θ ≤ θ0} against Q = {Pθ : θ > θ0}.

The example of normal distributions in Section 1.5 satisfies the monotone likelihood ratio assumption.
Therefore, the e-variable in (1.2) for any µ > 0 is an e-variable for testing {N(θ, 1) : θ ≤ 0} against
{N(θ, 1) : θ > 0}.

An important special case is given by one-parameter exponential families, which we discuss further in
Section 6.7.1. There, and in Section 6.7.2, we will argue that the above e-variable is actually log-optimal for
Q = Pθ1 for any θ1 > θ0, simply because pθ1/pθ0 is an e-variable for P.

2.6.2 Testing symmetry

Take Z = R. We now consider the null hypothesis that Z is symmetrically distributed around 0, that is,

P = {P ∈ M1 : Z and − Z have the same distribution under P} .

An example in clinical trials is to set Z = Y1 − Y0, where Y1 is a a post-treatment measurement and Y0
is pre-treatment measurement, and we are interested in whether the treatment has any effect. Such an
application, typically has more than one data point, which will be discussed later, but for now we first consider
the case of one summary statistic Z.

Fix any alternative hypothesis Q that admits a Lebesgue density q. Let P∗ be given by its density

p∗(z) =
1

2
(q(z) + q(−z))1{q(z)>0},

which is absolutely continuous with respect to Q. Define

E =
dQ
dP∗ =

2q(Z)

q(Z) + q(−Z)
1{q(Z)>0}. (2.7)
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We can check that E is an e-variable for P because, using the convention 0/0 = 0,

EP[E] = EP
[

q(Z)

q(Z) + q(−Z)

]
+ EP

[
q(Z)

q(Z) + q(−Z)

]
= EP

[
q(Z)

q(Z) + q(−Z)

]
+ EP

[
q(−Z)

q(Z) + q(−Z)

]
= 1.

The optimality of this e-variable against Q is studied in Section 6.7.3.
The e-variable in (2.7) based on one realization is at most 2, and in applications we need to rely on

multiple data points to accumulate more evidence against the null. Suppose that multiple iid data points
sampled from X are available, summarized by Z = (X1, . . . , Xn) with Z = Rn. We consider the hypothesis
P of symmetry, that is, X and −X have the same distribution under P, and for simplicity, assume further
that X is continuously distributed. There are many e-variables to test P, and we give a few. First, let

Eλ =

n∏
i=1

2 exp(λXi)

exp(λXi) + exp(−λXi)
, λ ∈ R,

This is the product of several e-variables in (2.7) with a specifically chosen q. Another class of e-variables is

E′
λ =

n∏
i=1

exp(λXi − λ2X2
i /2), λ ∈ R.

We have E′
λ ≤ Eλ, because

exp(x) + exp(−x) ≤ 2 exp(x2/2)

for all x ∈ R. To remove the reliance on λ, we can take E =
∫ 1

0
Eλdµ(λ), where µ is any distribution on R.

Note that the signs of X1, . . . , Xn are iid and uniformly distributed on {−1, 1} under the null hypothesis.
Therefore, a class of e-variables is given by

Ep =
pk(1− p)n−k

2n
, p ∈ (0, 1).

Similarly to Eλ above, Ep is also a product of several e-variables in (2.7), but now this class is indexed by
p ∈ (0, 1).

A different approach is to use the signed-rank e-variables, based on Wilcoxon’s signed-rank test. The idea
is to arrange the magnitudes |Xi| of the observations in the ascending order and assigning to each its rank,
which is a number in [n]. Under the null hypothesis, any subset of [n] has the same probability 2−n to be the
set of ranks of the positive observations. This determines the distribution of Wilcoxon’s statistic Vn defined
as the sum of the ranks of the positive observations. The class of signed-rank e-variables is defined by

Eβ = exp(βVn)

n∏
i=1

2

1 + exp(βi)
, β ∈ R.

It is a standard exercise to check that Eβ is an e-variable.

2.6.3 Testing the mean and the variance

Let Z ⊆ R+ so that the statistic Z takes nonnegative values. Fix µ > 0 and consider the null hypothesis that
the mean of Z is at most µ,

P = {P ∈ M1 : EP[Z] ≤ µ}.

The alternative hypothesis Q is that mean of Z is larger than µ. Two natural e-variables are Z/µ and the
constant one. All convex combinations of these are also e-variables; therefore,

(1− λ) + λ
Z

µ
, λ ∈ [0, 1], (2.8)
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is an e-variable for P. This construction works outside R+ as long as Z is bounded from below. An optimal
choice of λ against a specific Q is discussed in Section 6.7.4 in the case that Z is a bounded interval.

We can also consider the null hypothesis that the mean of Z is at most µ and the variance is at most σ2,

P = {P ∈ M1 : EP[Z] ≤ µ; varP(Z) ≤ σ2}.

In this case, because EP[Z2] ≤ µ2 + σ2 for P ∈ P, each of

(1− λ) + λ
Z2

µ2 + σ2
, λ ∈ [0, 1], (2.9)

is an e-variable for P, in addition to those in (2.8), as well as the mixtures of (2.8) and (2.9). If Z = R,
meaning that Z may take nonnegative values, then (2.9) is an e-variable for

{P ∈ M1 : EP[Z] = µ; varP(Z) ≤ σ2}. (2.10)

As a further example, suppose that we observe nonnegative data Z = (X1, . . . , Xn) with the same marginal
distribution P and possibly dependent components, and we wish to test whether P has a mean at most µ.
Then, (X1 + · · ·+Xn)/(nµ) is an e-value for any dependence structure of (X1, . . . , Xn), and does not require
making any distributional or independence assumption. An e-variable can be constructed similarly for the
case of testing the mean and variance. This example shows the advantage of e-values when it comes to
dependent data, and this will be further explored in Chapter 9.

2.6.4 Testing subGaussian means

Now take Z = R and consider the null hypothesis that the observation Z has a 1-sub-Gaussian distribution
with nonpositive mean. This class is a nonparametric generalization of Gaussians with nonpositive mean and
unit variance. Formally, we set

P =
{
P ∈ M1 : EP[eλZ−λ2/2] ≤ 1 for all λ ∈ [0,∞)

}
.

For P ∈ P and λ ∈ R, let MP(λ) = EP[eλZ ], which is the moment generating function of Z. The constraint in
P means

MP(λ) ≤ eλ
2/2, λ ≥ 0.

A Taylor expansion in a neighborhood of λ = 0 yields,

MP(λ) = 1 + λEP[Z] +
λ2

2
EP[Z2] + o(λ2);

eλ
2/2 = 1 +

λ2

2
+ o(λ2).

Therefore, for λ ≥ 0 small enough,

λEP[Z] +
λ2

2
EP[Z2] ≤ λ2

2
, (2.11)

and this implies EP[Z] ≤ 0.
Since the standard Gaussian distribution (zero mean, unit variance) satisfy the above with equality

(inferred via their moment generating function) for every real λ, the constraint expands the class to account
for two aspects: the mean can be negative, and the right tails of the random variable only have to be
lighter than that of a unit-variance Gaussian. It is well-known that any bounded distribution on [−1, 1] is
1-sub-Gaussian; so the class P clearly does not have any common reference measure, containing discrete
distributions with uncountable support as well as continuous unbounded distributions.

A class of e-variables for P is {eλZ−λ2/2 : λ ∈ [0,∞)}, and certainly any convex combinations of its
elements are also e-variables. The determination of the optimal e-variable against a specific Q is studied in
Section 6.7.5.
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The determination of all possible e-variables for P, E(P), is a nontrivial task. For example, consider the
very related null hypothesis that the observation Z has a 1-sub-Gaussian distribution with zero (instead of
nonpositive) mean:

P0 =
{
P ∈ M1 : EP[eλZ−λ2/2] ≤ 1 for all λ ∈ R

}
.

Every P ∈ P0 has zero mean, because now (2.11) holds for both positive and negative λ. Again, a natural
class of e-variables for P0 is {eλZ−λ2/2 : λ ∈ R}, and certainly any convex combinations of its elements are
also e-variables.

It turns out that every P ∈ P0 also has variance bounded by one, and this follows from (2.11) with
EP[Z] = 0. Thus, Z2 is also an e-variable, as is any convex combination with the aforementioned class.
Indeed, P0 is a subset of the hypothesis in (2.10) with µ = 0 and σ = 1, and also a subset of the one-sided
sub-Gaussian class P. However, Z2 is not an e-variable for P, because those could potentially have very
heavy left tails, meaning that their variance is not necessarily bounded.

2.6.5 Testing likelihood ratio bounds

Let Z be a general sample space. Let P0 be a fixed probability measure and γ ∈ [1,∞), and consider the null
hypothesis

P = {P ∈ M1 : dP/dP0 ≤ γ}

against an alternative Q ≪ P0. To interpret, testing P means to test whether the true data generating
distribution is close to a given benchmark distribution P0 in terms of likelihood ratio being bounded by γ.
The case γ = 1 corresponds to the simple null hypothesis {P0}.

Clearly, the likelihood ratio Z∗ = dQ/dP0 is not an e-variable for P unless γ = 1, but if we modify it to
E = Z∗/γ, then EP[E] ≤ γEP0 [Z∗/γ] ≤ 1. Hence, E = Z∗/γ is an e-variable for P . We can actually improve
this e-variable, as described below.

For any random variable Z, denote by qt(Z) = inf{x ∈ R : P0(Z ≤ x) ≥ 1 − t} for t ∈ (0, 1); that is,
t 7→ q1−t(Z) is the left quantile function of Z under P0. Let E∗ be a transform of the likelihood ratio given by

E∗ =
Z∗ ∨ z0

γ
,

where and z0 ≥ 0 is the largest constant such that∫ 1/γ

0

(qt(Z
∗) ∨ z0)dt = 1.

Clearly E∗ ≥ E. Let us verify that E∗ is an e-variable for P. This follows by noting that

sup
P∈P

EP[E∗] = γ

∫ 1/γ

0

qt(E
∗)dt =

∫ 1/γ

0

(qt(Z
∗) ∨ z0)dt = 1,

where the first equality is a classic result on risk measures; see (16.6) in Chapter 16. The optimality of the
e-variable E∗ is proved in Section 6.7.6.

2.6.6 Testing exchangeability

Let Z be arbitrary, and suppose Z = (Z1, . . . , Zn). Denote by Sn the set of all permutations of the set [n].
For any σ ∈ Sn, let Zσ denote the permuted vector (Zσ(1), . . . , Zσ(n)). Consider testing the null hypothesis
of exchangeability

P = {P : Z
d
= Zσ under P for all permutations σ},

where d
= denotes equality of distribution. Let Q be an alternative distribution of Z with density q, which is

not exchangeable, i.e., not in P.
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Let π be uniformly drawn from Sn, and let

E =
q(Z)

q(Zπ)
=

q(Z)
1
n!

∑
σ∈Sn

q(Zσ)
.

By exchangeablity, EP[E] = EP[q(Z)/q(Zπ)] = 1 for all P ∈ P, so E is an e-variable. The e-variable E has
the form of the soft-rank e-value in Section 1.6, where we use r = 0 and Rb = Lb = q(Zσ) for σ ∈ Sn. The
optimality of the e-variable E is proved in Section 6.7.7.

2.7 Betting interpretation of e-values

E-variables have a clear interpretation in terms of betting. An e-variable for P is a valid bet against P.
To elaborate, imagine two rational parties called Forecaster and Skeptic (here, by “rational” we mean that
they are risk-neutral, i.e., expected value maximizers). Forecaster claims that some P ∈ P describes the
distribution of a particular (currently unseen) outcome in a satisfactory way. Skeptic does not believe it and
would like to bet against Forecaster. The process is formalized using a statistical contract: Skeptic pays
one dollar up front, with the promise of getting S(ω) back if outcome ω ∈ Ω is observed (such a function
S : Ω → R+ must be specified by Skeptic; this is the bet). If the contract is accepted by Forecaster, they
receive a dollar, then the outcome ω is observed, and they pay Skeptic S(ω) dollars. When would Forecaster
accept the contract? When its terms are favorable to Forecaster. This happens when S is an e-variable,
because then Forecaster believes that they will make money by partaking in the contract. Naturally, if
Skeptic believes that Q describes the world better than P , they will suggest S only if EQ[S] > 1. Here S, the
e-variable, is the bet, while S(ω) is the e-value, also called the betting score.

P-values also have a betting interpretation, albeit a flawed one. The setup, continuing from above, goes
as follows. For every r ∈ (0, 1], Forecaster offers a contract priced at a dollar, which pays 1/r dollars if some
statistic of the data R is smaller than r, and nothing otherwise. When would Forecaster offer such a contract?
Only when R is a p-variable for P . Equivalently, we are really saying that if R is a p-variable, then 1{R≤r}/r
is an e-variable for any r ∈ (0, 1]; indeed R 7→ 1{R≤r}/r is a p-to-e calibrator (Chapter 2). In any case, the
allowable bets are indexed by r. Now, in this game, the realized p-value equals the smallest value of r at
which Skeptic would have received a profit, had they picked this particular, best, bet in advance.

The above betting interpretations demonstrates why (inverses of) e-values and p-values should not be
compared on the same scale: an e-variable is genuinely a valid bet, but a p-variable is not—the latter is
effectively “double dipping”. Wouldn’t we all like to have picked the best bet we could have in hindsight?
P-values are effectively doing that, but e-values are not. In short, p-values are more akin to hindsight-optimal
bets, potentially exaggerating evidence against the null. This fact helps to motivate the grids in Section 2.8
below.

2.8 Informal grids for realized e-values

In testing scientific hypotheses, thresholds for p-values are often chosen as 0.01 or 0.05 which correspond to
type-I errors controlled at these levels. The e-to-p calibrator e 7→ min(1/e, 1) implies that thresholds of 100
and 20 for e-values also have the above type-I error control. However, it is not recommended in practice to
directly use these thresholds as the conversion e 7→ min(1/e, 1) is typically wasteful. In Section 2.7, and also
in Section 4.1 later, we see that for a ∈ (0, 1), an e-value of 1/a carries more information than a p-value of a.

In order to judge how significant results of testing using e-values are, the type-I error, based on which
p-values are defined, may not be the desirable metric. Although there are no universally agreed thresholds to
use for e-values, the rule of thumb of Jeffreys, originally designed for likelihood ratios, may offer some insight,
as e-values are generalizations of likelihood ratios (for example, recall the result presented in Section 2.5). We
summarize this rule of thumb in Table 2.1. Our rough recommendation is to use e > 4 in place of p < 0.05
and e > 10 in place of p < 0.01, but one should keep in mind that these choices are quite arbitrary since
p-values and e-values do not have a one-to-one correspondence with each other.
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Because Jeffreys focused on likelihood ratios (or Bayes factors), the above rule of thumb applies well to
e-values that are obtained “naturally”, such as likelihood ratios or their generalizations in the subsequent
chapters. At the other extreme, for all-or-nothing e-variables (see Definition 3.4), such as E = 1{P≤α}/α for
some p-variable P , one should not refer to the grids in Table 2.1, because for such an e-variable, E = 10 is
equivalent to P ≤ 0.1. Finally, Section 6.6 draws deeper connections between e-values and Bayes factors, but
it builds on some more advanced material.

e-value level of evidence Shafer’s p-value
[0, 1) null hypothesis is supported (0.25, 1]
(1, 3.16) no more than a bare mention (0.0577, 0.25)
(3.16, 10) substantial (8.3×10−3, 0.0577)
(10, 31.6) strong (9.4×10−4, 8.3×10−3)
(31.6, 100) very strong (9.8×10−5, 9.4×10−4)
(100,∞] decisive [0, 9.8×10−5)

Table 2.1: Applying Jeffreys’s rule of thumb for likelihood ratios to e-values. For comparison, we also reported
Shafer’s p-value, which corresponds to the range of p via e = p−1/2 − 1 in (2.4). The boundary values can be
put in either of the two adjacent categories.

Bibliographical note

This chapter largely resembles results and concepts in various important papers on e-values, but also it
contains many results that are newly obtained for the book to make a coherent piece.

The example in Section 2.1 is based on Vovk and Wang [2023]. The concept of a calibrator in Section 2.3
dates back, at least, to Vovk [1993]; the admissibility results are in Vovk and Wang [2021]. Section 2.4 is
based on Ignatiadis et al. [2024b] and Ramdas and Manole [2024].

Among the examples in Section 2.6, exponential families and monotone likelihood rations were studied
by Grünwald et al. [2024a,b]. The testing symmetry example was first studied by Ramdas et al. [2020], with
follow-up work in Koning [2023b], Vovk and Wang [2024b], Larsson et al. [2025]. The bounded mean example
is a variant of one studied in Waudby-Smith and Ramdas [2024], revisited by Larsson et al. [2025]. The mean
and variance example was studied by Fan et al. [2024]. SubGaussian e-values were studied by Howard et al.
[2020], Ramdas et al. [2020], Larsson et al. [2025]. The exchangeability example was studied in Vovk [2021]
and Ramdas et al. [2022] in a sequential context. In the batch context, the soft-rank e-value was proposed
in the first arXiv preprint of Wang and Ramdas [2022] (but omitted in the journal version), and revisited
by Koning [2023b].

The grids in Section 2.8 can be found in [Jeffreys, 1961, Appendix B], with a variant proposed in Kass
and Raftery [1995].
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Chapter 3

Efficiency: E-values under the alternative
hypothesis

In Chapter 2 we focused only on the properties of the e-values under the null hypothesis. In this chapter, we
describe its desired properties under the alternative hypothesis. This requires the notions of powered tests
and e-values, e-power, and log-optimality.

3.1 Powered tests, e-values, and p-values

We first introduce the concept of power for tests and e-values. The power of a binary test ϕ against Q is
defined as the probability of rejecting the null hypothesis under the alternative Q. This concept can be
naturally generalized to non-binary tests as we present below.

Definition 3.1: Powered tests and e-values

The power of a test ϕ against an alternative Q is simply EQ[ϕ]. The type-II error (rate) of ϕ equals one
minus its power. When testing a null hypothesis P, a test ϕ is powered at level α against Q if

EP[ϕ] ≤ α for every P ∈ P and EQ[ϕ] > α for every Q ∈ Q,

and it is uniformly powered if further infQ∈Q EQ[ϕ] > α. An e-variable E is powered against Q if
EQ[E] > 1 for every Q ∈ Q, and it is uniformly powered against Q if infQ∈Q EQ[E] > 1.

Tests that are not powered can still be practically useful. For instance, the existence of powered tests
and e-variables requires that the alternative Q does not contain a “boundary point” of the null P, as shown
by Example 3.2 below. Nevertheless, although powered tests do not exist for testing H0 : µ < 0 against
H1 : µ ≥ 0 in that example, any powered test for testing H0 against H ′

1 : µ > 0 can still be useful to test H0

against H1 in practical applications.

Example 3.2

Suppose that iid data X1, . . . , Xn are sampled from N(µ, 1) with unknown µ. If we test H0 : µ ≤ 0
against H1 : µ > 0, then exp(X1 + · · ·+Xn − n/2) is a powered e-variable. But, if we test H0 : µ < 0
against H1 : µ ≥ 0, then there does not exist a powered e-variable (or test) because it is impossible to
have power against the boundary point 0.
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Proof of the claim in Example 3.2

Let pm be the probability density function of Xn = (X1, . . . , Xn) sampled from N(µ, 1)
with µ = −1/m, and let p0 be that of the case µ = 0. For any function f : Rn → R,
we have f(x)pm(x) → f(x)p0(x) pointwise in x as m → ∞. So Fatou’s lemma yields that∫
f(x)p0(x)dx ≤ lim infm

∫
f(x)pm(x)dx. When f(Xn) is chosen to be an e-variable (resp. level-

α test) for H0 : µ < 0, the right hand side equals 1 (resp. α), and the inequality above means that
f is also an e-variable (resp. level-α test) for the boundary point of µ = 0. Thus, every e-variable
(resp. level-α test) for H0 : µ < 0 is also an e-variable (resp. level-α test) for H0 : µ ≤ 0, or
in other words, it is powerless against the point µ = 0. However, one does exist if we omit 0
from the alternative — the aforementioned e-variable is again powered for H0 : µ < 0 against
H1 : µ > 0.

Remark 3.3. Example 3.2 and its proof demonstrate a more general phenomenon. When testing a parametric
model (like the one in the example), if the null hypothesis is an open subset of the parameter space, the
alternative is its complement, and densities exist and are continuous in the parameter, then powered tests
and e-variables do not exist.

Next, we discuss the natural connection between e-values and tests. Given any level-α binary test, one
can always reproduce its decision by combining an “all-or-nothing e-value” with Markov’s inequality, as we
explain (and generalize) below.

Definition 3.4: All-or-nothing e-variable

An e-variable E is called an all-or-nothing e-variable if E = 1A/c for some event A and c > 0.

All-or-nothing e-variables take on only two values: zero or 1/c for some c. Further, it is clear that A must
satisfy P(A) ≤ c for all P ∈ P. For such e-variables, Markov’s inequality at level c holds with equality, so
there is no loss in translating between e-values, tests, and p-values.

Fact 3.5: Equivalence between tests and bounded e-variables

For any α ∈ (0, 1), there is a one-to-one correspondence between [0, 1/α]-valued e-variables and level-α
tests. Specifically, for any α ∈ (0, 1], we can use the relationship

E = ϕ/α

to move between a level-α test ϕ and a corresponding e-variable E.
If ϕ is binary, then E is an all-or-nothing e-variable, which takes values in {0, 1/α}. In particular,

for any binary test ϕ that rejects the null hypothesis when a realized p-value is smaller than or equal to
α, ϕ can be expressed in terms of the all-or-nothing e-variable 1{P≤α}/α.

Thus, there exists a powered level-α binary test if and only if there exists a powered e-variable
taking values in {0, 1/α}. We will expand this observation to include p-variables in Theorem 3.8.

As a consequence of Fact 3.5, all binary tests based on p-values — routinely used in the sciences — can
be replicated using e-values. A non-binary test ϕ is usually provided with the interpretation that it outputs
a rejection with probability ϕ. In other words, one can convert a non-binary test ϕ to a binary test ϕ′ as
ϕ′ = 1{U≤ϕ}, where U is an independent uniform random variable on [0, 1]. This is closely related to the
randomized Markov’s inequality discussed in Section 2.4.

An e-variable E taking values in [0, 1/α] is associated with a level-α test ϕ = αE; in fact, it also yields a
level-β test for any β < α. A single e-variable yields a family of level-α tests (indexed by α), but in the other
direction, every level-α test yields a different e-variable.

The above discussion highlights an important conceptual point — e-values suffice for testing: If a problem
is testable (i.e., a powered test exists), then it is testable with e-values. This also applies to a notion of
powered p-variables, although it is conceptually slightly more complicated, as we define below.

VERSION SPRING BREAK, 2025
32



Definition 3.6: Powered p-values

For β ∈ (0, 1], a p-variable P is powered on [0, β] against Q if for every Q ∈ Q, we have Q(P ≤ t) ≥ t
for all t ∈ [0, β] and strict inequality holds for some t ∈ [0, β]. We say P is powered if the above holds
for β = 1; this means that P is strictly stochastically smaller than a uniform random variable on [0, 1]
under each Q ∈ Q.

For practical purposes, it is more than sufficient to consider β = 0.25, for example, as rejections via p-values
are always done at small levels. In the next section, we will connect powered tests, powered e-variables, and
powered p-variables.

3.2 A unified existence result

We sometimes make the following simple assumption:

There exists a random variable U uniformly distributed on [0, 1]

under every P ∈ P and Q ∈ Q, independent of any other random variables that are considered.
(U)

This assumption is very weak and is typically satisfied in all statistical applications.
Remark 3.7. To satisfy Assumption (U), it may be helpful to consider a lifted sample space Ω× [0, 1] from Ω
and product probabilities P× λ and Q× λ from P and Q, where λ is the Lebesgue measure. Then, choose U
with U(ω1, ω2) = ω2, and extend random variables X in the original space to the mappings (ω1, ω2) 7→ X(ω1),
so that U is independent of the other random variables that we consider.

With this assumption, we can formally connect the existence conditions of powered e-variables, powered
p-variables, and powered tests.

Theorem 3.8

Suppose that Assumption (U) holds. For testing P against Q (without restriction), the following are
equivalent:

(i) there exists a powered level-α test for some (or every) α ∈ (0, 1);

(ii) there exists a bounded powered e-variable;

(iii) there exists a powered on [0, β] p-variable for some (or every) β ∈ (0, 1);

(iv) there exists a powered p-variable.

In the directions (iv)⇒(i)⇔(ii), we do not need (U).

Proof.

The equivalence (i)⇔(ii) follows from Fact 3.5, noting that from a bounded powered e-
variable E we can construct another powered e-variable λE + (1− λ) for some λ ∈ (0, 1) that
has a smaller upper bound.

Next, we will prove in the route that (ii)⇒(iii)⇒(iv)⇒(ii), where (iii) is understood in “some
β” version. Clearly, the “every β” version of (iii) is stronger than its “some β” version, and
weaker than (iv).

(ii)⇒(iii): Let E0 be a bounded powered e-variable and take β ∈ (0, 1). Since E0 is bounded,
there exists λ ∈ (0, 1) such that E := λE0 + (1− λ) is bounded above by 1/β. Clearly, E is an
e-variable, and EQ[E] = EQ[λE0 + (1− λ)] > 1 for every Q ∈ Q. Let P = U/E, where U is in
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(U) and independent of E. By Corollary 2.9, P is a p-variable. To see that it is powered on
[0, β], we can check that, for t ∈ (0, β] and Q ∈ Q,

Q(P ≤ t) = Q(U ≤ tE) = EQ[(tE) ∧ 1] = EQ[tE] > t.

(iii)⇒(iv): Let P be a powered on [0, β] p-variable, U be in (U) independent of P , and P ′

be given by
P ′ = P1{P≤β} + (β + (1− β)U)1{P>β}.

Let S ∈ P ∪Q. For t ∈ (0, β], we have S(P ′ ≤ t) = S(P ≤ t). For t ∈ (β, 1), we have

S(P ′ ≤ t) = S(P ≤ t ∧ β) + S(β + (1− β)U ≤ t)S(P > β)

= S(P ≤ β) +
t− β

1− β
(1− S(P ≤ β))

= S(P ≤ β)

(
1− t− β

1− β

)
+
t− β

1− β
.

Note that if S(P ≤ β) = β then S(P ′ ≤ t) = t for t ≥ β. Putting these together, we get that for
t ∈ (0, 1), S(P ′ ≤ t) ≤ t if S ∈ P , and S(P ′ ≤ t) ≥ t if S ∈ Q. Moreover, S(P ′ ≤ t) > t for some
t ∈ (0, β] if S ∈ Q. Therefore, P ′ is a powered p-variable for P against Q.

(iv)⇒(ii): Let P be a powered p-variable, and

f : R+ → R+, f(x) = (2− 2x)+.

Note that
∫ 1

0
f(x)dx = 1 and f is a calibrator in Section 2.3. Define E = f(P ), which is an

e-variable for P . Moreover, for each Q ∈ Q, we have EQ[E] > 1 by the definition of the powered
p-variable P and the fact that f is strictly decreasing on [0, 1]. Therefore, E is bounded and
powered against Q.

Theorem 3.8 offers an equivalence between the existence conditions, but it is silent about how to check
such existence for given P and Q. This issue will be addressed in Section 3.4.

3.3 E-power and powered e-values

Given this high-level equivalence between tests and bounded e-values discussed in Fact 3.5, one may be
tempted to ask: What is new here? Are we just simply working with tests in disguise? The answer is
this: While all-or-nothing e-values are interesting conceptually in order to relate them to tests and p-values,
these are not typically how one would construct e-values in practice. Recall the example from Section 1 on
likelihood ratios. They will commonly have support on the entire positive real line (not just on two points),
and never take on the value zero if P and Q are absolutely continuous with respect to each other. To explain
this, the following concept of e-power is useful.

Definition 3.9: E-power

The e-power of an e-variable E against an alternative Q is EQ[logE], assuming that the expectation is
well-defined. An e-variable E has positive e-power against Q if EQ[logE] > 0 for each Q ∈ Q. It has
uniformly positive e-power against Q if infQ∈Q EQ[logE] > 0.

The e-power of an e-variable could equal ∞ or −∞ (these still count as being well-defined). Indeed,
whenever we make statements involving expected logarithms, we require them to be well-defined. The e-power
(higher is better) of all-or-nothing e-variables is −∞.
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The concept of e-power is closely related to the Kelly criterion in betting and investment. The logarithm
reflects the fact that in many applications, e-values are multiplied together. For a simplest example, consider
a sequence of iid e-variables E1, E2, . . . with finite e-power and the process M = (Mt)t∈N defined by
Mt =

∏t
s=1Es. The e-power of E1 against Q equals the asymptotic growth rate of M , that is, the Q-almost

sure limit of (logMt)/t as t→ ∞ (see Definition 7.3), justified by the law of large numbers. The asymptotic
growth rate will be important in the methodology of testing by betting, formally treated in Chapter 7. An
axiomatic justification of e-power is presented in Section 3.8.

Example 3.10

For testing P = N(0, 1) against Q = N(µ, 1) with n observations, the likelihood ratio e-value in (1.1)
is En =

∏n
i=1 exp(µXi − µ2/2). Its e-power is thus EQ[logEn] = nEQ[µX1 − µ2/2] = nµ2/2. This

e-variable has positive e-power against Q and the e-power grows linearly in n. Indeed, these two
properties hold for all likelihood ratio e-values with iid observations.

Let Qθ = N(θ, 1) for θ ∈ R. Noting that EQθ [logEn] = n(µθ − µ2/2), the e-variable En has positive
e-power against {Qθ : θ > ν} for ν ≥ µ/2 (uniformly if ν > µ/2), and it does not have positive e-power
against any Qθ with θ ≤ µ/2.

The condition EQ[logE] > 0 in Definition 3.9 is equivalent to saying that the geometric mean of X is
larger than one: expEQ[logE] > 1, which is a stronger constraint than requiring the (arithmetic) mean of E
to be larger than 1, that is, EQ[E] > 1 in Definition 3.1 (this can be seen from Jensen’s inequality). Hence, if
E has positive e-power, then E is a powered e-variable, but the reverse implication is not true in general.
These two conditions are closely related. Indeed, for a simple alternative Q, from any powered e-variable one
can easily find an e-variable with positive e-power, through the transform E 7→ 1− λ+ λE for some small
λ > 0 that depends on E and Q. This is formalized in the following result.

Theorem 3.11

Let X ≥ 0 be a nonnegative random variable. For any Q ∈ M1,

EQ[X] > 1 ⇐⇒ EQ[log(1− λ+ λX)] > 0 for some λ ∈ [0, 1]. (3.1)

In fact, either condition in (3.1) implies the existence of a bounded nonnegative Y with EQ[Y ] > 1 and
EQ[log(1− λ+ λY )] > 0. For a general Q ⊆ M1, if X is bounded or Q is finite, then

inf
Q∈Q

EQ[X] > 1 ⇐⇒ inf
Q∈Q

EQ[log(1− λ+ λX)] > 0 for some λ ∈ [0, 1]. (3.2)

As a consequence, for a finite Q, an e-variable with positive e-power against Q exists if and only if a
powered e-variable against Q exists.

Proof.

The backward direction in all statements does not require any conditions, and it follows
from a simple application of Jensen’s inequality, which yields

0 < EQ[log(1− λ+ λX)] ≤ logEQ[1− λ+ λX] =⇒ EQ[X] > 1.

For the forward direction, we first note that if Q is finite, then minQ∈Q EQ[X] > 1 implies
minQ∈Q EQ[X ∧K] > 1 for some K ≥ 1. Hence, we can without loss of generality assume that
X is bounded. It then remains to prove (3.2) in case X is upper bounded by some K > 1.

Write x+ = x∨0 and x− = (−x)∨0 for x ∈ R and denote by δ = infQ∈Q EQ[X]−1 > 0. Next,
fix any Q ∈ Q. Since EQ[(X−1)+]−EQ[(X−1)−] = EQ[X−1] ≥ δ > 0 and EQ[(X−1)−] ∈ [0, 1],
we have

EQ[(X − 1)+] ≥ EQ[(X − 1)−] + δ ≥ (1 + δ)EQ[(X − 1)−].
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Fix ε ∈ (0, 1) such that (1 + ε)/(1− ε) < 1 + δ, and let

η =

(
1

1 + ε
− 1

(1 + δ)(1− ε)

)
δ > 0.

Since EQ[(X − 1)+] ≥ δ > 0, we have

1

1 + ε
EQ[(X − 1)+]−

1

1− ε
EQ[(X − 1)−] ≥

(
1

1 + ε
− 1

(1 + δ)(1− ε)

)
EQ[(X − 1)+] ≥ η > 0.

Note that log(1+x) ≥ x/(1+ ε) for x ∈ [0, ε) and log(1+x) ≥ x/(1− ε) for x ∈ (−ε, 0), that is,

log(1 + x) ≥ x+
1 + ε

− x−
1− ε

for x ∈ (−ε, ε).

Hence, for λ ∈ (0, ε/K), implying λ(X − 1) ∈ (−ε, ε), we have

EQ[log(1 + λ(X − 1))] ≥ 1

1 + ε
EQ[λ(X − 1)+]−

1

1− ε
EQ[λ(X − 1)−] ≥ λη > 0.

Note that the choice of (λ, ε, η) does not depend on Q ∈ Q. Hence, by taking an infimum over
Q ∈ Q we complete the proof.

The forward direction in (3.2) fails if Q is infinite and X is unbounded. Below, we give an example
of an unbounded e-variable E satisfying infQ∈Q EQ[E] > 1 (that is, uniformly powered against Q), but
infQ∈Q EQ[log(1 − λ + λE)] < 0 for all λ ∈ (0, 1]. Moreover, this example also illustrates that a bounded
powered e-variable may not exist even if a uniformly powered e-variable exists.

Example 3.12

Let Ω = N0, P = (1/2)δ0 + (1/2)δ1 where δx is the point mass at x, and Q = {Qn : n ∈ N}, where
Qn = (1/n)δn + (1− 1/n)δ0.

(i) Let E be given by E(n) = 2n for n ∈ N0. This gives EP[E] = 1 and EQ[E] = 2 for all Q ∈ Q.
Thus, E is a uniformly powered e-variable, and it is unbounded. For any λ ∈ (0, 1], we have

EQn [log(1− λ+ λE)] =
1

n
log
(
(1− λ)n−1(1 + (2n− 1)λ)

)
.

Since (1−λ)n−1(1+(2n−1)λ) < 1 for n large enough, we know that infQ∈Q EQ[log(1−λ+λE)] < 0
for all λ ∈ (0, 1].

(ii) There does not exist any bounded e-variable that is powered against Q. To see this, for an
e-variable E to be powered against Q1, we have E(1) > 1. For E to be powered against Qn, we
need (1/n)E(n) + (1 − 1/n)E(0) > 1 for all n ∈ N. Since E is bounded, this means E(0) ≥ 1.
Together with E(1) > 1, we have EP[E] > 1, conflicting the fact that E is an e-variable for P.

Note that here P does not lie in Q, or even in its convex hull, but it does lie within its closed convex
hull, where the closure is taken with respect to the total variation (TV) distance (see Theorem 3.14
below). In particular, by sending n→ ∞, Qn approximates δ0 arbitrarily well in TV. Averaging δ0 with
Q1 yields P.

As hinted above, the e-power EQ[logE] may not always be well-defined, due to the unbounded nature
of the logarithm function. Moreover, there are some special (perhaps pathological) examples in which the
e-power, although well-defined, may be infinite, and does not have a useful interpretation. We give a stylized,
unrealistic, example here.

VERSION SPRING BREAK, 2025
36



Example 3.13

Let Y be a Pareto(1) random variable under Q, that is, Q(Y > x) = 1/x for x ≥ 1 (this distribution has
an infinite mean), and the distribution of Y under P be such that EP[exp(6− Y/100)] ≤ 1. Note that
for any two distributions F,G, we can always find P,Q such that a random variable Y is distributed as
F under P and G under Q.

The e-variable E for P given by
E = exp(6− Y/100)

satisfies EQ[logE] = EQ[6− Y/100] = −∞. We can easily compute

Q(E > 100) > Q(E > exp(5)) = Q(Y < 100) = 0.99.

Therefore, E has a high probability under Q to take large numbers (providing very strong evidence
against the null), although its e-power is −∞. If another e-variable E′ is identically distributed to 1/E
under Q, then Q(E′ > 1) = 1/600 but EQ[logE′] = ∞. Thus, E′ has more e-power than E (and any
e-variables with finite e-power), which may be regarded as counter-intuitive. Nevertheless, if we have
an infinite iid sequence E′

1, E
′
2, . . . following the same distribution as E′ under Q, then the product

Mn =
∏n
i=1E

′
i goes to ∞ Q-almost surely as n → ∞, due to the law of large numbers applied to

(logMn)n≥1, and this is consistent with Kelly’s criterion. A similar example in the sequential setting
will be discussed in Chapter 14.

3.4 Conditions on P and Q for the existence of powered e-variables

In this section, we address the existence of powered e-variables and p-variables by means of two characterization
results. These results connect the existence of p-variables and e-variables to the structure of the null and
alternative hypotheses, different from Theorem 3.8, which does not check discuss how to check the existence.
In these results, let L and M be two positive integers and we continue to assume (U) in Section 3.2.

The following result uses the total variation distance between sets of distributions, which we now define.
For any two distributions P,Q, define

dTV(P,Q) = sup
A

|P(A)−Q(A)|,

where the supremum is taken over all measurable sets A. Then, given two sets of distributions P,Q, we can
define

dTV(P,Q) = inf
P∈P,Q∈Q

dTV(P,Q).

The following result is closely connected to a classic theorem of Kraft [1955], proved by Le Cam in
private communication. The Kraft–Le Cam theorem states that for general P and Q (not necessarily finite)
that have a common reference measure, the following holds: for any ε ≥ 0, there exists a test ϕ such that
infQ∈Q EQ[ϕ]− supP∈P EP[ϕ] > ε if and only if the total variation distance between the closed convex hulls of
P and Q is greater than 2ε.

Theorem 3.14

For testing P against Q with a common reference measure, the following are equivalent:

(i) there exists a test ϕ such that infQ∈Q EQ[ϕ] > supP∈P EP[ϕ];

(ii) there exists a uniformly powered bounded e-variable E for P against Q;

(iii) dTV(Conv(P),Conv(Q)) > 0, where dTV denotes the total variation distance.
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Proof.

The equivalence of (i) and (iii) is by the Kraft-Le Cam theorem. Statement (ii) immediately
implies (i) because the definition of an e-variable implies that the right hand side of (i) is
bounded by one; since the e-variable is uniformly bounded, one transform it to a test by dividing
by this bound. So it only remains to establish that (i) implies (ii). First note that the right hand
side of (i) must be strictly larger than zero. This is because if ϕ equals zero P almost surely
for any P ∈ P, then it also equals zero almost surely for any Q ∈ Q because of the common
reference measure assumption, making the strict inequality in (i) impossible. Thus, using the ϕ
in (i), one can define

E =
ϕ

supP∈P EP[ϕ]
,

for which we see that (ii) holds, completing the proof.

If there is no common reference measure, then condition (iii) is not equivalent to the earlier ones. In
fact, even when Q = {Q} is simple, dTV(Conv(P),Q) > 0 does not imply the existence of a powered
e-variable. The appropriate condition actually involves an object called the bipolar of P, and is formally
presented in Theorem 6.10. Separately, note that when P and Q are finite, condition (iii) above reduces to
Conv(Q1, . . . ,QM ) ∩ Conv(P1, . . . ,PL) = ∅.

The existence of exact p-variables and e-variables is technically more advanced, and studied in Section 14.3,
where we obtain a similar result (Theorem 14.6) to Theorem 3.14.

3.5 Log-optimality and likelihood ratios

Next, we turn to the key concept of log-optimality for a simple alternative {Q}, which is defined essentially
via the comparison of e-power.

Definition 3.15: Log-optimality

When comparing two e-variables E1 and E2 for P against Q, E1 is said to have greater (resp. equal) e-
power than E2 if EQ[log(E2/E1)] ≤ 0 (resp. = 0). Moreover, E is called log-optimal if EQ[log(E′/E)] ≤ 0
for any other e-variable E′.

Definitions 3.9 and 3.15 are obviously connected. If the maximum e-power, defined as

max
E∈E

EQ[logE],

is finite, then the log-optimal e-variable maximizes the e-power, and the definition of log-optimality reduces
to saying EQ[logE′] ≤ EQ[logE]. The current definition allows the maximum e-power to be infinite, which
could occur even in simple cases such as testing a Gaussian against a Cauchy because the tails of the Cauchy
are much heavier than that of the Gaussian; see also Example 3.13. Note that EQ[log(E′/E)] ≤ 0 and
EQ[log(E′)] ≤ EQ[log(E)] are equivalent when E and E′ have finite e-power, but the two conditions are not
equivalent in general.

Proposition 3.16

For testing any P, a log-optimal e-variable against Q always exists and is Q-almost surely unique.

We do not prove the first part in this book, since the proof is quite technical, and defer the second part to
Chapter 6. However, in the case of a simple null hypothesis P with Q ≪ P, existence and uniqueness of the
log-optimal e-variable can be easily argued, as we will see in Theorem 3.17.
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In this section, we present an important result on the log-optimal e-values for a simple null hypothesis
P = {P} and a simple alternative Q = {Q}. We will assume that Q ≪ P. Let q and p represent the densities
of Q and P with respect to some reference measure L, by which we can write (dQ/dP)(x) = q(x)/p(x).

The classic Neyman–Pearson lemma for hypothesis testing states that when testing a simple null P against
a simple alternative Q, the most powerful level-α test involves thresholding the likelihood ratio. We now
present a result that can be seen as the e-analog of the Neyman–Pearson lemma. Importantly, we are not
interested in designing tests (which can be obtained via Markov’s inequality as discussed in Chapter 2), but
simply in designing e-variable that is log-optimal (as e-powerful as possible).

To prepare for the statement, define the Kullback-Leibler divergence between Q and P as

KL(Q,P) := EQ
[
log

dQ
dP

]
=

∫
q(x) log(q(x)/p(x))L(dx), (3.3)

where it is defined as ∞ if Q is not absolutely continuous with respect to P. Gibbs’ inequality, or the
Shannon-Kolmogorov information inequality, states that the Kullback-Leibler divergence between any two
distributions is nonnegative: KL(Q,P) ≥ 0. Further, equality holds if and only if P = Q.

Theorem 3.17

For testing P against Q with Q ≪ P, the (P-almost surely) unique log-optimal e-variable is the likelihood
ratio dQ/dP. Thus, the optimal e-power equals KL(Q,P), which could be infinite.

Proof.

Let S ≪ P be an arbitrary distribution. By Proposition 2.10, E := dS/dP covers all exact
e-variables. For our setting of a point null P, it suffices to consider exact e-variables E′ in
Definition 3.9, because any non-exact e-variable can be made strictly larger by multiplying it by
a constant larger than 1 (the inverse of its expected value under P).

We now argue that it suffices to consider S ≪ Q. Indeed, if S is not absolutely continuous
with respect to Q, then we can take its absolutely continuous part S∗, and define an e-variable
E∗ := dS∗/dP. Note that E = E∗ Q-almost surely, and thus they have the same e-power, but
E∗ is not exact, so we do not need to consider either E or E∗.

Thus it suffices to consider e-variables E = dS/dP, where S ≪ Q ≪ P. By direct substitution,

EQ
[
log

E

dQ/dP

]
=

∫
q(x) log

(
s(x)/p(x)

q(x)/p(x)

)
L(dx) = −

∫
q(x) log

(
q(x)

s(x)

)
L(dx) ≤ 0,

where the inequality follows from the fact that KL(Q,S) ≥ 0. This shows that dQ/dP is
log-optimal. Uniqueness follows from the fact that the inequality holds as an equality only when
S = Q, so E = dQ/dP Q-almost surely, and EP[dQ/dP] ≤ EP[E] ≤ 1 = EP[dQ/dP] forces E to
be unique P-almost surely. This completes the proof of the first claim. The second claim follows
by simply plugging in q(x)/p(x) into the definition of e-power.

Example 3.18

Continue the setting of testing P = N(0, 1) against Q = N(µ, 1) with n observations in Example 3.10.
Consider the e-variable En(θ) =

∏n
i=1 exp(θXi − θ2/2) for some θ ∈ R that is not necessarily equal to

µ. Its e-power is EQ[logEn(θ)] = nEQ[θX1 − θ2/2] = n(θµ− θ2/2). Simple algebra yields that θ = µ
gives the largest e-power, confirming the implication of Theorem 3.17.

In Chapter 6, we present a more general result encompassing Theorem 3.17, which even relaxes the
assumption Q ≪ P.
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3.6 Conditional log-optimality and log-optimal calibrators

In statistical applications, e-variables and p-variables are constructed based on available data, and thus they
belong to a σ-algebra G ⊆ F generated by the data. With this restriction, we need to consider the log-optimal
e-variable with respect to G, that is, an e-variable E measurable respect to G that satisfies EQ[log(E′/E)] ≤ 0
for all e-variables E′ that are measurable respect to G. In what follows, for P ∈ M1, P|G is the restriction of
P to G, that is, P|G(A) = P(A) for A ∈ G.

Proposition 3.19

Let G be a sub-σ-algebra of F . If Q ≪ P, then the log-optimal e-variable for testing P against Q with
respect to G exists and is given (P-almost surely uniquely) by

E =
dQ|G
dP|G

= EP
[
dQ
dP

| G
]
. (3.4)

The first equality in (3.4) remains true if we assume Q|G ≪ P|G instead of Q ≪ P.

Proof.

The first equality in (3.4) follows directly from Theorem 3.17, by restricting the problem to
the smaller measurable space (Ω,G). The second equality in (3.4) follows from, for any A ∈ G,∫

A

dQ
dP

dP = Q(A) = Q|G(A) =
∫
A

dQ|G
dP|G

dP|G =

∫
A

dQ|G
dP|G

dP,

and therefore dQ|G/dP|G is the conditional expectation of dQ/dP on G.

A direct consequence of Proposition 3.19 is the log-optimal calibrator. Suppose that we know a p-variable
P is uniformly distributed on [0, 1] under P; thus it is exact. For a given simple alternative Q, we can define
the log-optimal calibrator, that is, a calibrator f such that

EQ[log(f(P )/g(P ))] ≤ 0

for any other calibrator g. In other words, f(P ) is the log-optimal e-variable among all possible e-variables
that are calibrated from P .

Corollary 3.20

Let P be an exact p-variable testing P against Q ≪ P. Assume that EP[dQ/dP | P ] is decreasing in P .
Then the log-optimal calibrator exists and it is given (almost everywhere uniquely) by

f(P ) = EP
[
dQ
dP

| P
]

and f = 0 on (1,∞).

Proof.

Clearly,
∫ 1

0
f(u)du = EP[f(P )] = EP[dQ/dP] = 1, and f is decreasing, so it is a calibrator.

Its optimality follows from Proposition 3.19.

VERSION SPRING BREAK, 2025
40



3.7 Asymptotic log-optimality: methods of mixtures and plug-in

Consider now the case of testing a simple null hypothesis P against a composite alternative Q. It is easiest to
think about the case where all the distributions involved are iid product probability measures, in which case,
with only a slight overload of notation, we can let P and Q ∈ Q refer to the distributions of each individual
observation, and let these be associated with densities p and q.

Let the data be represented by a vector Xn. A reasonable objective is that of asymptotic log-optimality.
Here, the goal is to define a sequence of e-variables En = E(Xn) such that for any Q ∈ Q,

lim
n→∞

EQn

[logEn]

n
→ KL(Q,P). (3.5)

The right hand side of the above expression is the e-power of an oracle that knows which alternative
distribution is generating the data. If the above inequality holds, our e-variable is able to asymptotically
achieve the same e-power without this knowledge.

There are two broad classes of methods that do achieve these goals under weak assumptions (that we do
not expand on here): the mixture and the plug-in methods.

Mixture method. Pick a mixture distribution ν over Q, and define the e-variable

En =

∫ n∏
i=1

q(Xi)

p(Xi)
ν(dq). (3.6)

Note the order of integral and product: we are calculating the mixture over likelihood ratios. The key
limitation to applicability of this method is that the mixture integral should be analytically or computationally
easy to compute.

Plug-in method. Let Qi−1 ∈ Q be picked based on the first i− 1 observations, and let qi−1 be its density.
Define

En =

n∏
i=1

qi−1(Xi)

p(Xi)
. (3.7)

It is not hard to check that En is an e-variable.
It is possible to prove the asymptotic log-optimality (3.5) of the above methods under some rather weak

assumptions, but we omit these details. We only make some informal remarks here, which are still useful for
the practitioner. For asymptotic log-optimality of the mixture method, it is necessary that ν has full support
over Q; for parametric problems with finite dimensional alternatives, this condition is often sufficient as well.
For the plug-in method, a sensible choice of Qi−1 is the posterior mean of Q ∈ Q after seeing Xi−1, when
starting with prior ν. If the mixture method with ν is asymptotically log-optimal, then one would typically
expect the aforementioned plug-in method to also have the same property.

The mixture method is also useful for composite nulls. Here we give an explicit example without derivation.

Example 3.21: T-test

Consider the standard t-testing situation with P = {N(0, σ2) : σ > 0} and Q = {N(µ, σ2) : σ > 0, µ ̸= 0}
(elements of P and Q are the marginal distributions). Suppose we observe n iid observations X1, . . . , Xn

from some P ∈ P ∪Q. Let Sn =
∑n
i=1Xi and Vn =

∑n
i=1X

2
i . Then for any c > 0,√

c2

n+ c2

(
(n+ c2)Vn

(n+ c2)Vn − S2
n

)n/2
is an e-variable for P that satisfies (3.5) for Q.
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3.8 Axiomatic justification of the e-power

In this section we justify the definition of e-power in Definition 3.9 through an axiomatic approach.
Let X be the set of all nonnegative random variables that are bounded from above and away from 0.

We will restrict our consideration of e-power on X to avoid issues with infinity, and it can be naturally
extended to the set of all nonnegative random variables. As standard in the axiomatic approach in decision
theory, axioms become weaker when they are formulated on a smaller set of objects, making the axiomatic
characterization results stronger. Therefore, our restriction to X is harmless.

Let M1 be the set of all probability measures on (Ω,F). We will fix the alternative hypothesis Q ∈ M1,
which is an atomless probability measure. The requirement of Q being atomless is only used to justify the
existence of a non-degenerate iid sequence.

In general, e-variables for the null hypothesis P may be arbitrarily distributed under the alternative
hypothesis Q, and the e-power is a concept concerning the performance of an e-variable under the alternative
hypothesis. Therefore, the choice of the null hypothesis P is irrelevant for defining e-power.

For this reason, without loss of generality, we directly consider the candidates for the e-power as mappings
ΛQ : X → R, without specifying that e-variables need to satisfy EP[E] ≤ 1 for P ∈ P.

For ΛQ to represent the e-power under Q, the natural interpretation of ΛQ(E1) > ΛQ(E2) is that E1

is considered as more powerful than E2. We keep this important interpretation in mind in the following
discussions.

Suppose that a statistician has designed a two-stage experiment, and observes an e-value of e0 at the first
stage. She needs to choose between two e-variables E1 and E2 at second stage. If E1 is more powerful than
E2, then she should choose E1 over E2. However, the effective e-variables to compare in procedure are e0E1

and e0E2. Hence, there should be a consistency between the pair (E1, E2) and the pair (e0E1, e0E2), which
is formalized by the following axiom.

Axiom 3.22: Homogeneity

If ΛQ(E1) ≥ ΛQ(E2), then ΛQ(e0E1) ≥ ΛQ(e0E2) for any constant e0 > 0.

The second axiom concerns the design of e-variables in an asymptotic sense. It states that, to choose
between two configurations of iid e-variables, if the product e-process of less powerful configuration has
asymptotic power 1, then that from the more powerful configuration should also has asymptotic power 1.
This axiom reflects the consideration of the Kelly criterion, which we mentioned in Section 3.3.

Axiom 3.23: Asymptotic consistency

Suppose that (En)n∈N and (E′
n)n∈N are two iid sequences of nonnegative random variables under Q. If

ΛQ(E1) ≥ ΛQ(E′
1), then for any α ∈ (0, 1), as n→ ∞,

Q

(
n∏
t=1

E′
t ≥

1

α

)
→ 1 =⇒ Q

(
n∏
t=1

Et ≥
1

α

)
→ 1.

It turns out that Axioms 3.22 and 3.23 are sufficient to jointly characterize the e-power, which has the
form EQ[logE] as we saw in Definition 3.9.

Theorem 3.24

Given an atomless probability measure Q ∈ M1, a mapping ΛQ : X → R satisfies Axioms 3.22 and 3.23
if and only if it can be represented by

ΛQ(E) = f(EQ[logE]), E ∈ X

for some strictly increasing function f .

VERSION SPRING BREAK, 2025
42



Proof.

It is straightforward to verify that E 7→ EQ[logE] satisfies the two axioms; Axiom 3.23 can
be checked with the strong law of large numbers. Clearly, a strictly increasing transform does
not matter for the two axioms. Hence, E 7→ f(EQ[logE]) also satisfies the two axioms.

Now we show the “only if” direction. We first suppose for the purpose of contradiction that
there exist E,E′ such that

ΛQ(E) > ΛQ(E′) and EQ[logE] < EQ[logE′]. (3.8)

Using Axiom 3.22, we can find some c > 0 such that

ΛQ(cE) > ΛQ(cE′) and EQ[log(cE)] < 0 < EQ[log(cE′)]. (3.9)

Using Axiom 3.23, for the iid sequence (En)n∈N distributed as cE and the iid sequence (E′
n)n∈N

distributed as cE′, the strong law of large numbers and (3.9) together imply log
∏n
t=1Et → −∞

and log
∏n
t=1E

′
t → ∞ in Q. This violates Axiom 3.23. Hence, (3.8) does not hold. This implies

ΛQ(E) > ΛQ(E′) =⇒ EQ[logE] ≥ EQ[logE′]. (3.10)

Equivalently,
ΛQ(E) ≤ ΛQ(E′) ⇐= EQ[logE] < EQ[logE′]. (3.11)

Using (3.11), we know that c 7→ ΛQ(cE) is increasing on (0,∞) for each E ∈ X .
Suppose for the purpose of contradiction that there exist E,E′ ∈ X such that

ΛQ(E) > ΛQ(E′) and EQ[logE] = EQ[logE′]. (3.12)

Using Axiom 3.22, we have from (3.12), for any c > 0, ΛQ(cE) > ΛQ(cE′). Note that for
any λ < 1, we have, from (3.11), ΛQ(λcE) ≤ ΛQ(cE′), because EQ[log(λcE)] < EQ[log(cE′)].
Hence, λ 7→ ΛQ(λcE) is discontinuous at λ = 1 for all c > 0. This implies that c 7→ ΛQ(cE) is
discontinuous everywhere, a contradiction to the fact that this mapping is monotone and hence
has bounded variation. Therefore, (3.12) does not hold, and by (3.10), we have

ΛQ(E) > ΛQ(E′) =⇒ EQ[logE] > EQ[logE′].

This, together with (3.10), shows that ΛQ and X 7→ EQ[logX] generate the same ordinal relation,
and hence the representation holds.

Theorem 3.24 implies that if Axioms 3.22 and 3.23 are reasonable for a notion of e-power, then the only
possible way to quantify the e-power is to use a strictly increasing transform of EQ[logE], which generates
the same order as using EQ[logE] directly. Therefore, this result theoretically justifies the use of EQ[logE] as
e-power in Definition 3.9. It also shows what the e-power essentially guarantees: It is the most suitable when
considering the product e-value with asymptotic consistency.

We can easily extend the mapping ΛQ to the set of all nonnegative random variables, provided that
EQ[logE] is well-defined, that is, at least one of EQ[(logE)+] and EQ[(logE)−] is finite.

In what follows, we let
ΛQ : X 7→ EQ[logX]

for any nonnegative random variable X. We treat ΛQ(X) as undefined if EQ[logX] is not well-defined. The
next proposition gives some convenient properties of ΛQ.
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Proposition 3.25

Let E be an e-variable.

(i) If ΛQ(E) > 0, then ΛQ(1− λ+ λE) > 0 for all λ ∈ (0, 1].

(ii) If ΛQ(E) ≥ 0, then ΛQ(1− λ+ λE) ≥ 0 for all λ ∈ [0, 1].

(iii) ΛQ(1− λ+ λE) is always well-defined for λ ∈ [0, 1).

(iv) If ΛQ(E) <∞, then ΛQ(1− λ+ λE) ∈ R for all λ ∈ [0, 1).

Proof.

For (i), it suffices to note that f : λ 7→ ΛQ(1+λ(E−1)) is concave with f(0) = 0 and f(1) > 1.
This implies f(λ) > 0 for all λ ∈ (0, 1]. The case of (ii) is similar. Part (iii) follows by noticing
that 1−λ+λE is bounded away from 0, and hence EQ[(log(1−λ+λE))−] <∞. Part (iv) follows
from EQ[(log(1− λ+ λE))+] ≤ EQ[(logE)+] <∞, which holds by noting Q(log(1− λ+ λE) >
x) ≤ Q(logE > x) for x > 0, together with the observation EQ[(log(1− λ+ λE))−] <∞ in (iii).

Bibliographical note

The connection between tests and bounded e-variables described in Fact 3.5 was discussed in Koning [2024]
in detail. The e-power in Section 3.3 is formally defined in Vovk and Wang [2024b]. Example 3.13 was
discussed in Wang [2024]. The notion of log-optimality was proposed by Kelly [1956] in the context of betting
and investment. Theorem 14.6 in Section 3.4 was proved in Zhang et al. [2024] using tools from optimal
transport theory, and with a weaker assumption than (U), called joint non-atomicity, which does not require
randomization. Larsson et al. [2025] showed the existence and uniqueness of a log-optimal e-variable with no
conditions on P,Q. The result in Section 3.5 essentially dates back to Breiman [1961], though its presentation
here mirrors that in Shafer [2021]. The mixture and plug-in methods to handle composite alternatives, as
presented in Section 3.7, are very well known; in fact, both ideas were already mentioned by Wald [1947].
Later, Robbins and Siegmund [1974] derived some strong connections between these methods. The t-test
e-variable is derived and studied in, for example, Lai [1976], Pérez-Ortiz et al. [2024], and Wang and Ramdas
[2025]. The asymptotic optimality of the method of mixtures is strongly related to information theoretic
topics such as redundancy and description length, and many more such optimality results can be inferred
using a plethora of results on the latter topic in Grünwald [2007].
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Chapter 4

Post-hoc testing and decision making
with e-values

In this chapter, we study e-values in the context of post-hoc testing and decision making and compare them
with p-values. The post-hoc setting allows for either the risk level, the possible set of decisions, or the risk
constraint to depend on the data that are used for the decision. It also allows for future data collection and
experiment design to depend on previously collected data. The main message is that e-values play a central
role in the post-hoc testing and decision problems.

4.1 Testing at data-dependent error levels

Recall that a level-α test for P is defined to be a function ϕ such that EP[ϕ] ≤ α for every P ∈ P. As
presented so far, the type-I error level α has to be a predefined constant. However, e-variables do yield a
generalized form of error control when testing at data-dependent error levels α̂ that could be arbitrarily
dependent on the e-variable. A natural way to incorporate random α̂ is through a uniform generalization of
the constraint EP[ϕ/α] ≤ 1, although there may be other ways to define post-hoc validity.

Definition 4.1: Post-hoc valid tests and p-values

A post-hoc valid family of tests for P is a collection of tests (ϕα)α∈(0,1) such that for every P ∈ P, and
for every random variable α̂ taking values in (0, 1), we have EP [ϕα̂/α̂] ≤ 1. Equivalently, we require that

EP

[
sup

α∈(0,1)

ϕα
α

]
≤ 1 for all P ∈ P.

A post-hoc p-variable for P is a nonnegative random variable P such that for every P ∈ P , and for every
random variable α̂ taking values in (0, 1), we have EP [1{P≤α̂}/α̂

]
≤ 1. Equivalently, we require that

EP

[
sup

α∈(0,1)

1{P≤α}

α

]
≤ 1 for all P ∈ P.

Clearly, in Definition 4.1, each member ϕα of a post-hoc valid family of tests is itself a level-α test for any
fixed α ∈ (0, 1), and P is itself a p-variable. It is clear that for a post-hoc p-variable P , (1{P≤α})α∈(0,1) is a
post-hoc valid family of binary tests; this is not true for a usual p-variable. Moreover, it does not hurt to
require a post-hoc valid family (ϕα)α∈(0,1) of tests to be increasing (that is, ϕα is increasing in α), because
replacing ϕα with supβ≥α ϕβ does not affect its post-hoc validity.

We say that a post-hoc valid family (ϕα)α∈(0,1) of tests is dominated by another family (ϕ′α)α∈(0,1) if
ϕα ≤ ϕ′α for all α ∈ (0, 1). Intuitively, a dominated family is less useful than a dominating family, because
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the latter rejects at least as often as the former. In the next result, we will see testing with e-variables is
essentially the only useful way of constructing post-hoc valid families of (binary) tests.

Proposition 4.2

For an e-variable E for P, the collection ((αE) ∧ 1)α∈(0,1) is a post-hoc valid family of tests and the
collection (1{E≥1/α})α∈(0,1) is a post-hoc valid family of binary tests.

Conversely, every post-hoc valid family of tests is dominated by ((αE)∧ 1)α∈(0,1) for some e-variable
E for P, and every post-hoc valid family of binary tests is dominated by (1{E≥1/α})α∈(0,1) for some
e-variable E for P.

Proof.

It is elementary to verify

1{x≥1} ≤ x ∧ 1 ≤ x for x ≥ 0, (4.1)

which can be used to show Markov’s inequality. Using (4.1), for any α̂ taking values in (0, 1),
we have

EP
[
1{E≥1/α̂}

α̂

]
≤ EP

[
(α̂E) ∧ 1

α̂

]
≤ EP

[
α̂E

α̂

]
= EP [E] ≤ 1.

This shows that both (1{E≥1/α})α∈(0,1) and ((αE) ∧ 1)α∈(0,1) are post-hoc valid families of
tests.

For the converse claims, let (ϕα)α∈(0,1) be a post-hoc valid family of tests, and let E =
supα∈(0,1) ϕα/α. By the definition of post-hoc validity, E is an e-variable for P. Moreover,
ϕα ≤ (αE) ∧ 1 by definition, showing the first converse claim. If members of (ϕα)α∈(0,1) are
binary, then {ϕα = 1} ⊆ {E ≥ 1/α} for every α ∈ (0, 1). Therefore, ϕα ≤ 1{E≥1/α}, showing
the desired dominance in the second converse claim.

It is important that in Proposition 4.2, the same e-variable E is used to construct all members in a
post-hoc valid family of tests. The next result gives an intimate connection between post-hoc p-variables and
e-variables.

Proposition 4.3

For a random variable P , the following are equivalent:

(i) P is a post-hoc p-variable for P;

(ii) P = 1/E on the event P < 1 for some e-variable E for P;

(iii) P ≥ (1/E) ∧ 1 for some e-variable E for P.

Proof.

To see (i)⇒(ii), first note that P(P = 0) = 0 for all P ∈ P, since P is a p-variable for P.
Let E = (1/P )1{P<1} and α̂ = P1{P<1} + β1{P≥1} for some β ∈ (0, 1). We have that α̂ is
(0, 1)-valued (P-almost surely for every P ∈ P) and {P < 1} = {P ≤ α̂}. Therefore,

EP[E] = EP
[
1

P
1{P<1}

]
= EP

[
1

P1{P<1}
1{P≤α̂}

]
= EP

[
1

α̂
1{P≤α̂}

]
≤ 1 for all P ∈ P,

where the last inequality follows from the definition of the post-hoc p-variable. Hence, E is an
e-variable, and clearly P = 1/E when P < 1. The direction (ii)⇒(iii) is immediate. Finally, the
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direction (iii)⇒(i) follows from

EP

[
sup

α∈(0,1)

1{P≤α}

α

]
≤ EP

[
sup

α∈(0,1)

1{(1/E)∧1≤α}

α

]
= EP

[
sup

α∈(0,1)

1{1/E≤α}

α

]
≤ EP[E] ≤ 1

for all P ∈ P, where the penultimate inequality is due to (4.1).

There is a small variation of the result in Proposition 4.3, further connecting post-hoc p-values and
e-values. If we change the range of α from (0, 1) to (0,∞), that is, using the stronger requirement

EP

[
sup

α∈(0,∞)

1{P≤α}

α

]
≤ 1 for all P ∈ P (4.2)

in the definition of a post-hoc p-variable P , then a post-hoc p-variable would be precisely 1/E for some
e-variable E, following the same argument in the proof of Proposition 4.3.

From Proposition 4.3, it is immediate that (1/E) ∧ 1 is a post-hoc p-variable; so is 1/E, which may take
value larger than 1 (recall that we allow p-variables and post-hoc p-variables to take values larger than 1).
Using the same result, an admissible (i.e., not dominated by another) post-hoc valid family (ϕα)α∈(0,1) of
binary tests can always be written as

ϕα = 1{P≤α} for α ∈ (0, 1),

for some post-hoc p-variable P . In other words, a post-hoc p-variable is the smallest level that the associated
admissible post-hoc family of binary tests can reject the null hypothesis. P-values are sometimes said to
equal the smallest level at which one could have rejected the null, had that level been fixed in advance. Our
preceding discussion implies that the italicized text can be ignored for post-hoc p-variables, but in some
scientific research it is also ignored for usual p-variables, leading to misuse or misterpretation of p-values.

The connection between 1/E and post-hoc p-variables also illustrates that it is unfair to directly compare
the value of 1/E for an e-variable with the value of a usual p-variable P , as the former offers a stronger type
of guarantee: post-hoc validity in the sense of Definition 4.1.

To interpret this stronger validity, compare the situations that we observe an e-value E = 25 versus a
p-value P = 0.04 on the same hypothesis. We can safely say (in the sense of Definition 4.1) that we reject the
null hypothesis based on E at level 0.05 (and even at 0.04), but it would not be statistically valid to say
that we can reject based on P at level 0.05, unless this level was pre-specified before collecting and seeing
data. Indeed, one cannot claim rejection at level 0.05 even if one observes P = 0.0001, if the level 0.05 is
not pre-specified. The procedure of first seeing P and then specifying the significance level is a statistical
malpractice, but it appears often in published studies. For instance, in many papers in the social sciences,
first p-values are computed (sometimes on many different configurations of regression analysis) and then they
are marked with asterisk signs to indicate at which levels they can reject the corresponding null hypothesis.
For such a purpose, e-values (or post-hoc p-values) are the right tool to use, instead of the usual p-values. To
re-emphasize, an e-value equal to 1/a carries more information than a p-value equal to a for a ∈ (0, 1); see
Section 2.8 for more discussions on comparing these values.

4.2 Post-hoc decisions using p-values and e-values

In this section, we show that e-value-based decision rules naturally appear in the context of post-hoc decisions,
in a similar way to Section 4.1 but with a different motivation and interpretation. We consider a framework
of decision making that is more general than standard hypothesis testing, which concerns binary decisions of
acceptance and rejection.

Consider a class of loss functions Lb : {0, 1} ×Db → R indexed by scenarios b ∈ B ⊆ R, where Db ⊆ N0

represents the set of possible decisions. (It may be instructive to first consider B ⊆ N0 for simplicity.) The
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value Lb(0, d) represents the loss to the decision maker with decision d ∈ Db when the null hypothesis P is
true; the value Lb(1, d) represents a loss to the decision maker with decision d ∈ Db when the alternative
hypothesis is true. The decision maker knows the losses and the scenario.

Without loss of generality, we assume that

1. d 7→ Lb(0, d) is strictly increasing, and

2. d 7→ Lb(1, d) is strictly decreasing.

This assumption is harmless because we can discard all decisions d′ with Lb(0, d′) ≥ Lb(0, d) and Lb(1, d′) ≥
Lb(1, d) for some δ, because d′ will never be better than d. After discarding these decisions, we can rearrange
the decisions according to an increasing order of Lb(0, d). (When b varies, we can do this for each b.)
Intuitively, one can interpret a larger d as a more aggressive decision, and the above assumption means that
as d increases, there is more loss to the decision maker if the null is true, and there is more gain to the
decision maker if the alternative is true (see Example 4.4 below).

The dataset is represented by a random vector X taking values in a set Z (e.g., Rn), and δ(X) ∈ Db is
the decision made based on the data X. When we allow b to vary, δ will also depend on b. The rest of this
section will show:

• For binary decision spaces and data-independent scenarios, p-values can safely be used to make decisions.

• In non-binary decision problems or in settings where the scenario could be data-dependent, decisions
based on p-values do not yield the desired risk guarantee, but those based on e-values do.

For the sake of illustration, we assume Q = {Q} in this section, that is, a simple alternative. The problem
can be easily generalized using a composite Q, by considering a more general objective in the optimization,
which is not essential to our discussion below.

4.2.1 Decision rules based on p-values and e-values

Given a fixed scenario b ∈ B, the decision maker’s problem is

to minimize EQ[Lb(1, δ(X))]

over δ : Z → Db

subject to sup
P∈P

EP[Lb(0, δ(X))] ≤ β,

(4.3)

where β > 0 is a pre-specified risk budget, and the constraint in (4.3) is called a risk constraint. The scenario
b will be allowed to depend on the data later.

Example 4.4: Ternary significance decisions are common scientific practice

A practical example in scientific research in the above framework is to assign a label from “non-significant
(NS), significant (S), very significant (VS)” to the test result after seeing data. In our notation, it is
Db = {0, 1, 2}, with 0 representing NS, 1 representing S, and 2 representing VS. If the null hypothesis is
true, then making the decision NS has the least loss. If the alternative hypothesis is true, then making
the decision VS has the least loss. A common choice is to set β = 1, Lb(0, 0) = 0, Lb(0, 1) = 1/α1 and
Lb(0, 2) = 1/α2 for some 0 < α2 < α1 < 1, and the values Lb(1, δ) depend on the actual problem.

We define two potential approaches based on p-values and e-values. Suppose that a p-variable P (X) and
an e-variable E(X) for P are computed from the data. The decision δP based on the p-value is given by

δP (X) = max{d ∈ Db : P (X)Lb(0, d) ≤ β}. (4.4)

The decision δE based on the e-value is given by

δE(X) = max{d ∈ Db : Lb(0, d) ≤ βE(X)}. (4.5)
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Example 4.5: Significance decisions based on p-values and e-values

In the context of Example 4.4, the p-value based decision rule in (4.4) yields δP (X) = 1 (significant) if
α2 < P (X) ≤ α1 and δP (X) = 2 if P (X) ≤ α2 (very significant); otherwise δP (X) = 0 (non-significant).
This is a common practice in scientific research, but it does not satisfy the risk control in (4.3) as shown
in Example 4.9 below.

The e-value based decision rule in (4.5) yields δE(X) = 1 if 1/α1 ≤ E(X) < 1/α2 and δE(X) = 2 if
E(X) ≥ 1/α2; otherwise δE(X) = 0. This decision rule always satisfies the risk control in (4.3); see
Theorem 4.8.

4.2.2 Binary decisions in fixed scenarios

For now, consider the simplest case Db = {0, 1}, that is, the case of binary decisions, where 0 represents the
decision of accepting the null hypothesis, and 1 represents the decision of rejecting the null hypothesis. Without
loss of generality, the loss function can be specified by Lb(0, 0) = Lb(1, 1) = 0 and Lb(0, 1) = Lb(1, 0) = 1
(this is without loss of generality because of the monotonicity assumed above). In this case, (4.3) becomes

to maximize Q(δ(X) = 1)

over δ : Z → {0, 1}
subject to sup

P∈P
P(δ(X) = 1) ≤ β,

(4.6)

which is the standard problem of maximizing power while keeping type-I error control β.
In the context of binary decisions in (4.6), the p-value-based decision rule means choosing δP (X) = 1 if

P (X) ≤ β and choosing δP (X) = 0 if P (X) > β; thus, it is the standard way in which p-values are used
in decision making (see also Example 4.5). The e-value-based decision rule means choosing δE(X) = 1 if
E(X) ≥ 1/β and choosing δE(X) = 0 if E(X) < 1/β.

Proposition 4.6

Given a fixed scenario b with Db = {0, 1}, both δP in (4.4) and δE in (4.5) satisfy the risk constraint in
(4.6).

Proof.

To see that δP is feasible for problem (4.6), we note that for P ∈ P,

EP[Lb(0, δP (X))] = P(δP (X) = 1) = P(P (X) ≤ β) ≤ β.

To see that δE is feasible for problem (4.6), we note that for P ∈ P,

EP[Lb(0, δE(X))] ≤ EP[βE(X)] ≤ β.

Since 1/E(X) is a p-variable (Section 2.1), the e-value-based approach is typically more conservative than
the p-value-based approach. In Section 4.2.3, we will see that when Db is not binary, δE maintains the risk
control, whereas δP does not.

4.2.3 Non-binary decisions or data-dependent scenarios

In many real-world applications, the testing problem, specified by (Lb, Db), depends on the scenario b, which
itself depends on the data through, for example, the result of a preliminary exploratory experiment, the
evidence provided by the first half of the data, or the amount of collected data (which the scientist may not
know before collecting them). A simple example of data-dependent scenarios with B = {1, 2} is given below.
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As the scenario b depends on the data X, we represent it by a random variable B (which is a function of
X), whose realization is observable to the decision maker. The decision rule δ now takes both realizations of
X and B as its inputs, written as δ(X,B).

Example 4.7

After seeing data from a clinical trial experiment, if the data is promising, the scientist finds themselves
in the situation B = 1, in which case they can choose not to vaccinate anyone (δ(X, 1) = 0) or to
vaccinate the highest-risk population (δ(X, 1) = 1). If the vaccine turns out (unexpectedly) to be
extremely effective (the case B = 2), then the second option (δ(X, 2) = 1) changes to vaccinating the
full population. Note that the decision sets D1 and D2 have different meanings, and in reality the
scientist must choose from the decision set DB . In this example, we may set Lb(0, 0) = Lb(1, 1) = 0 for
b ∈ {1, 2}, L1(0, 1) = L1(1, 0) = L2(1, 0) = 1 and L2(0, 1) = 10. (To be pedantic, the first argument of
the loss function still indicates whether the null is true or not (unknown to the scientist), while the
second argument indicates the decision taken in the scenario in the subscript.) The scientist actually
receives the loss LB(0, δ(X,B)) or LB(1, δ(X,B)), depending on the unknown state of nature.

The problem (4.3) becomes

to minimize EQ[LB(1, δ(X,B))]

over δ : Z × B → N0; δ(x, b) ∈ Db

subject to sup
P∈P

EQ[LB(0, δ(X,B))] ≤ β,

(4.7)

The constraint and objective in (4.7) are formulated for the given random variable B. In case how B depends
on the data is not known to the decision maker, one may consider a stronger constraint and a worst-case
objective, that is,

to minimize EQ
[
sup
b∈B

Lb(1, δ(X, b))

]
over δ : Z × B → N0; δ(x, b) ∈ Db

subject to sup
P∈P

EP
[
sup
b∈B

Lb(0, δ(X, b))

]
≤ β.

(4.8)

The objectives to minimize in (4.7) and (4.8) are not important in our discussions, and they can be replaced
by any objective that is decreasing in δ(X, b). The risk constraint is our focus.

In the setting of this section, the p-value-based decision δP and the e-value-based decision δE are given by
(4.4) and (4.5) while treating b as an additional input variable; so we write them as δP (X, b) and δE(X, b)
going forward. Note that for each b ∈ B, the definition of δE guarantees

Lb(0, δE(X, b)) ≤ βE(X). (4.9)

Theorem 4.8

For the problems (4.7) and (4.8), the following hold.

(i) The e-value-based decision δE for any E(X) satisfies the risk constraints in (4.7) and (4.8).

(ii) Any decision rule δ∗ satisfying the risk constraint in (4.7) can be written as δ∗(X,B) = δE(X,B)
for some e-variable E(X).

(iii) Any decision rule δ∗ satisfying the risk constraint in (4.8) satisfies δ∗(X, b) ≤ δE(X, b) for some
e-variable E(X) and all b ∈ B, meaning that δ∗ is weakly improved by utilizing e-variables.

(iv) The p-value-based decision δP does not satisfy the risk constraint in (4.7) or (4.8) in general when
Db has at least 3 elements or B has at least 2 elements.

Implied by (ii) and (iii), if an optimizer δ∗ of (4.7) or (4.8) exists, then it is dominated by some δE .
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Proof.

(i): This follows directly follows from (4.9), which yields, for P ∈ P,

EP
[
sup
b∈B

Lb(0, δE(X, b))

]
≤ EP[βE(X)] ≤ β.

which guarantees the risk constraints in (4.7) and (4.8).
(ii): Take E(X) = LB(0, δ

∗(X,B))/β. Then E(X) is an e-variable because δ∗ satisfies the
risk constraint in (4.7). We have

δE(X, b) = max {d ∈ Db : Lb(0, d) ≤ LB(0, δ
∗(X,B))} .

This gives δE(X,B) = δ∗(X,B) under the assumption of a strictly increasing d 7→ Lb(0, d).
(iii): Take E(X) = supb∈B Lb(0, δ

∗(X, b))/β. Then E(X) is an e-variable because δ∗ satisfies
the risk constraint in (4.8). We have

δE(X, b) = max

{
d ∈ Db : Lb(0, d) ≤ sup

b′∈B
Lb′(0, δ

∗(X, b′))

}
.

This gives δE(X, b) ≥ δ∗(X, b) under the assumption of a strictly increasing d 7→ Lb(0, d).
(iv): Counter-examples are provided in Example 4.9 below.

Example 4.9: The risk constraint when |Db| ≥ 3 or |B| ≥ 2

We only show how δP breaks the constraint in (4.7), as that in (4.8) is more strict. Fix P ∈ P and let
P (X) be uniformly distributed on [0, 1] under P. First, consider B = {1, 2} and Db = {0, 1} for b ∈ B.
Set L1(0, 1) = ℓ1 and L2(0, 1) = ℓ2 with ℓ1 < ℓ2, let B = 2 when P (X) ≤ β/ℓ2. We can compute

EP[LB(0, δP (X))] = ℓ1P(δP (X) = 1; B = 1) + ℓ2P(δP (X) = 1; B = 2)

= ℓ1P(β/ℓ2 ≤ P (X) ≤ β/ℓ1) + ℓ2P(P (X) ≤ β/ℓ2)

= β

(
1− ℓ1

ℓ2

)
+ β > β.

(4.10)

For an example in case Db = {0, 1, 2} and B = {1}, set L1(0, 1) = ℓ1 and L1(0, 2) = ℓ2 with ℓ1 < ℓ2, as
in Example 4.5. Following the same calculation as in (4.10), we have

EP[L1(0, δP (X))] = ℓ1P(δP (X) = 1) + ℓ2P(δP (X) = 2)

= ℓ1P(β/ℓ2 ≤ P (X) ≤ β/ℓ1) + ℓ2P(P (X) ≤ β/ℓ2) > β.

Although the p-value-based decision does not control the risk level in (4.7), it is still often employed
(misused) in real-world situations; see Examples 4.4 and 4.5. Sometimes the misuse is implicit or unconscious,
as the decision maker may not realize that the decision problem has changed due to the collected data, or the
fact that there are non-binary decisions (or both). Therefore, when using p-value-based methods such as the
ones described in Examples 4.4 and 4.5, one should be cautious and mindful about what type of statistical
guarantee they actually provide. This problem does not exist for the e-value-based rule.

To summarize the message form this section, when decisions are non-binary or the decision problem
depends on the data, e-value-based decision rules are needed to satisfy the risk control, and the optimizers
are based on e-values.

In the simple case of binary decisions, the frameworks of Sections 4.1 and 4.2 can be connected via setting
β = 1, and Lb(0, δ) = 1{δ≤b}/b with Db = B = (0, 1), where we slightly generalize the assumption Db ⊆ N0;
the latter assumption was needed to make sure that the maximum in (4.5) is attained. A post-hoc p-variable
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δ satisfies the risk constraint for all data-dependent b. Section 4.1 does not specify the loss function under
the alternative hypothesis.

4.3 Optional continuation of experiments

Suppose that a scientist tests whether a coin is fair (the null hypothesis) or not. It is anticipated that if
the coin is not fair, the bias could be around θ = 0.6 (the alternative hypothesis). A short calculation
shows that to guarantee type-I and type-II errors at 0.05, the optimal (by the Neyman–Pearson lemma)
likelihood ratio test would toss the coin 280 times and reject the null if at least 154 heads appear. However,
on performing those coin tosses, suppose that they do not reject the null. This could happen by chance
under the alternative hypothesis (a type-II error), or because the scientist had overestimated the strength
of the alternative. Perhaps, they should have planned for a coin bias of θ = 0.55, but it is too late: Such
thoughts are futile, because the type-I error budget of the test has been exhausted and the null was not
rejected. However, a conceptually different approach using e-values is possible, as explained next.

The original test can be rewritten as rejecting the null when the p-value from the likelihood ratio test
drops below 0.05. Suppose they had instead summarized the data as an e-value from the very beginning; the
likelihood ratio would be a natural one in this case.

Based on the realized value of E1, the scientist (or another scientist) is permitted to toss the coin some
more times, say collecting 50 more tosses. Suppose they calculate an e-value E2 (based only on the fresh
batch of data). In this case, note the important property that EP[E2 | E1] = 1 under the null hypothesis.
Then, E(2) = E2E1 is also a valid e-value for the same null, which can be verified by the law of iterated
expectation. Note that both the option of running the second experiment and the design of that experiment
can depend on the first batch of data, and thus it is a post-hoc decision.

The scientist may still not be happy. Perhaps E(2) is still promising and not conclusive. They have the
right to continue their experiment and collect one more batch of data, summarize it as an e-value E3, and
calculate E(3) = E3E

(2), which is itself an e-value for the same null.
The scientist is allowed to repeat this process indefinitely. They can continually monitor the evidence

process E(1), E(2), . . . and can reject the null as soon as their current level of evidence exceeds 1/α. This
controls type-I error by Ville’s inequality (Chapter 7). Alternatively, they may simply stop at any data-
dependent stopping time τ and report their evidence against the null as E(τ), which is an e-value due to the
optional stopping theorem (Chapter 7). When the size of each batch is reduced to one, one ends up with a
fully sequential test, in this case Wald’s sequential probability ratio test that we revisit in Section 7.2.

However, despite the clear relationship to optional stopping and sequential testing above, the two settings
(the one discussed above, and the one in Chapter 7) are motivated differently. Above, the scientists who
may be continuing the study may be different from the first scientist that collected the first batch of data.
This could happen in settings where data collection is more expensive than a coin toss; for example, the first
scientist may simply have run out of money to collect more data, or may have given up if the evidence looked
far from promising. Thus, we call the above setting as “optional continuation”, as opposed to the setting in
Chapter 7, which we call “optional stopping”.

Such optional continuation is particularly prevalent in the meta-analysis of clinical trials. Suppose that
Country B is hesitant to run an expensive trial on some drug (e.g., a vaccine for a pandemic). Country A
goes ahead with such a trial, and the findings are impressive, but Country B deems it still too risky to
launch the drug without its own trial. Piggybacking on the prior success of the drug, now Country B runs is
own trial, and appends its evidence to that collected by Country A. Now Country C, which perhaps was
not even considering the vaccine, may get convinced to run its own trial. The body of evidence against
the null hypothesis (the drug being a placebo) is growing as more countries optionally continue this “living
meta-analysis”. At this meta-level across countries, it does seem like a sequential meta-analysis is proceeding,
but not one that was planned or anticipated in advance. Indeed, each country may have only intended to
collect its own batch of data. As long as the evidence from each trial was summarized as an e-value, the
overall evidence can easily be updated and sequentially monitored. For example, while wealthier countries
may launch a vaccine program if the e-value exceeds 20, there may be several poorer countries that will wait
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till the overall e-value exceeds 100 before launching a vaccine program without their own dedicated trial.
There are three important caveats:

• No participants can discard or hide their findings, even if their findings lead to a small e-value (less
than 1). After the decision of running the experiment, the resulting e-value needs to be incorporated
into the evidence.

• Building on the above point, it is clear that a single scientist with an e-value equal to zero can
permanently destroy the evidence accumulated thus far. This can be accounted for in two ways. Perhaps
the scientists agree beforehand on using (e.g., log-optimal) e-values that are equal zero by design,
or they agree to an accumulation of evidence of the form

∏n
i=1(1 + Ei)/2, so that each individual

batch of data cannot lose more than half of the existing evidence; we can of course generalize this
to
∏n
i=1(λi + (1− λi)Ei), where λi ∈ [0, 1] must be specified before seeing Ei. Either way, both the

e-value being used in the i-th round and how to combine the i-th e-value with the previous ones must
be specified before seeing the i-th batch of data.

• The decision to continue the collection of data at the second stage cannot be based on the first p-value
not being smaller than 0.05 (because testing at the first stage with this p-value has used up all the
type-I error budget). Either one commits to using a p-value with a single batch of data, or one commits
to using an e-value with the possibility of extending the analysis.

It is worth emphasizing that it appears difficult to merge p-values that have been collected using the above
protocol. While it may appear to be the case that second batch of data (say the trial data from Country B)
is independent of the first batch of data (the trial data from Country A), it would be a mistake to summarize
these as p-values and attempt to merge them using a standard method for combining independent p-values,
like Fisher’s rule. The reason is that the second p-value is technically not independent of the first, despite
being calculated on “separate” data. The second p-value would not even have existed had the first p-value
not been promising. So the number of p-values is itself random, and the p-values are sequentially dependent
in a complex way.

Such post-hoc decisions to run trials, or to make decisions based on accumulated data from different trials,
is a key feature of e-value based evidence collection and analysis.

4.4 Incentive-compatible principal-agent hypothesis testing

In this section we consider another setup where e-values play a key role in enabling decision making with
constraints.

Consider two parties, the principal and the agent. As a running example for the section, the principal can
be thought of as a regulator, like a government agency that grants licenses, while the agent can be thought of
as the experimenter, like a pharmaceutical company developing and testing various drugs. This setting has
two unique features:

• The principal and agent have different amounts of information about the true state of the world/nature.
For example, the agent may have a clearer picture of whether a drug is effective or not, or at least how
likely it is to be effective.

• The principal and agent have different, typically conflicting, incentives. For example, the principal may
not want ineffective drugs (placebos) to be falsely marketed as cures for some disease, while the agent
may like to be granted licenses to make money (whether or not the drugs are effective).

Usually, a pharmaceutical company declares to the regulator that it is performing a clinical trial in order
to determine the efficacy of its drug. For simplicity let us ignore the multi-phase aspects and other details of
such trials, and assume that if the p-value is smaller than some threshold (such as 0.05), then the regulating
agency grants permission (a license) to the company to market the drug and profit from its sales.
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The problem with the usual hypothesis testing paradigm is that it is not incentive compatible. A testing
paradigm is incentive compatible if discourages malicious agents — those who know the null hypothesis is
true, for example, those who have a placebo drug and know it — from attempting to run such a trial. Indeed,
suppose that a trial costs 10 million dollars, then consider the following calculation by a malicious agent:

• If the malicious agent estimates that they can make 100 million dollars by selling the drug, then they
will not run the trial, because they will expect to lose 5 million dollars (100 million times 0.05, minus
10 million).

• If their anticipated profit is one billion dollars, then a malicious agent will certainly run such a trial,
since their expected profit is now 40 million dollars.

If there are twenty times as many ineffective drugs as effective ones, and 5 per cent of ineffective drugs
are approved, then a quick calculation shows that at least half of all approved drugs will be ineffective.

Another problem with the above protocol is that the profit margin available to a malicious agent is only
limited by the market size, and not be the strength of their statistical evidence. It seems reasonable to suggest
a modification in which the more (less) evidence there is that a drug is effective, the more (less) an agent
should be able to sell its drugs (or profit from its sale). We assume for simplicity that the profit/sales is
determined by the regulator, not by the true effectiveness of the drug (which will be unknown to the market
when sales begin, at least for a reasonable period of time, during which the market will assume that the drug
is effective because it was approved by the regulator).

Thus, we may be interested in designing other interaction protocols between the principal and the agent,
which have two natural properties:

• the protocol should be incentive compatible, in the sense that malicious agents should not have any
incentive to participate.

• if an agent participates in the protocol, the sales/profit license increases with the strength of the
statistical evidence.

We now show how this can be easily achieved with the use of a statistical contract based on e-values. We
assume that the effectiveness of a drug can be captured by a quality parameter θ ∈ Θ which is known to the
agent, while the regulator deems that drugs with Θ0 ⊊ Θ characterizes the placebos and would prefer not to
have them be sold in the marketplace. The statistical contract is a protocol in which the agent follows the
following steps in order:

1. Choose a nonnegative license function f from a menu of options F .

2. Incur a fixed cost C to run a trial in order to collect data Z ∼ Pθ.

3. Receive a license to profit at most L = f(Z).

Under such a statistical contract, it is clear that the expected profit for the agent is EPθ [f(Z)]− C, and we
may for simplicity assume that they will participate in the trial if and only if this is positive. Thus, the
regulator would like to ensure that this quantity is negative if θ ∈ Θ0.

The above setup leads to the following result.

Proposition 4.10

The statistical contract is incentive compatible if and only if f(Z)/C is an e-variable for {Pθ : θ ∈ Θ0}
for every f ∈ F .

The proof is immediate, from realizing that the statistical contract is incentive compatible if and only if
EPθ [f(Z)] ≤ C for all θ ∈ Θ0.

As a particular example, if the evidence is going to be summarized as a p-value P , then it may be tempting
to promise a license that profit margin that is inversely proportional to P . However, this would lead to an
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infinite expected profit under the null, and is not incentive compatible. In contrast, it is incentive compatible
to award a license of C/(2

√
P ), whose expected value is no more than C under the null. Indeed, p 7→ 1/(2

√
p)

is a p-to-e calibrator.
The setting in this section is connected to the one in Section 4.2 in the following way. There are two

decision makers, making different types of decisions. The regulator is choosing the menu F to offer, and then
the agent must choose whether to participate in the contract (run a trial).

1. Going first, the regulator has no particular objective to maximize, but they would like to meet their
constraint of incentive compatibility, meaning that the menu must discourage malicious agents from
participating. This is, as we have seen, achieved by using a menu composed of (scaled) e-values. Of
course, if they hope to encourage agents with effective drugs to participate, the menu F should not
be restricted in any other way: it should be the set of all (scaled) e-values. Assume this is how the
regulator plays.

2. Then, the agent is choosing whether to participate in the statistical contract, given that their eventual
payout is data-dependent (that is, they face a data-dependent loss function). They do not need to
worry about incentive compatibility (that constraint has already been enforced by the regulator’s choice
of F), and they have to simply decide to participate or not before running the trial. Assuming that
they know the ground truth and there exists some f ∈ F that is profitable (in expectation under the
alternative), their decision is clear: they will not participate if they are malicious, and otherwise they
may (depending on their assessment of the efficacy of the drug, and thus of their expected profit).

In summary, the decision problem for both agents considerably simplifies via a smart use of data-dependent
loss functions based on the menu F of scaled e-values.

Bibliographical note

Section 4.1 combines results that are explicitly or implicitly found in Wang and Ramdas [2022], Xu et al.
[2024], Koning [2023a], in the context of post-hoc α for testing or controlling the false discovery rate or false
coverage rate. A notion of post-hoc p-values is defined in Koning [2023a] through (4.2), which is slightly
different from our definition and coincides with the reciprocal of e-values. Section 4.2 is based on Grünwald
[2024], where some omitted details, admissibility of the e-value-based decision rules, and many examples can
be found.

Grünwald et al. [2024a] coined the term optional continuation in Section 4.3. This theme was further
explored by Shafer [2023], who argues that it is easier to justify optional continuation using game-theoretic
probability than using measure-theoretic probability (the latter relying on the Ionescu-Tulcea theorem for
justifying extending the probability space from its initial specification). Ter Schure and Grünwald [2022]
detailed an application of these ideas to meta analysis.

The incentive-compatible principal-agent hypothesis testing problem in Section 4.4 was formulated and
studied by Bates et al. [2022].
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Chapter 5

The universal inference e-value

Universal inference is a general method (or set of methods) to construct an e-variable (or an e-process) for a
composite null P against a composite alternative Q under no regularity conditions. The simple takeaway
message is: if we can efficiently calculate the maximum likelihood under the null, then we can construct an
e-variable, and hence a test.

5.1 Motivation: Irregular models

The development of universal inference was motivated by the difficulty of constructing tests for irregular
problems, for which we often know no (even asymptotically) valid test.

Without getting into formal definitions, because they will not be relevant later, irregular problems are
usually plagued by many issues all at once: the maximum likelihood estimator may not be asymptotically
normal, the Fisher information matrix may not always be invertible (especially on the boundary between
null and alternative), the bootstrap may not have provable guarantees, Wilks’ theorem may not hold (the
log-likelihood ratio may not be asymptotically chi-squared), and so on. We provide two motivating examples
here, for which, to the best of our knowledge, universal inference provides the first valid test.

We begin with the (conceptually, not technically) simple example of testing whether our data is Gaussian
(null) or is drawn from a mixture of two Gaussians (alternative). Defining p as the density of (1−λ)N(µ1, 1)+
λN(µ2, 1), suppose we want to test the null hypothesis represented by the set {(µ1, µ2, λ) : λ = 0}, which
also equals {(µ1, µ2, λ) : µ1 = µ2}. The alternative set of distributions is given by triplets (µ1, µ2, λ) that
are unrestricted (except for excluding the null). For the null, µ2 is not identified, and for the alternative, λ
is not identified. This is a prototypical example of an irregular testing problem, with a composite null and
alternative, and it is hard to find classical asymptotic procedures that can provably control the type I error. In
contrast, the methodology presented here does work without any further assumptions, and has straightforward
extensions to multidimensional settings, mixtures of more than two components, non-Gaussian distributions,
and so on.

A second example involves testing shape constraints such as log-concavity. A density p on R is log-concave
if p = eg for some concave function g. Consider testing H0 : p is log-concave versus H1 : p is not log-concave.
The method presented in this chapter will be applicable to this problem, while we know of no other valid test.
Further, our method is also computationally efficient because the maximum likelihood log-concave density
can be solved in polynomial time using a (relatively) efficient optimization algorithm.

As mentioned earlier, universal inference can be summarized as

a reduction from hypothesis testing to maximum likelihood estimation under the null.

Here, the word “reduction” means that the original problem of testing is reduced to an arguably simpler
problem, that of (maximum likelihood) estimation.

We make two assumptions in this chapter:
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1. P,Q have a common reference measure L, so we will associate distributions with their densities with
respect to L.

2. The data X are represented by a vector Xn = (X1, . . . , Xn) with iid entries. We identify distributions
P ∈ P and Q ∈ Q by the corresponding densities of a single entry, denoted p(x) or q(x). For instance,
we use p ∈ P and P ∈ P interchangeably.

5.2 Split likelihood ratio e-variable

As suggested by its name, the key idea of the split likelihood ratio method is based on sample splitting. We
divide the n data points randomly into two groups D0 and D1 (independently of Xn). One may think of
these as being roughly equally sized sets as a default choice; the validity of the e-variable does not depend on
the relative sizes, but the e-power does.

The two sets have complementary roles. First, one uses the data in D1 to pick an alternative q̂1 ∈ Q. This
choice is unrestricted: The maximum likelihood estimator, or a Bayes estimator (a posterior mean or mode
based on some prior), or a robust one; the choice does not affect validity, but it does affect e-power. Our
default recommendation in practice is to use a Bayes estimator with a prior that puts mass everywhere in Q;
this comes with certain asymptotic optimality properties, not discussed here. No particular properties of
Bayesian inference are important here; one can simply view it as a smoothed maximum likelihood estimator
where the smoothing particularly helps for small sample sizes.

The second step is to use D0 to calculate the maximum likelihood estimator under the null, denoted
p̂0 = argmaxp∈P

∏
i∈D0

p(Xi).
The final step uses D0 again to calculate the likelihood ratio between q̂1 and p̂0:

E =
∏
i∈D0

q̂1(Xi)

p̂0(Xi)
. (5.1)

We call this the split likelihood ratio e-variable. When combined with (some variant of) Markov’s inequality
(Chapter 2) to yield a level-α test, we call it the split likelihood ratio test (split LRT).

Theorem 5.1

The split likelihood ratio statistic defined in (5.1) is an e-variable for P.

Proof.

By definition of p̂0, it holds that
∏
i∈D0

p̂0(Xi) ≥
∏
i∈D0

p(Xi) for any P ∈ P, and thus

EP

[ ∏
i∈D0

q̂1(Xi)

p̂0(Xi)
| D1

]
≤ EP

[ ∏
i∈D0

q̂1(Xi)

p(Xi)
| D1

]
= 1,

where the final equality holds simply because conditional on D1, q̂1 is a fixed density, and we
recall from Section 1.5 that a likelihood ratio of any alternative to p is an exact e-variable for
p. The proof is completed by taking a further expectation with respect to D1 and the tower
property of conditional expectation.

Remark 5.2. Recalling the discussion from Section 3.7 about mixture and plug-in methods for handling
composite alternatives, one may notice that the split likelihood ratio e-variable is based on the plug-in method.
However, the techniques for handling composite nulls and composite alternatives are modular, in the sense
that one can swap in the mixture method for the plug-in method in the numerator of these statistics, while
leaving the denominator identical. To elaborate, one can use D1 to pick a distribution ν over Q, and then
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define
E =

∫
Q

∏
i∈D0

q(Xi)

p̂0(Xi)
ν(dq),

which is also an e-variable, with an almost identical proof, while noting that integrals are just averages, and
averages of e-variables are e-variables (more generally treated in Chapter 8).

5.3 Subsampled likelihood ratio e-variable

The split likelihood ratio statistic has an extra source of variability (beyond the randomness of the data) that
was introduced algorithmically by sample splitting. It is possible to effectively remove this extra randomness
by averaging, as we describe next. We could swap the roles of D0 and D1, recalculate the e-variable using
(5.1) (call it E′), and use (E + E′)/2 as the e-variable. We call this the crossfit likelihood ratio e-variable. A
better idea is to recalculate the split likelihood ratio e-variable B times, each time involving an identical and
independent random split of Xn (these can be done in parallel). This yields e-variables E(1), . . . , E(B) that
can be combined by averaging:

Ē(B) =
E(1) + · · ·+ E(B)

B
. (5.2)

We call this the subsampled likelihood ratio e-variable. One can show that this (usually strictly) improves the
e-power of the method, as proved below. This relies on noting that E(1), . . . , E(B) have the same e-power
(since they are identically distributed).

Proposition 5.3: Improving e-power by averaging

Let E(1), . . . , E(B) be arbitrary e-variables, and let Ē(B) denote their average. Then for any Q,

EQ[log Ē] ≥ 1

B

B∑
b=1

EQ[logE(b)],

assuming that the right-hand side is well-defined. In particular, the e-power (against any Q) of the
subsampled likelihood ratio statistic (5.2) is at least as large as that of the split likelihood ratio
statistic (5.1).

This proof follows immediately from concavity of the logarithm function. Further, as B → ∞, Ē(B)

converges to a fixed random variable (see Fact 5.5).
Proposition 5.3 can be informally viewed as a form of Rao-Blackwellization. The split likelihood ratio

statistic utilized an external source of randomness (“algorithmic randomness”) by data splitting, thus artificially
introducing a source of variance, which is then removed by averaging.

Above, B has to be fixed in advance and cannot depend on the data. If one wants to obtain a p-value or
a test from the subsampled likelihood ratio statistic, then it is possible for B to be data-dependent, as we
now describe.

Subsampled LRT. For b ≥ 1, let Ē(b) denote (E(1) + · · ·+ E(b))/b. The subsampled LRT rejects the null
as soon as any Ē(b) exceeds 1/α for any b ≥ 1.

Thus, the subsampled LRT can be run sequentially, produce E(1), E(2), . . . one by one, and thus calculating
their running averages Ē(1), Ē(2), . . . one be one, and rejecting the null at the first time any of these running
averages is ≥ 1/α. One can also terminate this procedure at any large, data-dependent B, without violating
the type-I error guarantee.

Proposition 5.4: Improving power by averaging

The subsampled LRT described above controls type-I error at level α and is at least as powerful as the
split LRT procedure that is based on E(1) and Markov’s inequality.
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The second claim about larger power is evident because the first step of the subsampled LRT corresponds
exactly to the split LRT. The first claim about type-I error is less obvious, and is a direct consequence of the
exchangeable Markov inequality introduced next.

5.4 Exchangeable Markov’s inequality

We now state the generalization of the Markov inequality under exchangeability. All statements are made
under a probability P that is implicit and clear from context. Recall that Z1, . . . , Zn are called exchangeable
if the joint distribution of (Z1, . . . , Zn) equals that of (Zπ(1), . . . , Zπ(n)) for any permutation π of {1, . . . , n}.
A sequence Z1, Z2, . . . , is called exchangeable if Z1, . . . , Zn are exchangeable for any n ≥ 1. Of course, iid
random variables are exchangeable, but so are identical copies of the same random variable. Also, exchangeable
random variables have the same marginal distribution and the same expectation.

Fact 5.5

For any exchangeable sequence Z1, Z2, . . . of integrable random variables, their sample mean process
Z̄ = (Z̄n)n∈N given by Z̄n := (Z1 + · · ·+ Zn)/n is a backward martingale with respect to the natural
backward filtration in the sense that

EP[Zn | Gn+1] = Zn+1 for n ∈ N, where Gn+1 = σ(Z̄n+1, Z̄n+2, . . . ).

Further, (Z̄n)n∈N converges almost surely to an integrable random variable.

The proof of the martingale property in Fact 5.5 follows by first noting by direct calculation that
EP[Z̄n|Z̄n+1] = Z̄n+1, and the limiting claim is a consequence of the backward martingale convergence
theorem of Doob [1953]. We are now in a position to state a useful nonasymptotic inequality.

Theorem 5.6: Exchangeable Markov inequality (EMI)

For any exchangeable sequence Z1, Z2, . . . of random variables and any α > 0,

P

(
sup
n≥1

∣∣∣∣∣ 1n
n∑
i=1

Zi

∣∣∣∣∣ ≥ 1

α

)
≤ α EP[|Z1|]. (5.3)

In particular, if Z1, Z2, . . . are e-variables,

P

(
∃n ≥ 1 :

1

n

n∑
i=1

Zi ≥
1

α

)
≤ α.

The above claims also hold for finite sets of exchangeable random variables.

The proof is short, albeit technical, and we only briefly mention it here without details. The first inequality
is trivial. We next note that if Z1 is not integrable, the desired inequality in (5.3) is trivially true. If Z1 is
integrable, (

∑n
i=1 |Zi| /n)n≥1 is a nonnegative backward martingale by Fact 5.5, and this allows us to infer

the desired inequality by invoking a time-reversed variant of Ville’s inequality (Fact 7.5 in Chapter 7).
A useful corollary of the EMI is as follows. Let Z1, . . . , Zn be any set of (potentially nonexchangeable)

arbitrarily dependent random variables. Let π be a uniformly random permutation of {1, . . . , n}. Then, for
any α > 0,

P

(
sup

1≤m≤n

1

m

m∑
i=1

∣∣Zπ(i)∣∣ ≥ 1

α

)
≤ α

EP[|Z1|+ · · ·+ |Zn|]
n

.

Here, the original random variables are effectively made exchangeable by the random permutation, thus
allowing us to invoke the original inequality.
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We state another variant of the inequality. Suppose we take N arbitrarily dependent random variables
and put them in a bag. Suppose Zπ(1), . . . , Zπ(n) are n samples drawn uniformly at random with or without
replacement from this bag. Then, we have

P

(
sup

1≤m≤n

1

m

m∑
i=1

∣∣Zπ(i)∣∣ ≥ 1

α

)
≤ α

EP[|Z1|+ · · ·+ |ZN |]
N

.

This holds because the sampling process induces the exchangeability required for (5.3) to be invoked on the
otherwise non-exchangeable random variables.

5.5 Universal confidence sets

It is useful, but not necessary, to adopt a parametric framework for what follows. Assume that the set
of distributions under consideration can be represented as {pθ}θ∈Θ. If we were testing, then the null and
alternative hypotheses would correspond to certain subsets Θ0 ⊊ Θ and Θ1 ⊊ Θ respectively. But suppose
instead that the underlying distribution of Xn is pθ∗ and we want to design a 1− α confidence set for θ∗.
Such a confidence set, without requiring any regularity conditions, is immediately given by inverting the
universal inference test. To elaborate, we simply test each point null hypothesis θ ∈ Θ at level α, and retain
those we failed to reject. Let us describe the set more formally by inverting the split LRT.

We first randomly split the data Xn into D0 and D1. Let θ̂ be any estimator based only on D1. Define

C(Xn) :=

{
θ ∈ Θ :

∏
i∈D0

pθ̂(Xi)

pθ(Xi)
<

1

α

}
.

Denoting
L0(θ) :=

∏
i∈D0

pθ(Xi),

we see that C(Xn) = {θ ∈ Θ : L0(θ̂)/L0(θ) < 1/α}. Then, we have the following guarantee.

Proposition 5.7

For any θ∗ ∈ Θ and any predefined error level α ∈ (0, 1), the set C(Xn) defined above satisfies

Pθ∗(θ∗ ∈ C(Xn)) ≥ 1− α.

The proof is immediate, relying only on the observation that E =
∏
i∈D0

pθ̂(Xi)

pθ∗ (Xi)
is an e-variable, or more

accurately that 1{E≥1/α} is a level-α test. Sometimes, for instance for simply estimating a multivariate
normal mean with a known covariance matrix, the above set is in closed form. Typically, the set can be made
smaller (in terms of expected diameter) by replacing the split LRT by the subsampled LRT.

5.6 Extensions

5.6.1 Handling nuisance variables

Continuing with the theme of estimation, now consider the case where there is a nuisance parameter in both
the null and the alternative. For example, suppose θ∗ = (θ∗0 , θ

∗
1) but we are only interested in a confidence set

for θ∗0 . More generally, suppose we are interested in a confidence set for ψ∗ = g(θ∗) for some given function g.
Define g−1(ψ) = {θ : g(θ) = ψ}. Now define

B(Xn) = {ψ : C(Xn) ∩ g−1(ψ) ̸= ∅}.
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Since C is a 1− α confidence set for θ∗, it is straightforward to check that B is a 1− α confidence set for ψ∗.
But the above notation is a bit cumbersome. There is a more straightforward way to write this set. Define
the profile likelihood on D0 as

L†
0(ψ) := sup

θ:g(θ)=ψ

L0(θ),

Then, we can write

B(Xn) =

{
ψ :

L†
0(ψ)

L0(θ̂)
≥ α

}
,

an expression which is possibly easier to work with.

5.6.2 Smoothed likelihood

Sometimes the maximum likelihood under the null may be infinite since the likelihood function is unbounded.
One can then use a smoothed likelihood in its place. Consider a kernel k(x, y) such that

∫
k(x, y)dy = 1 for

any x. For any density pθ, let its smoothed version be denoted

p̃θ(y) :=

∫
k(x, y)pθ(x)dx,

Note that p̃θ is also a probability density. Let the smoothed empirical density based on D0 be defined as

p̃n :=
1

|D0|
∑
i∈D0

k(Xi, ·).

Define the smoothed maximum likelihood estimator as the KL projection of p̃n onto {p̃θ}θ∈Θ0 :

θ̃0 := argmin
θ∈Θ0

KL(p̃n, p̃θ).

If we define the smoothed likelihood on the first half of the data D0 as

L̃0(θ) :=
∏
i∈D0

exp

∫
k(Xi, y) log p̃θ(y)dy,

then it can be checked that θ̃0 maximizes the smoothed likelihood, that is θ̃0 = argmaxθ∈Θ0
L̃0(θ). As before,

let θ̂1 ∈ Θ be any estimator based on D1. The smoothed split LRT is defined as:

reject H0 if Ũn > 1/α, where Ũn =
L̃0(θ̂1)

L̃0(θ̃0)
.

We now verify that the smoothed split LRT controls type-1 error, by simply checking that Ũn is an e-variable.
Indeed, for any fixed ψ ∈ Θ, we have

Eθ∗
[
L̃0(ψ)

L̃0(θ̃0)

]
(i)

≤ Eθ∗
[
L̃0(ψ)

L̃0(θ∗)

]

=
∏
i∈D0

∫
exp

(∫
k(x, y) log

p̃ψ(y)

p̃θ∗(y)
dy

)
pθ∗(x)dx

(ii)

≤
∫ (∫

k(x, y)
p̃ψ(y)

p̃θ∗(y)
dy

)
pθ∗(x)dx

=

∫ (∫
k(x, y)pθ∗(x)dx

p̃θ∗(y)

)
p̃ψ(y)dy =

∫
p̃ψ(y)dy = 1,

where inequality (i) is because θ̃0 maximizes the smoothed likelihood, and step (ii) follows by Jensen’s
inequality.
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5.6.3 Relaxed likelihood

There may be settings where computing the MLE and/or the maximum likelihood (under the null) is
computationally hard. Suppose one could come up with a relaxation F0 of the null likelihood L0 (or of the
log-likelihood) in the sense that

max
θ
F0(θ) ≥ max

θ
L0(θ).

For example, L0 may be defined as −∞ outside its domain, but F could extend the domain. As another
example, instead of minimizing the negative log-likelihood which could be nonconvex and hence hard to
minimize, we could instead minimize a convex relaxation. In such settings, define

θ̂F0 := argmax
θ

F0(θ).

If we instead define the test statistic

T ′
n :=

L0(θ̂1)

F0(θ̂F0 )
,

then inference may proceed using T ′
n instead of Tn in the split or crossfit LRT. This is simply because of the

aforementioned property of the relaxation that F0(θ̂
F
0 ) ≥ L0(θ̂0), and hence T ′

n ≤ Tn.
One particular case when this would be useful is the following. Testing the sparsity level in a high-

dimensional linear model corresponds to solving the best subset selection problem, which is NP-hard in the
worst case (integer programming). There exist well-known quadratic programming relaxations that are far
more computationally tractable.

The takeaway message is that it suffices to upper bound the maximum likelihood under the null in order to
perform inference.

5.6.4 Powered likelihood

When model misspecification is a concern, inferences can be made robust by replacing the likelihood L with
the power likelihood Lη for some 0 < η < 1. Note that

Eθ

[(
L0(θ̂1)

L0(θ)

)η ∣∣∣∣∣ D1

]
=
∏
i∈D0

∫
pη
θ̂1
(yi)p

1−η
θ (yi)dyi ≤ 1,

and hence all the aforementioned methods can be used with the power-robustified likelihood as well. (The
last inequality follows because the η-Rényi divergence is nonnegative.)

5.6.5 Conditional likelihood

Our presentation so far has assumed that the data are drawn iid from some distribution under the null.
However, this is not really required (even under the null), and was assumed for expositional simplicity. All
that is needed is that we can calculate the likelihood on D0 conditional on D1 (or vice versa). For example,
this could be tractable in models involving sampling without replacement from an urn with M ≫ n balls.
Here θ could represent the unknown number of balls of different colors. Such hypergeometric sampling
schemes obviously result in non-iid sampling, but conditional on the one subset of data (for example how
many red, green and blue balls were sampled from the urn in that subset), one can potentially still evaluate
the conditional likelihood of the second half of the data and maximize it, rendering it possible to apply our
universal tests and confidence sets.

Bibliographical note

The universal inference method was developed by Wasserman et al. [2020]. These authors also showed that
for regular models, the universal confidence sets had width scaling as

√
d/n, where d is the dimensionality
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of the data, as would be expected. The exchangeable Markov inequality was first derived in Manole and
Ramdas [2023], but its implications for testing with e-variables was first detailed in Ramdas and Manole
[2024]. Nguyen [2020] derived an extension to composite likelihood settings.

Dunn et al. [2022] studied the efficiency of universal confidence sets when the data are multivariate
Gaussian with identity covariance — here standard likelihood methods work perfectly well, so it serves as
good benchmark. The authors find that the universal sets match the standard ones in terms of scaling with
respect to d, n, α and the signal to noise ratio, their radii being larger by a small constant factor (smaller than
2). They also studied the optimal splitting ratio in this setting, guided by the metric of squared radius of the
confidence set, deriving an expression which approaches 1/2 as d increases. Strieder and Drton [2022] also
study the optimal splitting ratio for the split LRT, but by examining the power of the test. They derive the
(complicated) limiting distribution of the split LRT, and Monte-Carlo simulations show that their proposed
split ratio also converges to 1/2 when testing a fixed number of parameters, but otherwise varies with the
dimension of the tested hypothesis.

Dunn et al. [2024] applied the method to the problem of testing log-concavity, for which no other valid
test is known. Shi and Drton [2024] recently studied universal inference for Gaussian mixtures. They prove
that the split likelihood ratio statistic is asymptotically normal with increasing mean and variance, and
that it achieves the optimal detection rate of

√
log logn/n. Tse and Davison [2022] study some asymptotic

approaches to improving the power of universal inference for high-dimensional problems with a large number
of nuisance parameters.

VERSION SPRING BREAK, 2025
64



Chapter 6

The log-optimal e-value and reverse
information projection

While the universal inference e-variable (or e-process) exists in quite some generality and is relatively
straightforward to construct, it is only known to be asymptotically log-optimal but does not have a finite-
sample log-optimality guarantee. It turns out that in even more generality, a log-optimal e-variable exists and
is unique. In fact, it always dominates universal inference, rendering the latter method inadmissible. The
catch, of course, is that it may not be numerically as easy to construct, but we will be able to characterize it
analytically in many cases.

This chapter is dedicated to describing a duality theory that is central to designing log-optimal e-
variables. The two main characters in this duality are a special e-variable, called the numeraire, and a special
(subprobability) distribution called the reverse information projection (RIPr).

Setting: P versus Q.

As elaborated in Chapter 3.7, there are two central techniques for dealing with composite
alternatives — mixtures and plug-in. For this reason in the current chapter, we consider only a
point alternative Q and a composite null P.

Our most general results make no assumptions on Q and P whatsoever, not even the existence of a
common reference measure or the minimum KL divergence between Q and P being finite. However, some of
these results have sophisticated proofs that are omitted. We will instead prove some of the results in simpler
special cases, making some simplifying assumptions.

When we use the phrase e-variable below, we always mean e-variable for P. We let E denote the set of
e-variables:

E = {E ≥ 0 : EP[E] ≤ 1 for all P ∈ P}.

6.1 The numeraire e-variable

We first give the definition of the numeraire e-variable, which is closely connected to the log-optimal e-variable
in Section 3.5.

Definition 6.1

A numeraire e-variable (or just numeraire for short) is a Q-almost surely strictly positive e-variable E∗

such that EQ[E/E∗] ≤ 1 for every e-variable E ∈ E.
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Numeraires are unique up to Q-nullsets. Indeed, if E∗
1 and E∗

2 are numeraires, then the ratio Y = E∗
2/E

∗
1

satisfies 1 ≤ 1/EQ[Y ] ≤ EQ[1/Y ] ≤ 1 thanks to the numeraire property of E∗
1 , Jensen’s inequality, and the

numeraire property of E∗
2 . Thus Jensen’s inequality holds with equality, so Y is Q-almost surely equal to a

constant which must be one. It follows that E∗
1 and E∗

2 are Q-almost surely equal. In view of this uniqueness,
we often speak of ‘the’ numeraire.

In the case of a simple null P = {P} with Q ≪ P, the numeraire is just the likelihood ratio E∗ = dQ/dP.
Indeed, E∗ is Q-almost surely strictly positive, it is an e-variable, and for any other e-variable E ∈ E we have
by a simple change of measure that EQ[E/E∗] = EP[E] ≤ 1.

Even for composite nulls, the numeraire is a likelihood ratio of Q to the ‘reverse information projection’.
Before getting there, we present a few other simple results.

Lemma 6.2: Lifting

Let E∗ denote the numeraire for P, and consider a larger null hypothesis P ′ ⊇ P. If E∗ is still an
e-variable for P ′, then it is also the numeraire for P ′.

The proof is simple. If E is an e-variable for P ′, it is also an e-variable for P and one has EQ[E/E∗] ≤ 1 by
assumption, proving the lemma.

A numeraire E∗ is also log-optimal (Section 3.5) in the sense that

EQ
[
log

E

E∗

]
≤ 0 for every e-variable E ∈ E, (6.1)

where the left-hand side may be −∞. This follows directly from Jensen’s inequality and the numeraire
property. The converse is also true, and we record the equivalence in the following proposition. The proof
shows that the numeraire property is really the first-order condition for log-optimality. Note also that a
numeraire E∗ is the Q-almost surely unique log-optimal e-variable in the sense of (6.1) even if EQ[logE∗]
happens to be infinite.

Proposition 6.3: Log-optimality of numeraire

Let E∗ be a Q-almost surely strictly positive e-variable. Then E∗ is a numeraire if and only if it is
log-optimal. In particular, a log-optimal e-variable is unique up to Q-nullsets.

Proof.

The forward direction was argued above. To prove the converse we assume E∗ is log-optimal.
For any e-variable E and t ∈ (0, 1), E(t) = (1−t)E∗+tE is an e-variable. Thus by log-optimality,
EQ[t−1 log(E(t)/E∗)] ≤ 0. The expression inside the expectation equals t−1 log(1− t+ tE/E∗),
which converges to E/E∗ − 1 as t tends to zero and is bounded below by t−1 log(1− t), hence
by −2 log 2 for t ∈ (0, 1/2). Fatou’s lemma thus yields EQ[E/E∗ − 1] ≤ 0, showing that E∗ is a
numeraire. Finally, the uniqueness statement follows from the equivalence just proved together
with uniqueness of the numeraire up to Q-nullsets.

The following result says that a numeraire always exists without any assumptions whatsoever on P or Q.
Although no assumptions on P or Q are needed in general, we do not present this more general theory for
reasons of brevity. It turns out that the theory simplifies under the following condition, which, despite being
nontrivial, is still very weak.

We say that Q is absolutely continuous with respect to P, written Q ≪ P, if Q does not assign positive
probability to any event that is null under every P ∈ P. Equivalently,

Q ≪ P ⇐⇒ Q(A) > 0 implies sup
P∈P

P(A) > 0 for every event A. (6.2)
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This natural generalization of absolute continuity for pairs of measures is satisfied in most statistically relevant
settings, while being significantly weaker than requiring a common dominating reference measure. It is also
weaker than requiring that Q ≪ P for every P ∈ P, which would require that Q(A) = 0 as long as any (as
opposed to every) P ∈ P assigns P(A) = 0 (or contrapositively, that Q(A) > 0 implies P(A) > 0 for all
P ∈ P).

Theorem 6.4

A numeraire always exists. Moreover, the following conditions are equivalent:

(a) The numeraire is Q-almost surely finite.

(b) Every e-variable is Q-almost surely finite.

(c) Q is absolutely continuous with respect to P, that is Q ≪ P.

Proof

The proof that the numeraire exists is sophisticated and technical, thus omitted here. We
focus on the equivalence of the other three claims. Clearly (b) implies (a). To see that (a)
implies (b), let E∗ be a Q-almost surely finite numeraire and note that the numeraire property
implies that any e-variable E must be Q-almost surely finite too. Next, we prove that (b)
is equivalent to (c). First, suppose (c) fails. Then there is an event A with Q(A) > 0 and
P(A) = 0 for all P ∈ P, in which case E = ∞1A is an e-variable that is not Q-almost surely
finite. Thus (b) fails also. The converse direction follows by noting that every e-variable is finite
P-almost surely for all P ∈ P.

We end with a few additional properties of the numeraire. Since the constant one is always an e-variable,
the numeraire E∗ satisfies the aesthetically pleasing property that

EP[E∗] ≤ 1 for all P ∈ P and EQ
[

1

E∗

]
≤ 1.

When P = {P} is simple and Q ≪ P, both inequalities above hold with equality, attained by the numeraire
dQ/dP. Another pleasing property is obtained by Jensen’s inequality: The numeraire E∗ satisfies

EQ[E∗/E] ≥ 1 for all E ∈ E.

Finally, note that the definition of KL divergence in (3.3) can be rewritten and generalized to nonnegative
measures P in the following manner. Let M+ denote the set of all nonnegative measures on Ω. Then, for any
P ∈ M+ and Q ∈ M1, define

KL(Q,P) = −EQ
[
log

dPa

dQ

]
,

where Pa is the absolutely continuous part of P with respect to Q. When P ∈ M1, this definition coincides
with (3.3).

We first begin with the simple observation that since log y ≤ y − 1, we have by a change of measure that
for any E ∈ E and P ∈ Conv(P),

EQ
[
log

(
E
dPa

dQ

)]
≤ EP [E]− 1 ≤ 0.

This immediately implies the following fact that we record for later use.
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Proposition 6.5: Weak duality

For all e-variables E ∈ E and distributions P ∈ Conv(P), we have EQ[logE] ≤ KL(Q,P) (where if
EQ[logE] is undefined, we treat it as −∞), and thus

sup
E∈E

EQ[logE] ≤ inf
P∈Conv(P)

KL(Q,P). (6.3)

Note that both sides of (6.3) are nonnegative and well defined, since the constant 1 is always an e-variable.
It turns out that the numeraire E∗ satisfies

EQ[logE∗] = KL(Q,P∗),

for an appropriately defined P∗ that we introduce and discuss next.

6.2 Strong duality for finite P

We start here with the case that P is finite. Then, it is possible to show the following result. Recall that ∆K

denotes the probability simplex.

Proposition 6.6

Suppose P = {P1, . . . ,PK} with Pk ≪ Q for all k ∈ [K], and minP∈Conv(P) KL(Q,P) <∞. Then,

EQ[logE∗] = max
E∈E

EQ[logE] = min
P∈Conv(P)

KL(Q,P) = KL(Q,P∗),

where E∗ is the numeraire and P∗ achieves the minimum.

To elaborate, we know that the numeraire achieves the left hand side (Q-almost surely uniquely), so the first
equality holds by its definition. The minimization problem can be rewritten as minλ∈∆K

KL(Q,
∑K
k=1 λkPk).

This is a (strictly) convex minimization problem over the compact convex set ∆K , so it achieves its minimum
uniquely at some λ∗ ∈ ∆K , and we define the reverse information projection (RIPr) to be

P∗ =

K∑
k=1

λ∗kPk,

so the last equality also holds by definition. Since KL(Q,P∗) < ∞ by assumption, we must have Q ≪ P∗.
We now prove the strong duality result in the middle equality.

Proof of Proposition 6.6

Recall from the earlier weak duality result of Proposition 6.5 that if we find any e-variable
whose e-power equals KL(Q,P∗), then the proof is complete, and further, that e-variable must
be the numeraire. By the optimality of P∗ and convexity of {

∑K
k=1 λkPk : λ ∈ ∆K}, we that

have for any P ∈ P,
KL(Q,P∗) = min

α∈[0,1]
KL(Q, αP∗ + (1− α)P)

The optimality criterion (Karusch-Kuhn-Tucker condition) for the above minimization problem
is that the gradient with respect to α is nonpositive at α = 1 (going from the optimizer 1
towards 0 increases the objective):

−EQ
[
d(P∗ − P)

dP∗

]
≤ 0 ⇐⇒ EQ

[
dP
dP∗

]
≤ 1 ⇐⇒ EP

[
dQ
dP∗

]
≤ 1.
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The last inequality means that dQ/dP∗ is an e-variable. By definition of e-power, the e-power
of this e-variable is KL(Q,P∗). Thus, the numeraire E∗ is dQ/dP∗ and the proof is complete.

6.3 Reverse information projection

Remarkably, all assumptions in Proposition 6.6 can be dropped. But doing this is very challenging, as
explained below.

First, it is clear that in the previous section, P∗ is the closest distribution in Conv(P) to Q as measured
by KL. However, when the infimum KL divergence equals infinity, it is unclear how do define the “closest”
distribution to Q.

Second, in the previous section, we used the compactness of Conv(P) when P is finite to argue that the
infimum is attained by a distribution in Conv(P). However, when P is uncountable (as would typically be
the case in statistical applications), the set is no longer compact (wrt the weak topology) and it is not clear
that the infimum is achieved inside the set. Indeed, it is typically the case that the minimizer lies outside of
Conv(P), and in fact may be a subdistribution in general (a nonnegative measure that integrates to less than
one). In that case, where does it lie, and how do we characterize it?

Finally, when all absolute continuity requirements are dropped, all arguments involving likelihood ratios
(Radon-Nikodym derivatives) and KL divergences become much more subtle, and one cannot proceed as
easily as in the previous section.

Since formally handling the above subtleties requires some technical measure-theoretic care, we only state
the results here but do not prove them.

The first step is to define the reverse information projection (RIPr) appropriately.

Definition 6.7: Reverse information projection (RIPr)

Let E∗ be the numeraire for P against Q. Define the reverse information projection of Q onto P,
denoted P∗, via

dP∗

dQ
=

1

E∗ .

In words, P∗ is a nonnegative measure whose likelihood ratio with respect to Q equals 1/E∗, which is
understood to equal zero on {E∗ = ∞}. Since E∗ exists, is Q-almost surely unique and positive, we see that
P∗ is uniquely defined up to Q-nullsets. Also, P∗ ≪ Q by definition.

6.3.1 The effective null hypothesis is the bipolar of P

Let X+ denote the set of all [0,∞]-valued measurable functions on Ω and recall that M+ denotes the set of
all nonnegative measures on Ω. The polar of P is defined by

P◦ = {E ∈ X+ : EP[E] ≤ 1 for all P ∈ P}.

This is precisely the set of e-variables, i.e., P◦ = E. The bipolar of P is

P◦◦ = {P ∈ M+ : EP[E] ≤ 1 for all E ∈ P◦}.

It is easy to see that
P◦◦ ∩M1 ⊇ Conv(P).

Equality holds when P is finite, but there are examples where the inclusion is strict. Because the constant
E = 1 is always an e-variable, elements of P◦◦ have total mass at most one, and sometimes strictly less than
one. For example, if P belongs to P◦◦, then so does any P′ ∈ M+ that is set-wise dominated by P, meaning
that P′(A) ≤ P(A) for all A. Below we give two examples of where P◦◦ ∩M1 is a strict superset ofConv(P).
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Example 6.8

Suppose the null P consists of all unit variance Gaussians with mean less than 0. Then the standard
Gaussian is not in the convex hull of P , but it is in P◦◦∩M1, which contains all unit variance Gaussians
with nonnegative mean (and their mixtures).

The reader may note that if we had considered the total variation closure of the convex hull of P (motivated
by Theorem 3.14) in Example 6.8, it would have coincided with P◦◦ ∩M1. However, more generally, this is
not the case.

Example 6.9

Let Ω = [0, 1], and let
P = {δx : x ∈ [0, 0.5]},

where δx is a point mass at x. Clearly, P has no common reference measure. The total variation closure
of the convex hull of P still contains only atomic measures. However, P◦◦ ∩M1 contains every bounded
distribution on [0, 0.5].

The reader may note above that, instead of total variation closure, we had taken a weak closure of the
convex hull of P, then again we would have obtained P◦◦ ∩ M1. However, one can construct yet other
examples to show that this is not true in general, but this gets rather deep into topological measure theory,
and is out of the scope of the current book.

The bipolar of P can be interpreted as the effective null hypothesis : it is the largest family of distributions
whose set of e-variables is exactly E. Thus it consists of those distributions against which e-variables in E do
not provide any evidence. In particular, we note the following simple yet important consequence, recalling
the definition of a nontrivial e-variable from Definition 3.1.

Theorem 6.10

A nontrivial test (or e-variable) for P against Q exists if and only if Q /∈ P◦◦.

Proof.

The proof follows in two simple steps. It follows from Proposition 3.8 that a nontrivial test
exists if and only if a nontrivial e-variable exists. The latter condition is possible if and only if
Q /∈ P◦◦ by definition of P◦◦.

It turns out that considering only bounded e-variables suffices. Let Eb ⊊ P◦ = E be defined as
Eb = {E ∈ X+ : EP[E] ≤ 1 for all P ∈ P, supω∈ΩE(ω) < ∞}. Then an application of the monotone
convergence theorem yields that

P◦◦ = {P ∈ M+ : EP[E] ≤ 1 for all E ∈ Eb}.

We now claim that even though it is possible that P∗ /∈ Conv(P) in general, it does lie in P◦◦.

Proposition 6.11

The reverse information projection of Q onto P lies in the bipolar of the null: P∗ ∈ P◦◦.

The proof follows because for any e-variable E,

EP∗
[E] = EQ[1{E∗<∞}E/E

∗] ≤ EQ[E/E∗] ≤ 1,

because E∗ is the numeraire.
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6.3.2 A general strong duality result

We now state a more general strong duality result removing almost all measure-theoretic assumptions. As
before, EQ[logE] is understood as −∞ whenever EQ[(logE)−] = ∞. Recall the condition Q ≪ P from (6.2).

Theorem 6.12

Assume Q ≪ P. Letting E∗ be the numeraire and P∗ the RIPr, one has the strong duality relation

EP[logE∗] = sup
E∈E

EQ[logE] = inf
P∈P◦◦

KL(Q,P) = KL(Q,P∗),

where these quantities may equal ∞.

We also provide some characterizing properties of the RIPr.

Theorem 6.13

Assume Q ≪ P and let P∗ be an element of P◦◦ equivalent to Q. Let Pa denote the absolutely
continuous part of P with respect to Q. The following statements imply each other:

1. P∗ is the RIPr.

2. EQ
[
dPa

dP∗

]
≤ 1 for all P ∈ P◦◦

3. EQ
[
log

dPa

dP∗

]
≤ 0 for all P ∈ P◦◦.

If we assume further that all elements of P are absolutely continuous with respect to a probability
measure L, then all elements of P◦◦ are also absolutely continuous with respect to L, so that we can
identify any P ∈ P◦◦ with its density p = dP/dL. Further, each of the above conditions is equivalent to

4. EQ [p/p∗] ≤ 1 for all densities p of P ∈ P.

We do not prove the above theorems here. Crucially, note that the fourth condition above only needs to
hold over P and not over the bipolar, making it easier to verify in settings with a reference measure such as
exponential families, as we will see in Section 6.7.1.

6.4 The numeraire is the only e-variable that is a likelihood ratio

We first present a verification theorem which simplifies the task of checking that candidates E∗ and P∗ (for
the numeraire and RIPr respectively) are in fact optimal.

Theorem 6.14

Assume that Q ≪ P . Let E∗ be a Q-almost surely strictly positive e-variable and let P∗ be the measure
given by dP∗/dQ = 1/E∗. Then E∗ is a numeraire if and only if P∗ belongs to the effective null P◦◦.
Thus the numeraire is the only e-variable that is also a likelihood ratio between Q and some equivalent
element of P◦◦. Finally, EP∗

[E∗] = 1 and P∗ is maximal in the sense that no other P ∈ P◦◦ equivalent
to Q can satisfy P(A) ≥ P∗(A) for all A with strict inequality for some A.
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Proof

Recall that all e-variables are Q-almost surely finite thanks to Theorem 6.4 and the assumption
that Q ≪ P ; in particular, P∗ is equivalent to Q. Now, if E∗ is a numeraire, then Proposition 6.11
yields that P∗ ∈ P◦◦. For the converse, the definition of P∗ and the fact that it belongs to P◦◦

yield EQ[E/E∗] = EP∗
[E] ≤ 1 for any e-variable E. This is the numeraire property. Finally, the

definition of P∗ immediately gives EP∗
[E∗] = 1, and P∗ must be maximal because if a ‘dominating’

equivalent P ∈ P◦◦ existed we would get the contradiction 1 = EP∗
[E∗] < EP[E∗] ≤ 1.

We stress that the above result is quite remarkable: the numeraire is clearly a likelihood ratio between Q
and some equivalent element of P◦◦, but it is also the unique e-variable with such a representation! This
property helps identify the numeraire in several simple examples (eg: Sections 6.7.1 and 6.7.2), where we
guess the numeraire as being a particular simple likelihood ratio of the alternative to some “extreme” point of
the null, verify that it is indeed an e-variable, and conclude that it is in fact the log-optimal e-variable.

Corollary 6.15

Assume Q ≪ P . Let E0 be a family of [0,∞]-valued random variables that generates the null hypothesis
in the sense that

P = {P ∈ M1 : EP[E] ≤ 1 for all E ∈ E0}. (6.4)

Let E∗ be a Q-almost surely strictly positive e-variable such that

EQ
[

1

E∗

]
= 1 and EQ

[
E

E∗

]
≤ 1 for all E ∈ E0. (6.5)

Then E∗ is the numeraire and the RIPr belongs to P.

Proof

Let P∗ be given by dP∗/dQ = 1/E∗. Then (6.5) says that P∗ is a probability measure such
that EP∗

[E] ≤ 1 for all E ∈ E0. Thus by (6.4), P∗ belongs to P, hence to P◦◦. The result now
follows from Theorem 6.14.

Thanks to Lemma 6.2, Corollary 6.15 also holds if one has ‘⊇’ instead of ‘=’ in (6.4). This is intuitive: if
one enlarges the generating set E0 beyond what is necessary to specify P, then the right hand side of (6.4)
can become smaller than P. In that case, (6.5) only gets harder to satisfy, and if we find an e-variable E∗

satisfying it, it surely must still be the numeraire.

6.5 Numeraire dominates universal inference

Assume now that there exists a common reference measure L, and identify distributions with their respective
densities, written in lowercase. For a point alternative q over the data Z, the method of universal inference
boils down to constructing the e-variable EUI = q(Z)/pmax(Z) where pmax(Z) = supp∈P p(Z) is the maximum
likelihood. (Strictly speaking, the supremum here should be understood as an essential supremum under the
reference measure.)

To compare the universal inference e-variable with the numeraire E∗ = q(Z)/p∗(Z), we first claim that
the RIPr satisfies p∗(Z) ≤ pmax(Z) up to L-nullsets. This is obvious if the RIPr belongs to P , but in general
it only belongs to P◦◦. In this case the claim follows by applying the following lemma with f = pmax.
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Lemma 6.16

Let f be a (potentially random) function such that f ≥ p, L-almost surely, for all p ∈ P. Then f ≥ p,
L-almost surely, for all p ∈ P◦◦.

We omit the technical proof. As an immediate consequence of the lemma, we see that p∗(Z) ≤ pmax(Z), and
hence E∗ ≥ EUI, up to L-nullsets. In nondegenerate situations involving a composite null hypothesis, the
inequality will be strict with positive L-probability. Thus, in such cases, the relatively general method of
universal inference is in fact inadmissible. We end by noting that the numeraire imposes weaker assumptions
than universal inference (and thus is, in some sense, even more universal), since the latter needs a reference
measure to define likelihoods.

Composite alternatives

Recall the composite alternative setup and notation described in Section 3.7. A reasonable
goal is to derive an e-variable En = E(Xn) for P such that for any Q ∈ Q,

lim
n→∞

EQ[logEn]

n
→ KL(Q,P∗), (6.6)

where P∗ is the RIPr of Q onto P. As we have seen in this chapter, the right hand side is
the growth rate of an oracle that knows the data-generating distribution (when it lies in the
alternative). One can derive appropriate extensions of the mixture and plug-in e-variables
described in Section 3.7. For example, in the iid setting considered there, consider the numeraire
for testing P(n) = {Pn : P ∈ P} against the alternative Q̃(n) =

∫
Qnν(dQ). We conjecture that

this is indeed asymptotically log-optimal under weak assumptions, but such a general result is
currently not known.

6.6 Connections between e-values and Bayes factors

For those Bayesians that are willing to consider testing hypotheses (well, not all Bayesians are), one of the
standard quantities to examine is the Bayes factor. Suppose we observe n iid data points X1, . . . , Xn, and
we are interested in testing whether their marginal distribution lies in a composite null P or in a composite
alternative Q. Also suppose that there is a common reference measure, allowing us to identify distributions
with their densities. Then the Bayes factor is defined as

Bn =

∫
Q
∏n
i=1 q(Xi)µ(dq)∫

P
∏n
i=1 p(Xi) ν(dp)

,

where µ and ν are (often subjective) priors over Q and P. Bayesians often refer to tables like in Section 2.8
in order to interpret the realized value, and typical Bayesians do not threshold Bn to make clear decisions
of accepting or rejecting the null, and consequently no effort is made to control the Type I error. The law
of iterated expectation yields that Bn is an e-variable if nature draws a random null from the scientist’s
prior—Ep∼ν(dp)[Bn] ≤ 1—but it remains unclear to many why this is a reasonable assumption. Indeed, this
is often the problem with Bayesian methods: the scientist using them is perfectly convinced of its correctness
(internal consistency) but their analysis fails to convince all others (lack of external consistency). Thus the
main drawbacks of this approach are: (a) it is unclear how to generalize these ideas to nonparametric settings
without densities and likelihoods, (b) it is unclear how to formally make decisions with Bn with (frequentist)
error guarantees.

In contrast, the typical frequentist approach in the above setting would be to consider the generalized
likelihood ratio:

Gn =
supq∈Q

∏n
i=1 q(Xi)

supp∈P
∏n
i=1 p(Xi)

.
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Under some regularity conditions, Wilks’ theorem implies that logGn has a chi-squared limiting distribution
as n → ∞, with degrees of freedom determined by some notion of parametric dimensionality difference
between Q and P (for the discussion here we allow P and Q to be nested, which is different from the main
setting of the book). This is then used to construct an asymptotic p-value. However, the main drawback here
is once more (a) it is unclear how to generalize these ideas to nonparametric settings without densities and
likelihoods, and (b) what to do when the regularity conditions for Wilks’ theorem fails, and the asymptotics
are unwieldy.

In contrast, we note that universal inference takes a middle ground between the above two approaches,
using a mixture (i.e. a prior, without Bayesian connotations) over the alternative, but a maximum likelihood
over the null:

Un =

∫
Q
∏n
i=1 q(Xi)µ(dq)

supp∈P
∏n
i=1 p(Xi)

,

which is always an e-variable, under no regularity conditions. However, there are still two drawbacks (a) the
previous section shows that this is not optimal, and (b) we still require reference measures and densities to
define likelihoods, so nonparametric extensions are not immediately obvious.

The numeraire resolves these issues. This sections shows that one should calculate the RIPr P∗ of
Qeff :=

∫
Q Qnµ(dQ) onto (the bipolar of) {Pn : P ∈ P}. Since P∗ ≪ Qeff by definition, we can define

En =
dQeff

dP∗ (X1, . . . , Xn).

This is always well defined, even in nonparametric settings with no reference measures for P,Q, it is always
an e-variable (thus guaranteeing the frequentist error control), and it dominates Un (Section 6.5).

In some situations, the RIPr will actually lie in the convex hull (set of mixtures) of {Pn : P ∈ P}, and in
this case, the numeraire can be written in the form of Bn. However, for every choice of alternative mixture,
there is a unique mixture over the nulls that would yield such a representation (Section 6.4), meaning that
one cannot decouple the pair of mixtures as the Bayesian did for Bn. In these cases, the numeraire can be
seen as the unique Bayes factor which is also an e-variable.

Of course, when the null and alternative are simple, all the above methods coincide. When only the null
is simple, the Bayes factor, the universal inference e-variable, and the numeraire coincide. When neither is
simple, the Bayes factor is sometimes (but usually not) an e-variable, the numeraire is sometimes (but usually
not) a Bayes factor, and the generalized likelihood ratio is neither an e-variable nor a Bayes factor in general.

6.7 Examples

We now turn to examples of numeraire e-variables, revisiting several examples in Section 2.6. Consider a single
random observation (statistic) Z in a measurable space Z, and we take (Ω,F) to be Z with its σ-algebra
σ(Z). We will always have Q ≪ P. Recall that M1 is the set of all probability measures on F , and denote
by X+ the set of all [0,∞]-valued measurable functions and by M+ that of nonnegative measures on F .

6.7.1 Exponential family with one-dimensional sufficient statistic

The example here will be subsumed by the (much shorter) Section 6.7.2. Nevertheless, we provide a self-
contained treatment below that does not explicitly exploit the monotone likelihood ratio property, which may
be less familiar to some.

Here Z can be general and is equipped with a reference measure L. Consider an exponential family of
densities

pθ(z) = eθT (z)−A(θ)

with respect to L, where A is convex and differentiable, the sufficient statistic T (z) is one-dimensional, and
the natural parameter θ ranges in some interval Θ ⊆ R. The null hypothesis is P = {pθ : θ ∈ Θ0} for some
closed subset Θ0 ⊆ Θ, and the alternative is q = pθ1 for some θ1 ∈ Θ. We suppose that Θ0 has a largest
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element θ0 and that θ1 > θ0, as in Section 2.6.1. It is natural to conjecture that pθ0 is the RIPr. To confirm
this, it suffices to verify the fourth condition in Theorem 6.13. Using the standard formula for the moment
generating function of the sufficient statistic we get

EQ
[
pθ(Z)

pθ0(Z)

]
= EQ

[
e(θ−θ0)T (Z)−A(θ)+A(θ0)

]
= eA(θ1+θ−θ0)−A(θ1)−A(θ)+A(θ0)

for all θ ∈ Θ0. Any real convex function f satisfies f(a+ b+ c)− f(a+ c) ≥ f(b+ c)− f(c) for a, b ≥ 0 and
c ∈ R. Therefore, EQ[pθ(Z)/pθ0(Z)] ≤ 1 for all θ ∈ Θ0, so that the fourth condition in Theorem 6.13 holds
and pθ0 is indeed the RIPr. As a result the numeraire is the likelihood ratio

E∗ =
pθ1(Z)

pθ0(Z)
= e(θ1−θ0)T (Z)−A(θ1)+A(θ0).

6.7.2 Monotone likelihood ratio

Returning to the example described in Section 2.6.1, we now point out that for a point alternative pθ1 , the
e-variable described there is in fact the numeraire. This generalizes the previous example which is well-known
to satisfy the monotone likelihood ratio property (in the sufficient statistic). The proof follows by the same
argument as above: since pθ1/pθ0 is an e-variable for P, then the fourth condition in Theorem 6.13 implies
that pθ0 is the RIPr, and thus pθ1/pθ0 is the numeraire.

6.7.3 Testing symmetry

Take Z = R. As in Section 2.6.2, we consider the null hypothesis that Z is symmetric,

P = {P ∈ M1 : Z and − Z have the same distribution under P} ,

which is a non-dominated family. We also fix an alternative hypothesis Q that admits a Lebesgue density
q. It is natural to conjecture that the RIPr is given by the symmetrization P̃ of Q, whose density is
p̃(z) = (q(z) + q(−z))/2. However, this cannot quite be true in general because P̃ need not be equivalent to
Q. Instead, we claim that the RIPr is the measure P∗ with density

p∗(z) =
1

2
(q(z) + q(−z))1{q(z)>0}.

This is the absolutely continuous part of P̃ with respect to Q. It is a probability measure if Q has symmetric
support, and otherwise a proper sub-probability measure. Note that P̃ belongs to P, which in particular
shows that Q ≪ P since Q ≪ P̃. (Alternatively, we again have that P(A) = 0 for all P ∈ P implies that A is
empty, which also yields Q ≪ P.)

To check that P∗ is the RIPr we will show that the implied candidate numeraire is, in fact, the numeraire.
It is given by

E∗ =
dQ
dP∗ =

2q(Z)

q(Z) + q(−Z)
1{q(Z)>0}.

(We recall that the numeraire is only defined up to Q-nullsets.) We claim that the set of all e-variables is

E = {E ∈ X+ : E ≤ 1 + ϕ(Z) for some odd function ϕ} ,

where we recall that a function ϕ is odd if ϕ(z) + ϕ(−z) = 0 for all z ∈ R. Indeed, any E of this form
satisfies EP[E] ≤ 1 + EP[ϕ(Z)] = 1, where the symmetry of Z and the oddness of ϕ were used to get
EP[ϕ(Z)] = EP[ϕ(−Z)] = −EP[ϕ(Z)] and hence EP[ϕ(Z)] = 0. Conversely, for any e-variable E = f(Z)
we may write E = 1

2 (f(Z) + f(−Z)) + ϕ(Z) where ϕ(z) = 1
2 (f(z) − f(−z)) is the odd part of f(z). For

any z ∈ R we use the symmetric distribution P = 1
2 (δz + δ−z) and the fact that E is an e-variable to get

1
2 (f(z) + f(−z)) = EP[f(Z)] ≤ 1. Hence E ≤ 1 + ϕ(Z) as required.
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We can now verify the numeraire property. First, E∗ is Q-almost surely strictly positive and finite, and it
is an e-variable because it can be written as E∗ = 1 + ϕ∗(Z) where

ϕ∗(z) =
q(z)− q(−z)
q(z) + q(−z)

is odd (we also verified that E∗ is an e-variable in Section 2.6.2). Next, for any e-variable E ≤ 1 + ϕ(Z)
where ϕ is odd we get

EQ
[
E

E∗

]
≤ EQ

[
(1 + ϕ(Z))

q(Z) + q(−Z)
2q(Z)

]
= EP̃ [(1 + ϕ(Z))1{q(Z)>0}

]
≤ EP̃[1 + ϕ(Z)] = 1.

This confirms the numeraire property.
Finally, let us remark that it is not really necessary that Q admit a density. The symmetrization of Q is

still well-defined as P̃ = 1
2 (Q+ Q̃) where Q̃ is the distribution of −Z under Q, or equivalently, the pushforward

of Q under the reflection map z 7→ −z. The RIPr is then the absolutely continuous part P∗ = P̃a, and the
numeraire is any nonnegative version of the Radon–Nikodym derivative dQ/dP∗ such that dQ/dP∗ − 1 is odd.

6.7.4 Testing bounded means

Let Z = [0, 1] so that the random variable Z takes values in the unit interval. Fix µ ∈ (0, 1/2) and consider
(as in Section 2.6.3) the null hypothesis that the mean of Z is at most µ,

P = {P ∈ M1 : EP[Z] ≤ µ}.

There is no single dominating measure for P since it contains the uncountable non-dominated family
{δz : z ∈ [0, µ]}. However, P is generated by E0 = {Z/µ} in the sense of Corollary 6.15, so our strategy will
be to locate a candidate numeraire and then apply the corollary to verify that the candidate is, in fact, the
numeraire. The alternative hypothesis Q is the uniform distribution on [0, 1], and we have Q ≪ P for the
simple reason that P(A) = 0 for all P ∈ P implies that A must actually be empty.

To find a candidate numeraire, we observe that two natural e-variables are Z/µ and the constant one. All
convex combinations of these are also e-variables; equivalently, 1+λ(Z−µ) is an e-variable for each λ ∈ [0, 1/µ].
We now look for a log-optimal e-variable in this class by directly maximizing f(λ) = EQ[log(1 + λ(Z − µ))]
over λ ∈ [0, µ−1]. This is a strictly concave function whose derivative f ′(λ) = EQ[(Z − µ)/(1 + λ(Z − µ))]
satisfies f ′(0) = EQ[Z]−µ > 0 and f ′(µ−1) = EQ[µ−µ2/Z] = −∞. Thus there is a unique interior maximizer
λ∗ ∈ (0, µ−1), which is characterized by the first-order condition

EQ
[

Z − µ

1 + λ∗(Z − µ)

]
= 0. (6.7)

Since Q is the standard uniform distribution we can be more explicit. Nothing changes if we first multiply
both sides by λ∗, and then the left-hand side becomes∫ 1

0

λ∗(z − µ)

1 + λ∗(z − µ)
dz = 1−

∫ 1

0

1

1 + λ∗(z − µ)
dz = 1− 1

λ∗
log

(
1 + λ∗(1− µ)

1− λ∗µ

)
.

Thus (6.7) for λ∗ ∈ (0, µ−1) is equivalent to

1 + λ∗(1− µ)

1− λ∗µ
= eλ

∗
,

which is easily solved numerically. This leads us to the candidate numeraire

E∗ = 1 + λ∗(Z − µ),

which is strictly positive and finite. To verify that this is indeed the numeraire, we use (6.7) to get, for any
e-variable of the form X = 1 + λ(Z − µ) = E∗ + (λ− λ∗)(Z − µ), that

EQ
[
X

E∗

]
= 1 + (λ− λ∗)EQ

[
Z − µ

1 + λ∗(Z − µ)

]
= 1.
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Taking λ = 0 and λ = 1/µ we see that (6.5) of Corollary 6.15 is satisfied and, hence, that E∗ is the numeraire
and the RIPr P∗ belongs to P.

6.7.5 Testing subGaussian means

Now take Z = R and consider the null hypothesis that the observation Z has a 1-sub-Gaussian distribution
with nonpositive mean (as in Section 2.6.4). That is, we set

P =
{
P ∈ M1 : EP[eλZ−λ2/2] ≤ 1 for all λ ∈ [0,∞)

}
.

The “one-sided” restriction λ ∈ [0,∞) implies that Z has nonpositive (potentially nonzero and even infinite)
mean under any P ∈ P . Indeed, monotone convergence and the definition of P yield EP[Z] = limλ↓0 EP[(eλZ−
1)/λ] ≤ limλ↓0(e

λ2/2 − 1)/λ = 0. As in the previous example, P does not admit any dominating measure.
It is generated by the family E0 = {eλZ−λ2/2 : λ ∈ [0,∞)}, so we will again look for a candidate numeraire
and verify it using Corollary 6.15. We let the alternative hypothesis Q be normal with mean µ > 0 and unit
variance. As in the previous example, and for the same reason, we have Q ≪ P.

To find a candidate numeraire we maximize EQ[logX] over X ∈ E0. That is, we maximize EQ[λZ−λ2/2] =
λµ− λ2/2 over λ ∈ [0,∞). The maximizer is λ∗ = µ, which yields the candidate

E∗ = eµZ−µ2/2.

This is finite and strictly positive. Moreover, (6.5) of Corollary 6.15 is satisfied because

EQ

[
eλZ−λ2/2

eµZ−µ2/2

]
= EQ

[
e(λ−µ)(Z−µ)−(λ−µ)2/2

]
= 1.

We conclude that E∗ is the numeraire and, consequently, that the RIPr P∗ is the standard normal distribution.
This example can be easily generalized to σ-sub-Gaussian distributions for σ ̸= 1, but we omit this for brevity.

6.7.6 Testing likelihood ratio bounds

Consider the setting in Section 2.6.5, where for a fixed probability measure P0 and γ ∈ [1,∞), we test the
null hypothesis

P = {P ∈ M1 : dP/dP0 ≤ γ}

against an alternative Q ≪ P0. We have seen in Section 2.6.5 that the random variable E∗ is is an e-variable
for P, specified by

E∗ =
Z∗ ∨ z0

γ
,

where Z∗ = dQ/dP0 and z0 ≥ 0 is the largest constant such that
∫ 1/γ

0
(qt(Z

∗) ∨ z0)dt = 1.

We next show that it is indeed the numeraire for testing P against Q. Let P∗ ∈ M+ be specified by

dP∗

dP0
= γ ∧ γZ∗

z0
,

where Z∗/z0 is set to 0 if z0 = 0 and Z∗ = 0, and it is set to ∞ if z0 = 0 and Z∗ > 0. By straightforward
computations, we can check that Q is absolutely continuous with respect to P∗, P∗(Ω) ≤ 1, and dP∗/dP0 ≤ γ.
Moreover,

dQ
dP∗ =

dQ
dP

dP
dP∗1{Z∗>0} =

Z∗ ∨ z0
γ

= E∗.

Therefore, by Theorem 3.17 (it is easy to see that the result holds true even if P ∈ M+ is not a probability
measure), E∗ maximizes EQ[logX] under the constraint

∫
XdP∗ ≤ 1. Since an e-variable for P always
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satisfies the constraint
∫
XdP∗ ≤ 1, we know that E∗ is also log-optimal for testing P against Q, and thus it

is the numeiraire.
The special case of γ = 1 and Q ≪ P0 in the above example is precisely Theorem 3.17, with the log-optimal

e-variable E∗ = Z∗ = dQ/dP0 and z0 being the largest constant such that z0 ≤ Z∗ almost surely (typically
z0 = 0).

6.7.7 Testing exchangeability

Consider the problem of testing exchangeability in Section 2.6.6. For the data Z = (Z1, . . . , Zn), the null
hypothesis of exchangeability is

P = {P : Z
d
= Zσ under P for all permutations σ},

and Q is an alternative distribution of Z with density q, which is not in P. Let π be uniformly drawn from
Sn. In Section 2.6.6, we have verified that the random variable

E =
q(Z)

q(Zπ)
=

q(Z)
1
n!

∑
σ∈Sn

q(Zσ)

is an e-variable for P. To see that it is the numeraire for P against Q and further, q(Zπ) is the RIPr of q
onto P , we note that the distribution P∗ with density q(Zπ) is exchangeable, hence in P . This then yields the
above claim by Theorem 6.14, since dQ/dP∗ is the only e-variable which can be represented as a likelihood
ratio of Q to some element of the bipolar P◦◦ ⊇ P.

Bibliographical note

This chapter is largely shaped by treatment in Larsson et al. [2025]. Historically, the RIPr first appeared in
Csiszár and Tusnády [1984]. Foundational work was done by Li [1999], who proved (under some assumptions)
its uniqueness and an inequality that (in hindsight) yields the e-variable property of the numeraire, amongst
several other facts. Grünwald et al. [2024a] first described its key role in constructing optimal e-variables.
Lardy et al. [2024] subsequently extended the original definition to more general settings by relaxing some
conditions. Finally, Larsson et al. [2025] eliminated all conditions necessary to define the RIPr, but doing so
required defining it via the numeraire e-variable, as done in this chapter.

Grünwald et al. [2024a] also consider composite alternatives. They first consider a worst case optimality
criterion that they call GROW: finding an e-variable for P that maximizes the worst-case e-power over Q; we
find this to be a rather pessimistic objective (such an e-variable tuned for the worst case would not adapt to
simpler alternatives that could admit larger growth rates), but it does involve some nice mathematics such as
a joint information projection. This motivates their REGROW criterion, which is similar to our asymptotic
log-optimality objective (6.6).

The proof of Lemma 6.16 can be found in Larsson et al. [2025]. The numeraire for testing exchangeability
in Section 6.7.7 was obtained by Koning [2023b] and Larsson et al. [2025] using different techniques. The
numeraire for more general group invariant nulls has been derived in Pérez-Ortiz et al. [2024]. The numeraire
for one-parameter exponential families was derived in Grünwald et al. [2024b], and then in Larsson et al.
[2025] using different techniques; we follow the latter presentation. Exponential families are treated in much
more generality and detail by Grünwald et al. [2024b]. Csiszar and Matus [2003] has more details on the
reverse information projection for exponential families. The bounded mean example is a variant of one studied
in Waudby-Smith and Ramdas [2024], with the corresponding duality theory derived explicitly in Honda and
Takemura [2010].

The minimum KL divergence in Theorem 6.12 is closely related to, yet different from, the KLinf metric
found in the modern multi-armed bandit literature; see Agrawal et al. [2021] for a recent example. The exact
relationships are yet to be fully worked out. The strong duality in Theorem 6.12 also holds for some other
divergences than Kullback–Leibler (corresponding to ϕ(E) instead of logE for some concave ϕ). See [Larsson
et al., 2025, Section 6] for an example involving Rényi divergences, with ϕ(x) = x1−γ/(1− γ) for γ > 1.
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Chapter 7

Sequential anytime-valid inference using
e-processes

Classical sequential testing, as developed by Wald, involves specifying a particular stopping rule that achieves
a prespecified bound on the type-I and type-II errors. In contrast, this chapter deals with several central
concepts for sequential anytime-valid inference (SAVI). The latter is a new paradigm for sequential testing
(or estimation) that allows the statistician to stop at any arbitrary stopping time, possibly not anticipated or
specified in advance.

7.1 The problematic practice of peeking at p-values

Let us motivate SAVI procedures by describing the not-so-uncommon practice of peeking at p-values, and
identify the heart of the problem.

Consider a scientist in a psychology laboratory in a university who painstakingly collects data, subject by
subject, where each subject has to undergo an hour-long experiment. It appears entirely reasonable that they
may be interested in examining the data after every few subjects, for example by calculating a p-value. For
simplicity, assume that the scientist calculates a p-value Pn after seeing n subjects, so that P1, P2, . . . is a
sequence of p-values calculated on increasing amounts of data. (Assume for now that the statistical models
are well specified so that if the null hypothesis is true, Pn is indeed uniformly distributed.)

Peeking at p-values refers to the practice of stopping data collection when Pn ≤ α (such as 0.05, or some
other appropriate threshold, e.g., 0.04, if the scientist wants to avoid the appearance of stopping just after
the data appears significant at the 0.05 level). Why is this an issue? Because the final sample size of the
experiment is random, and in particular it is a stopping time

τ := inf{n ≥ 1 : Pn ≤ α}.

The heart of the issue is that even though

P(Pn ≤ α) ≤ α, for each n ∈ N,

it is to be typically expected that
P(Pτ ≤ α) > α.

To elaborate, even under the null hypothesis, it would be expected under most typical situations (like a
t-test p-value) that τ is almost surely finite, meaning that one will eventually stop and reject the null, and
P(Pτ ≤ α) = 1, meaning that we are predestined to make a type-I error! This is sometimes called “sampling
to a foregone conclusion”.

Of course, the catch is that when the data are reported in a scientific article, it is rarely reported that
the data were collected in this fashion (perhaps because the scientist may not even realize that this could
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create issues). Thus, it may be hard to detect and correct for such issues from the data alone: one really
needs to know the statistical protocol for collecting the data to identify this issue. This issue is well known
to be a key factor (of many) underlying the “reproducibility crisis” in many disciplines, such as psychology
and biomedical and social sciences, that was recognized and heavily discussed in the second decade of the
twenty-first century [Baker, 2016].

Since the desire to peek and analyze the data as it is being collected is fairly natural (who does not want
to potentially stop early and save time and money if that is possible?), it is sensible to provide statistical
techniques that can account for such peeking (without really knowing any of its details), rather than seeking
to ban it (the current solution, which cannot be enforced). That will be the goal of this chapter: to develop
sequential anytime-valid inferential (SAVI) procedures.

We begin by summarizing the dominant paradigm for sequential inference introduced by Wald, which
demonstrates the allure of sequential methods and dispels a myth that they are less effective than fixed
sample-size procedures because one has to account for the multiple looks at the data.

7.2 Wald’s sequential probability ratio test

Before we get into formal definitions, we present a numerical example that can be quite surprising to those
unfamiliar with sequential analysis. It convincingly brings out the allure of sequential methods compared to
batch methods (those that collect and analyze data as a single batch).

Suppose we have a coin and wish to test whether it is biased or not. Mathematically, we have access
to data X1, X2, . . . which are iid Bernoulli(p) random variables with unknown p ∈ (0, 1). Under the null
hypothesis, we suppose p = 1/2. For the sake of simplicity, under the alternative hypothesis it is p = 0.6. Let
the null and alternative densities be represented by f0, f1 respectively. For a fixed sample size test, the classic
Neyman-Pearson lemma dictates that the optimal test is the likelihood ratio test (LRT), which thresholds
the likelihood ratio

Ln =

n∏
i=1

f1(Xi)

f0(Xi)
,

meaning that we reject the null hypothesis when Ln is larger than some threshold γ. Different choices of n
and γ yield different type-I and type-II errors achieved by the test, but the classic Neyman-Pearson lemma
promises that no other test can achieve a better tradeoff of the two errors. If we desire a type-I error of
α = 0.05 and a type-II error of β = 0.05, a numerical calculation shows that one requires a sample of size
n = 280 for our problem setup, and the LRT rejects when L280 exceeds γ = 0.962 (equivalently, when at least
154 heads are observed). Note that Ln is an e-variable, but the Neyman-Pearson threshold is much smaller
than 1/α = 20, but is rather a quantile of Ln. It is indeed odd that we can reject the null for a threshold
smaller than 1, meaning even when the null has greater likelihood than the alternative.

In contrast, Wald’s sequential probability ratio test (SPRT) works by sampling the data one by one,
continually updating Lt. Indeed, (Lt)t∈N is an e-process, which will be formally studied in this chapter, so
the SPRT has a lot in common with the SAVI and e-value methodology, but also several differences that are
highlighted at the end of this section.

We describe SPRT below. If Lt falls below some threshold γ0, we give up and accept the null (more
rigorously, we do not reject the null); if it goes above some other threshold γ1, we reject the null. Else, we
keep sampling. It turns out that γ0 = β and γ1 = 1/α suffices to keep the type-I and type-II errors below
α and β respectively, as a consequence of Ville’s inequality, to be introduced later in this chapter. (These
choices are more conservative than the approximate thresholds of β/(1−α) and (1−β)/α often recommended
for the SPRT.) It can be shown that this procedure will stop almost surely under the null or alternative.

In summary, our experiments pitch the Neyman-Pearson LRT rule:

reject if L280 ≥ 0.963,

against a conservative variant of Wald’s SPRT rule, which does for t ≥ 1:

reject if Lt ≥ 20, accept if Lt ≤ 0.05, continue sampling otherwise.
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Numerical experiments show that for the SPRT, the expected sample size (equivalently, expected stopping
time) under the null is 137.7, while under the alternative it is 139.3. This is about half the number of samples
needed by the LRT, a remarkable improvement over the optimal batch test in such a simple setting!

We can also test the methods out when the data is neither drawn from the null or alternative; this is
often called the misspecified setting. When the bias of the coin is smaller than anticipated, e.g. p = 0.55, the
LRT has power 0.52 while the SPRT has power 0.48, which is quite similar, but the expected sample size of
SPRT is 234.5. When the bias is larger than anticipated, e.g., p = 0.65, both tests have power equal to one,
but the SPRT expected sample size is just 76.1. The numbers are summarized in Table 7.1.

Data generating distribution p = 0.5 p = 0.55 p = 0.6 p = 0.65
Setting null misspecified alternative misspecified

Expected sample size of SPRT 137.7 234.5 139.3 76.1
Pre-specified sample size of LRT 280 280 280 280
Power of SPRT 0.04 0.52 0.96 1.00
Power of LRT 0.05 0.48 0.95 1.00

Table 7.1: A comparison of SPRT and LRT for testing p = 0.5 against p = 0.6, with target type-I error rate
at 0.05 and target type-II error rate at 0.05. All numbers are produced with Monte Carlo simulations using
10,000 repetitions.

Wald proved that for simple nulls and alternatives, his SPRT provided the optimal tradeoff between type-I
error, type-II error and stopping time. He showed that any other stopping rule with lower type-I and type-II
errors must have larger expected stopping time. In light of this result, the aforementioned improvement of
the SPRT over the LRT is not a coincidence. We record this below for ease of reference.

Theorem 7.1: Wald’s SPRT over Neyman-Pearson’s LRT

Let α, β be the type-I and type-II errors of the LRT with n samples (using some threshold). Let α′, β′

be the type-I and type-II errors of the SPRT (using some thresholds), and τ be its stopping time. If
α ≤ α′ and β ≤ β′, then max(EP[τ ],EQ[τ ]) ≤ n.

Wald’s paradigm for sequential testing has been hugely successful: the literature on sequential analysis is
large and mature. Although using the same process and similar stopping rules, the SAVI goals deviate from
Wald’s goals in four significant ways:

1. Decisions versus evidence: Wald focused on decision theory, that is making a decision quickly with
predefined error rates. Our focus here is on designing measures of evidence that can be sequentially
updated. Of course, our evidence measures can be used to make decisions, but that is a secondary and
not primary goal for us. Said differently, we do not necessarily make binary decisions (accept or reject).
When using SAVI methods to make binary decisions, our rules will resemble Wald’s.

2. Single stopping time versus all stopping times: Wald focused on designing a single stopping time
(or rule) at which the scientist would reject or accept the null. We will instead provide a notion of
evidence (the e-process) that is anytime-valid in the sense that it has a guarantee (under the null) at
any stopping time. When SAVI techniques are applied to the setting of Wald’s SPRT, the likelihood
ratio e-process gives us a way of continually examining and updating evidence before (and leading up
to) Wald’s stopping time.

3. Differing optimality criteria: Our notion of optimality — log-optimality — is very different from
Wald’s notion of optimal tradeoffs of the two errors. For simple nulls and alternatives, it is remarkable
that the same statistic (the likelihood ratio martingale) simultaneously optimizes both objectives, but
this will in general not be true.

4. Beyond likelihood ratios: While the SPRT techniques presented above can be extended to certain
composite nulls and alternatives, it has typically always dealt with settings where likelihood ratios exist
(e.g., parametric settings, with a common reference measure). However, e-processes provide us with a
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universal language of handling any sequential testing problem: we will show that every sequential test
(for any composite, possibly nonparametric, null) can be obtained using e-processes.

We now move on to defining the basic concepts in the paradigm of e-processes.

7.3 Test supermartingales, sequential tests, and e-processes

There are four main SAVI tools: e-processes, p-processes, (1− α)-confidence sequences and level-α sequential
tests; it is immediately apparent that the latter two are associated with a predefined level α ∈ [0, 1] but the
former two are not. These are respectively the sequential analogs of e-variables, p-variables, (1−α)-confidence
intervals and level-α tests. We will primarily focus on e-processes because they are the central object; the
others can be easily obtained as a consequence of Ville’s inequality applied to one or more e-processes.

We begin with the technical background necessary for the sequential setting. We assume that the reader
is familiar with terminologies in stochastic processes, recapped below.

We work in a fixed filtered probability space, meaning that F refers to a filtration (Ft)t∈T (a nested
sequence of σ-algebras), where T is a finite or infinite set of indices starting from 0. Let F∞ =

⋃
t∈T Ft.

Further denote by T+ the set T \ {0}. We deal mainly with discrete time processes, with T = N0.
A sequence of random variables Y = (Yt)t∈T is called a process if it is adapted to F—i.e., if Yt is measurable

with respect to Ft for every t. A process Y is called predictable if Yt is measurable with respect to Ft−1 for
each t ≥ 1. Inequalities comparing processes are understood to hold at each t ∈ T.

Often F is chosen as the natural filtration of data, that is, Ft := σ(Xt), where Xt = (X1, . . . , Xt), with
F0 being trivial (F0 = {∅,Ω}). In this case Yt being measurable with respect to Ft means that Yt is a
measurable function of Xt. But F is sometimes a coarser filtration (we discard information) or a richer one
(for example allowing F0 = σ(U0) for a uniformly distributed random variable U0 that is independent of all
other randomness).

A stopping time (or rule) τ is a nonnegative integer valued random variable such that {τ ≤ t} ∈ Ft for
each t ≥ 0. In words: we know at each time whether the rule is telling us to stop or keep going. Denote by T
the set of all stopping times, implicitly depending on F , including ones that may never stop. For a stopping
time τ , the σ-algebra Fτ is defined by {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for every t ∈ T}.

As in previous chapters, the set of distributions P represents our null hypothesis. A level-α sequential
test for P is a binary process ϕ such that

sup
P∈P

P(∃t ≥ 1 : ϕt = 1) ≤ α. (7.1)

Interpreting ϕt = 1 as rejecting P, the above condition means that the probability that we will ever falsely
reject the null is at most α, meaning that with probability 1− α, ϕ equals the sequences of all zeros. In the
literature, these are also called one-sided or open-ended or power-one tests.

Without loss of generality, we can assume that if ϕt = 1, then ϕs = 1 for all s ≥ t. Further, we will define
ϕ∞ = limt→∞ ϕt = supt∈N ϕt, meaning that if a test did not reject at any finite time, then it also does not
reject at infinity.

Then, we can more easily identify a sequential test by the stopping time τ := inf{t ≥ 1 : ϕt = 1} with
the convention inf ∅ = ∞. Then, a level α test requires that τ <∞ with probability at most α under every
P ∈ P. We can then rephrase the requirement in (7.1) as:

EP[ϕτ ] ≤ α, (7.2)

for all P ∈ P and all τ ∈ T .
In the discrete-time setting of this chapter, an integrable process M is a martingale for P if

EP[Mt | Ft−1] =Mt−1 (7.3)

for all t ∈ T+, where all such relations between random variables are understood to hold P-almost surely. M
is a supermartingale for P if it satisfies (7.3) with “=” relaxed to “≤”.
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Definition 7.2: Test (super)martingales and e-processes

(i) A process M = (Mt)t∈T is called a test (super)martingale for P if for every P ∈ P, it satisfies
three properties: (a) M is P-almost surely nonnegative, (b) M is a (super)martingale under P,
and (c) EP[M0] ≤ 1. A family of processes (MP)P∈P is called a test (super)martingale family if
each MP is a test (super)martingale for P.

(ii) A sequence of e-values E = (Et)t∈T is called an e-process if it satisfies one of two equivalent
conditions: (a) EP[Eτ ] ≤ 1 for any stopping time τ ∈ T and any P ∈ P; (b) there exists a test
martingale family (MP)P∈P such that E ≤MP, P-almost surely for each P ∈ P.

The fact that the above two definitions (ii.a) and (ii.b) for an e-process are equivalent is nontrivial, but
its proof is omitted. In definition (ii.b), one can require (MP)P∈P to be a test supermartingale family instead
of a test martingale family, without altering the definition. This is a consequence of Doob’s decomposition
theorem; we invite the reader to fill in the details. It is clear that test (super)martingales are e-processes, but
not vice versa. We sometimes omit “for P” (as we did above) and it should be clear from context.

Definition 7.3: Asymptotic growth rate and log-optimality

An e-process M is said to be consistent against Q if Mt → ∞, Q-almost surely as t→ ∞. The lower
limit

lim inf
t→∞

logMt

t

is typically Q-almost surely a constant (which depends on Q), and in that case, we call that constant
the asymptotic growth rate of M against Q. The e-process M is asymptotically log-optimal if for any
other e-process M ′, we have

lim inf
t→∞

1

t
(logMt − logM ′

t) ≥ 0 in L1-convergence under Q.

Note that the asymptotic growth rate of any e-process for P against P ∈ P is always nonpositive. An
asymptotically positive growth rate implies consistency, but not vice versa; when an e-process is consistent
against Q, it need not have a positive asymptotic growth rate against Q. But in many simple examples (say
involving iid data), the asymptotic growth rate will indeed be positive.

E-processes can be converted to sequential tests using Ville’s inequality, which we introduce next.

7.4 Optional stopping and Ville’s inequality

We first state a cornerstone fact in probability theory, the optional stopping theorem, usually attributed
to Doob. A precursor to the optional stopping theorem is the following fact, called the supermartingale
convergence theorem: Any test supermartingale M for P has a well-defined limit, meaning that the random
variable M∞ exists as the (finite) P-almost sure limit of Mn.

Fact 7.4: The optional stopping theorem

If M is a test (super)martingale for P, then for any F -stopping times τ and σ ≤ τ , EP[Mτ | Fσ] ≤Mσ,
and in particular taking σ = 0, we have EP[Mτ ] ≤ 1. Consequently, if M is an e-process for P, then
EP[Mτ ] ≤ 1 for all P ∈ P.

It is important to note that this particular version of the optional stopping theorem does not have any
restrictions placed on the stopping time, and this is primarily due to the nonnegativity of the underlying
test supermartingale or e-process. If M were not nonnegative, conditions would have to be placed on the
stopping time or boundedness of the process for the same result to hold, but we do not concern ourselves
with such variants.

For our purposes, the relevant version of Ville’s inequality can be stated as follows.

VERSION SPRING BREAK, 2025
83



Figure 7.1: A visualization of sequential testing with Ville’s inequality applied to an e-process M .

Fact 7.5: Ville’s inequality

If M is an e-process for P, then the following three equivalent statements hold:

P
(
∃t ∈ N :Mt ≥

1

α

)
≤ α for every P ∈ P and α ∈ [0, 1];

⇐⇒ sup
P∈P

P
(
sup
t∈N

Mt ≥
1

α

)
≤ α for every α ∈ [0, 1]; (7.4a)

⇐⇒ sup
P∈P,τ≥0

P
(
Mτ ≥ 1

α

)
≤ α for every α ∈ [0, 1]. (7.4b)

Clearly, for any fixed t, Mt is an e-variable. Thus, P(Mt ≥ 1/α) ≤ α holds by Markov’s inequality. As
such, Ville’s inequality is best seen as a time-uniform generalization of Markov’s inequality that applies to
e-processes rather than e-variables.

Note that (7.4a) and (7.4b) usually only hold with inequality (for example, for the singleton P = {P}),
but it can hold with equality for larger nontrivial nonparametric classes P. If we were in continuous rather
than discrete time, and (Bt)t∈R+

is a standard (centered) Brownian motion, then for any nonzero λ, the
process Mλ = (exp(λBt − λ2t/2))t∈R+

can be checked to be a nonnegative continuous-time martingale. (A
continuous-time martingale M = (Mt)t∈R+

satisfies E[Mt|Fs] =Ms for all 0 ≤ s < t, where (Ft)t∈R+
is an

increasing chain of σ-algebras.) In this case, Ville’s inequality holds with equality. The same holds true for
many continuous-time and continuous-path martingales.

We also remark that a conditional version of Ville’s inequality is also true, though we do not utilize it
much. Specifically, if M is a test supermartingale for P, then

sup
P∈P

P
(
∃t ≥ s :Mt ≥

Ms

α

∣∣∣∣Fs) ≤ α for every α ∈ [0, 1].

Ville’s inequality effectively states that ϕt = 1{Mt≥1/α} yields a level α sequential test. A converse fact is
also true, as presented next.

Proposition 7.6

Every level α sequential test ϕ for P can be obtained by thresholding some e-process M for P at 1/α.
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Proof.

Define Mt = ϕt/α. Then Mt only takes on two values: 0 and 1/α. So Mt ≥ 1/α if and only
if ϕt = 1. The only thing left to check is that M is an e-process for P . Indeed, for any stopping
time τ and any P ∈ P, we have EP[Mτ ] = EP[ϕτ/α] ≤ 1 by (7.2). This completes the proof.

Thus, e-processes provide a complete framework for sequential testing. Instead of focusing on the test,
we can instead focus on constructing e-processes. However, we do not only think of e-processes as a tool
to derive tests. We think of e-processes as measures of evidence against the null: the larger they are (or
become), the more evidence we have against the null. We may threshold them to make decisions if we wish
to, but they retain interpretability without thresholding as well.

A practical use of e-processes without thresholding concerns the property of optional continuation
(discussed in Section 4.3), meaning that another scientist can continue an e-process obtained by a previous
scientist (peeking is allowed) by designing new experiments, and multiplying the new e-process to the value of
the previous e-process, to build a new e-process. Mathematically, this means, if MA

s is the time-s value of an
e-process MA, and MB is another e-process with MB

t = 1 for all t ≤ s, then M defined by Mt =MA
s∧tM

B
t is

an e-process. Intuitively, up to time s this process coincides with MA, and after time s the process carries
the evidence obtained from MA and continues with MB . The same statement holds true if s is not a fixed
time, but a stopping time. We put this part formally in the next proposition.

Proposition 7.7

Let MA and MB be two e-processes for P and τ a stopping time, such that MB
t = 1 on {t ≤ τ}. Define

a process M by Mt =MA
τ∧tM

B
t for t ∈ T. Then M is an e-process for P.

Proof.

For any P ∈ P let MA,P and MB,P be two test supermartingales that dominate MA and
MB, respectively, as in Definition 7.2 (ii.b). Clearly, Mt ≤ MA,P

τ∧tM
B,P
t . Below we show that

MP := (MA,P
τ∧tM

B,P
t )t∈T is a test supermartingale for P, which is sufficient to justify that M is

an e-process. For t ≥ 1, noting that {τ < t} ∈ Ft−1 and 1{τ<t}M
A,P
τ is Ft−1-measurable, we

get

EP[MP
t |Ft−1] = EP[MA,P

τ∧tM
B,P
t |Ft−1]

= EP[MA,P
τ∧tM

B,P
t 1{τ<t}|Ft−1] + EP[MA,P

τ∧tM
B,P
t 1{τ≥t}|Ft−1]

= 1{τ<t}M
A,P
τ EP[MB,P

t |Ft−1] + 1{τ≥t}EP[MA,P
t |Ft−1]

≤ 1{τ<t}M
A,P
τ MB,P

t−1 + 1{τ≥t}M
A,P
t−1

= 1{τ≤t−1}M
A,P
τ MB,P

t−1 + 1{τ>t−1}M
A,P
t−1M

B,P
t−1

=MA,P
τ∧(t−1)M

B,P
t−1 =MP

t−1.

Hence, MP is a test supermartingale, implying that M is an e-process according to Definition 7.2
(ii.b).

We make some more observations on the result in Proposition 7.7: First, whether and when the process
switches from MA to MB depends on data as well as other sources such as personal judgment after seeing
data, which are all included in the filtration F . Second, the process MB does not need to be specified before
τ ; it only needs to designed after τ happens. Third, switching from one e-process to another can happen
multiple times, and the output is always an e-process; this follows by applying Proposition 7.7 repeatedly.

We end this section by noting that Ville’s inequality (7.4a) immediately implies that if M is an e-process,
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then (infs≤t 1/Ms)t∈T is a p-process, as defined next.

Definition 7.8

A nonnegative process P = (Pt)t∈T is called a p-process if Pτ is a p-variable for any stopping time
τ ∈ T and any P ∈ P.

Thus an e-process measures evidence based on what we currently have, while a p-process measures
evidence based on the best evidence we ever accumulated in the past. The latter may appear more powerful,
but it is also perhaps an exaggerated sense of evidence: If only the quality, performance and promise of
companies could be judged by the maximum wealth they ever had! We present the financial interpretation of
e-processes in Section 7.6.

7.5 Log-optimality of likelihood ratio processes

Suppose that we are testing a simple hypothesis P versus a simple hypothesis Q ≪ P. If we observe iid data
X1, X2, . . . sequentially, then the likelihood ratio process M given by

M0 = 1 and Mt =

t∏
i=1

dQ
dP

(Xi) for t = 1, 2, . . . (7.5)

is an e-process adapted to the filtration generated by the data; we have encountered this e-process in
Section 7.2, used in the SPRT. Moreover, we can easily see that M is a test martingale for P. In fact, even if
the data is not iid, the likelihood ratio based on the first n data points,

Mn =
dQ
dP

(X1, . . . , Xn), (7.6)

is still a test martingale for P (which can be checked by conditioning).
When testing a simple hypothesis P, it is optimal to use a test martingale to construct e-processes: Any

e-process for P can be upper bounded by its Snell envelope under P (which is a test supermartingale), which
in turn can be dominated by the test martingale for P that is given by its Doob decomposition; we leave the
details to the reader.

In the setting of testing the simple null hypothesis P against Q ≪ P, the likelihood ratio Mt in (7.5)
is log-optimal among all e-variables using the first t data points for any t ∈ N. This claim follows from
Theorem 3.17, by noting that Mt is precisely the likelihood ratio of Q to P based on the first t data points.
But a stronger claim can be made about the optimality of the entire process, which we do next.

Theorem 7.9: The likelihood ratio process is log-optimal

Suppose that for testing a simple hypothesis P versus a simple hypothesis Q, the likelihood ratio process
M given by (7.6) exists for every n. Then, for any stopping time τ that is finite Q-almost surely, and
any e-process N for P,

EQ[logMτ ] ≥ EQ[logNτ ].

Proof.

Note that Nτ is an e-variable because N is an e-process, and Nτ is measurable with respect
to Fτ . Take any event A ∈ Fτ with P(A) = 0. Then,

Q(A) = EQ[1A] = EQ[1A1{τ<∞}] = lim
n→∞

EQ[1A1{τ≤n}] = lim
n→∞

EP[1A1{τ≤n}Mn] = 0,

where the last step follows because P(A) = 0 and Mn is finite. Thus, Q ≪ P on Fτ . Invoking
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Proposition 3.19 completes the proof.

Revisiting the example in Section 1.5 with the e-variable En = exp
(
µSn − nµ2/2

)
in (1.1), we can check

that
EP[En|En−1] = En−1EP[exp(µXn − µ2/2)] = En−1 for n ∈ N with E0 = 1,

and hence E is not only an e-process, but also a test martingale. This is true for all likelihood ratio processes
in (7.5), including the example in (1.5).

For testing a simple null P against a composite alternative Q, there are two options discussed in Section 3.7.
Both the mixture likelihood ratio in (3.6) and the plug-in likelihood ratio in (3.7) are actual test martingales
and hence e-processes.

For testing composite nulls, the situation is much more complicated, as non-trivial composite martingales
may not exist while non-trivial e-processes may exist. We discuss this case in Section 7.7 and later.

7.6 Testing by betting

There is a straightforward way to view test (super)martingales as wealth processes arising from games. The
key idea is as follows:

In order to test a null hypothesis P, we set up a game of chance, where the statistician bets on each
observation before observing it. This game must satisfy two properties:

(a) If the null is true, meaning P ∈ P, then no betting strategy should be able to systematically make
money (that is, it may make money by chance, but cannot guarantee making money);

(b) if the null is false, then there should exist “good” betting strategies that can make money (while one
never be certain of short term profit, there is a way to guarantee making money in the long run).

If such a game can be designed, then the wealth of the statistician in the game is directly a measure of
evidence against the null: the more the wealth (or more accurately, the larger the ratio of final to initial
wealth), the more evidence that the null is likely false.

Let us begin with the simplest example, as discussed in the previous section. We show how to interpret
testing P as a game in Algorithm 1.

Algorithm 1 Testing by betting: simple null P
1: Statistician’s initial wealth is W0 = 1
2: for t = 1, 2, . . . do
3: Statistician declares bet St : X → [0,∞] such that EP[St(X) | X1, . . . , Xt−1] ≤ 1
4: Observe Xt

5: Statistician’s wealth is updated as Wt =Wt−1 · St(Xt)

There are three immediate points worthy of comment. First, in the above game, the constraint on St is
simply that it is an e-variable for P conditioned on the past. This immediately implies that for any betting
strategy, the wealth process W is a test supermartingale for P.

Second, one may ask: what is the optimal bet? Assume for simplicity that the alternative Q is simple,
and that P ≪ Q. Then, the wealth can grow exponentially fast under Q, and so it is natural to optimize the
exponent. This means choosing St to optimize EQ[logSt(X) | X1, . . . , Xt−1] subject to St being an e-variable
for P. The answer was already derived in Theorem 3.17: it is the likelihood ratio of Q to P, conditioned
on X1, . . . , Xt−1 (this conditioning is irrelevant if P and Q are iid product distributions on X∞, but it is
relevant if they are not). Thus, the log-optimal wealth process in this game is given precisely by (7.5).
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The last point is that if one wants to test a composite null P, the only alteration to the protocol is to
require that St is an e-variable for P, meaning that the constraint in the above protocol must hold for all
P ∈ P. Then, the wealth process W is a test supermartingale for P.

The reader may now naturally wonder how e-processes can be interpreted in this testing by betting
framework, as opposed to simply test supermartingales. The answer is that their game-theoretic interpretation
is slightly more involved. The statistician does not play a single game against P , but instead plays a separate
game against each P ∈ P, and accepts its net wealth as the worst wealth amongst all these games. This is
made explicit in Algorithm 2.

Algorithm 2 Testing by betting: composite null P
1: for P ∈ P do
2: Statistician’s initial wealth in game P is W P

0 = 1

3: for t = 1, 2, . . . do
4: Statistician declares bet SP

t : X → [0,∞] such that EP[SP
t (X) | X1, . . . , Xt−1] ≤ 1

5: Observe Xt

6: Statistician’s wealth in game P is updated as W P
t =W P

t−1 · SP
t (Xt)

7: Statistician’s overall wealth is updated as Wt = infP∈P W
P
t

The above interpretation stems directly from the second of the two equivalent definitions of e-processes.
There are some difficulties in the above game: how do we instantiate and play (potentially uncountably)
infinitely many games? How do we separately specify a betting strategy in each game? Further, there may
be measure-theoretic subtleties associated with the infP∈P operation. We sidestep these issues here. For
us, the game-theoretic interpretation of e-processes is just that: an interpretation. It helps us understand
the relationship to test supermartingales, and indeed recognize why e-processes are a more general concept.
However, we will never actually set up and play such a game explicitly in order to derive and use sensible
e-processes in practice. Those can be derived more directly, as we shall see next.

7.7 The universal inference e-process

The previous sections have emphasized the fixed-n view, in that the split and subsampled likelihood ratio
e-variables were not e-processes. We now note that there is a variant of universal inference that directly
yields an e-process. Define E0 = 1 and

Et =

t∏
i=1

q̂i−1(Xi)

p̂t(Xi)
, (7.7)

where q̂i−1 ∈ Q is allowed to depend on X1, . . . , Xi−1 and p̂t ∈ P is the maximum likelihood estimator in
P based on X1, . . . , Xt. Note that the numerator can be updated in an online fashion, but all terms in the
denominator need to be recalculated after observing each new data point.

Proposition 7.10

The process E in (7.7) is an e-process for P.

The proof is simple and mimics the argument for the split likelihood ratio e-variable. By definition of p̂n
being the maximum likelihood estimator for P, we see that for each P in P,

Et ≤
t∏
i=1

q̂i−1(Xi)

p(Xi)
,

where the right hand side is a test martingale for P, thus verifying the defining property of an e-process.
One may view this, and other variants of universal inference, as calculating the ratio

out-of-sample alternative likelihood
in-sample null likelihood

.
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To clarify, each q̂i−1 is evaluated on an independent data point Xi, which is outside the sample that was
used to choose q̂i−1. In contrast, p̂n is evaluated on X1, . . . , Xt, which are all inside the sample that was used
to choose it. Using the language of overfitting in machine learning, we overfit under the null by looking at
its “training likelihood”, but we do not overfit under the alternative, by looking at its “test likelihood”. This
is why the threshold of 1/α does not depend on P and Q. This is contrast to generalized likelihood ratio
methods, which take ratios of maximum likelihoods under alternative and null, but the threshold must then
be adjusted (made larger) to take into account the difference in complexities of P and Q.

We remark briefly again that instead of the plug-in method for handling composite Q, we can use the
mixture method instead. In particular, for any distribution ν over Q,

Et =

∫
Q

t∏
i=1

q(Xi)

p̂t(Xi)
dν(q)

is an e-process. Without too much ambiguity, we refer to this also as being the universal inference e-process.

7.8 Sequential e-values and empirically adaptive e-processes

In this section, we formally define sequential e-variables (e-values), and a specific form of e-processes built
from these sequential e-variables. As in the previous section, we will use T is a finite or infinite set of indices
starting from 0, and T+ is the set T \ {0}.

Definition 7.11: Sequential e-values

The e-variables Et with t ∈ T+ for P, adapted to the filtration F , are sequential if EP[Et|Ft−1] ≤ 1
for all t ∈ T+ and P ∈ P. In case the filtration F is not specified, by default we meant the natural
filtration; in other words, the required condition is EP[Et | E1, . . . , Et−1] ≤ 1 for all t ∈ T+ and P ∈ P.

A possible interpretation of sequential e-variables is that E1, E2, . . . are obtained by laboratories 1, 2, . . .
in this order, and laboratory t makes sure that its result Et is a valid e-variable given the previous results
E1, . . . , Et−1. Note that if sequential e-variables Et, t ∈ T+ for P are exact, then they must satisfy
EP[Et|F0] = 1 for each t ∈ T+ because of the tower property of conditional expectation.

We can build e-processes directly based on sequential e-variables, unspecific to the underlying data or
hypothesis. The first simple observation is that the product process of sequential e-values is always an
e-process.

Proposition 7.12

Let (Et)t∈T+
be a sequence (finite or infinite) of sequential e-variables for P. Define

Mt =

t∏
s=1

Es for t ∈ T+ and M0 = 1.

Then M is an e-process for P.

The proof follows by noting that for P ∈ P, EP[Mt|Ft−1] = Mt−1EP[Et|Ft] ≤ Mt−1, and thus (Mt)t∈T is a
test supermartingale, sufficient for an e-process.

More generally, e-processes can be constructed from sequential e-variables through testing by betting
discussed in Section 7.6. In Chapter 8, we will see that this is actually the only admissible way of constructing
e-processes based only on the sequential e-variables. In what follows, the filtration F is the natural filtration
of these e-variables.
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Definition 7.13: Log-optimal and empirically adaptive e-processes

Let (Et)t∈T+ be a sequence (finite or infinite) of sequential e-variables.

(i) An e-process built on (Et)t∈T+ is M = (Mt)t∈T defined by

Mt =

t∏
s=1

((1− λs) + λsEs) for t ∈ T+ and M0 = 1, (7.8)

where for t ∈ T+, λt is any measurable function of E1, . . . , Et−1 (i.e., (λt)t∈T+
is predictable wrt

F) and takes value in [0, 1].

(ii) For an alternative probability measure Q, the Q-log-optimal e-process built on (Et)t∈T+
is the

e-process in (7.8) such that λt for t ∈ T+ solves the following equation

λt = argmax
λ∈[0,1]

EQ [log ((1− λ) + λEt) | Ft−1] . (7.9)

(iii) For a parameter γ ∈ (0, 1], the empirically adaptive e-process is the e-process in (7.8) such that
λ1 = 0 and λt for t ≥ 2 solves the following equation

λt = argmax
λ∈[0,γ]

1

t− 1

t−1∑
s=1

log ((1− λ) + λEs) .

Note that similarly to the product process in Proposition 7.12, the construction (7.8) guarantees that Mt

is a supermartingale.
To interpret the Q-log-optimal e-process built on (Et)t∈T, at every step t, λt is chosen to maximize the

e-power in Definition 3.9, which is allowed to use all past observed e-values. It is not necessarily log-optimal
among all e-processes testing the alternative Q; it is only log-optimal within the class in (7.8). If Et is
independent of Ft−1 under Q, then λt in (7.9) is given by maximizing the unconditional expectation,

λt = argmax
λ∈[0,1]

EQ [log ((1− λ) + λEt)] ,

which is deterministic.
The empirically adaptive martingale does not have a specific alternative, and at every step t, λt is chosen

to maximize the e-power with respect to the empirical distribution of E1, . . . , Et−1; this also explains the
choice of the name. The parameter γ controls an upper bound for λt, and an uninformative default choice
can be γ = 1/2.

In the construction of the empirically adaptive e-process M , for t ≥ 2, by Theorem 3.11, λt = 0 if and only
if the empirical mean of E1, . . . , Et−1 is less than or equal to 1, that is,

∑t
s=1Es ≤ t. It is straightforward

to verify that M is a martingale with respect to the natural filtration of the e-variables if these e-variables
are exact; otherwise it is a supermartingale. In particular, Mτ is an e-variable for any stopping time τ . The
main advantage of the empirically adaptive martingale is the simple observation that if the e-variables are iid
under the alternative hypothesis, then it will have good e-power against the null hypothesis. It generally has
good e-power if the iid assumption holds approximately, and it always has a valid type-I error control at level
α for the standard threshold of rejection 1/α. The following result formalizes the claim about good e-power
in an asymptotic setting.

VERSION SPRING BREAK, 2025
90



Theorem 7.14

Let (Et)t∈N be an infinite sequence of e-variables that is iid under the alternative probability Q such
that EQ[logE1] is finite. The empirically adaptive e-process M with γ = 1 satisfies the following:

(i) Asymptotic log-optimality of M holds: for any e-process M ′ built on (Et)t∈N, we have

lim
t→∞

1

t
(logMt − logM ′

t) ≥ 0 in L1(Q).

(ii) Consistency of M holds: if EQ[E1] > 1, then Mt → ∞ Q-almost surely as t→ ∞.

We omit a formal proof of Theorem 7.14, but its intuition is very simple. Part (i) follows essentially by
proving that asymptotically, by the iid assumption, λt in the empirically adaptive martingale converges in
probability to the optimal value λ∗ that maximizes (over λ) the e-power of 1 − λ + λE1. The e-power of
1− λ∗ + λ∗E1 is the asymptotic growth rate of the Q-log-optimal e-process built on (Et)t∈N by the law of
large numbers. Thus, M has an asymptotic growth rate that is the same as the Q-log-optimal e-process,
which is optimal among all choices of e-processes built on (Et)t∈N. Part (ii) follows by using Theorem 3.11 to
show that the optimal growth rate is positive under the assumption EQ[E1] > 1, and hence Mt, which has
the optimal growth rate asymptotically, grows to infinity as t→ ∞.

It should be clear that both statements in Theorem 7.14 also holds for the Q-log-optimal e-process. The
advantage of the empirically adaptive e-process is that one does not need to know Q.

7.9 Obtaining an e-process from e-variables using a time-mixture

While the numeraire has been presented as a method for obtaining a single e-variable, one can convert a
sequence of numeraires (calculated at different sample sizes n) into an e-process using the following simple
black-box construction.

For all n ≥ 1, let E(n) be an e-variable for P based on the first n data points X1, . . . , Xn. Take any
probability mass function w on the natural numbers N = {1, 2, . . .} and define

Mn =
∑
j≤n

w(j)E(j). (7.10)

with M0 = 1 by default. Note that M is an increasing process, which is unusual for e-processes.

Proposition 7.15

The time-mixed process M defined in (7.10) is an e-process for P.

Proof.

For any P ∈ P and any random time τ (possibly, but not necessarily, a stopping time),

EP[Mτ ] = EP

 ∞∑
n=1

1{τ=n}
∑
j≤n

w(j)E(j)

 = EP

∑
j≥1

w(j)E(j)
∞∑
n=j

1{τ=n}

 .
Since

∑∞
n=j 1{τ=n} ≤ 1 and each E(j) is an e-variable, we get

EP[Mτ ] ≤
∑
j≥1

w(j)EP
[
E(j)

]
≤ 1,

concluding the proof.
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Referring again to the motivation at the start of this section, let E(n) be the numeraire for P against
some Q based on X1, . . . , Xn (more precisely, that means testing P against Q conditioned on the σ-algebra
generated by X1, . . . , Xn). In general, E(1), E(2), . . . is not an e-process. Now, choose

w(n) =
c

n(log n)2
,

for some normalizing constant c > 0 that ensures
∑
n∈N w(n) = 1. we get that

logMn ≥ logE(n) − log n− 2 log log n−O(1).

Thus,

lim
n→∞

1

n
logMn − 1

n
logE(n) = 0

meaning that the asymptotic growth rate of our e-process M matches that of the sequence of numeraire
e-variables.

7.10 E-processes avoid reasoning about hypothetical worlds

We end the chapter with a somewhat bizarre example involving a very subtle (mis)use of p-values with
optional stopping, whose solution is provided by employing e-processes.

Example 7.16: Quantum-like interference in ordinary experiments.

Consider a data scientist, Bob, at an IT company. Bob runs an A/B test, which is a two-sample test
intended to compare two options A and B. Bob fully intends to collect 10,000 observations from the very
start. Each observation involves a person choosing between options A and B. The data can thus be seen
as a sequence of heads and tails, and let us assume that the null hypothesis is that the coin is fair. At
the end of the experiment, Bob finds that his p-value is 0.04, and he is satisfied with that decision, and
rejects the null. Later that day, he reports these results to his boss, Alice. Alice is impressed with Bob’s
statistical rigor, as well as patience. Alice asks Bob how he managed to control his curiosity to look at
the data before the experiment was completed. Bob replied that he indeed looked at the data once, after
5000 points were collected, but he simply let the experiment go on. Alice proceeds to ask Bob: “If you
had seen over 4800 tails in the first 5000 tosses, what would you have done?”. Bob replies that he would
have of course stopped the experiment. Alice is disappointed, and tells Bob that his reported p-value of
0.04 is incorrect. Bob protests and asks why this thought experiment in a hypothetical world affects the
interpretation of the data what actually happened in the real world. Alice responds that Bob’s answer
demonstrates that he did not actually have a fixed sample size: he had a data-dependent decision rule,
because the sample size across different (hypothetical) runs of the experiment is sometimes 5000 and
sometimes 10,000. This changes the p-value calculation, which assumed a fixed sample size of 10,000. A
dejected Bob returns to his office to attempt a recalculation of the p-value based on an examination of
when he would have stopped in these hypothetical worlds (or to re-run the experiment again, and not
peek at the data).

While the numbers used in the above example were intentionally extreme in order to make the responses
seem believable, what the above example really demonstrates is that reasoning about the validity of p-
values requires reasoning about (all possible) “hypothetical worlds”. Bob’s answers to what-if questions in
hypothetical worlds affects the validity of his p-value in the real world that did occur. This is clearly not a
desirable property, since it is practically infeasible, and indeed one that is often ignored in theory and practice.
Despite the small effect on the final p-value that this reasoning may have had in the current experiment (due
to the extreme numbers), it points to a fundamental issue that could have a larger effect in other settings,
where it may also be more difficult to address.

The effect described above is quantum-like in the sense that merely observing the experiment once before
its completion changes its properties. The mere possibility of interference in the experiment seems to have
actually interfered in its validity.
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If the final evidence reported was E10,000, where (En)n≥1 is an e-process, then this issue would have been
avoided. Indeed, because 5000 and 10,000 are both valid stopping times, it does not matter that in some
other hypothetical world, Bob might have stopped at time 5000. Whenever Bob stops in any world, the
reported e-value is a valid e-value. (Note that we really do require (En) to be an e-process and not a sequence
of e-values. Indeed, if En is the numeraire after n steps, reporting E10,000 would not be valid if (En) was not
coincidentally an e-process.)

Bibliographical note

The sequential probability ratio test described in Section 7.2 was introduced in Wald [1945, 1947], with
its optimality proved in Wald and Wolfowitz [1948]. The log-optimality of the likelihood ratio process
(Theorem 7.9) appears in a more restricted form in Koolen and Grünwald [2021]; our result is more general.

Without the term e-process being used, the second definition of an e-process was employed in Howard et al.
[2020], while the first was later proposed in Grünwald et al. [2024a]. Despite having these new definitions, both
papers still primarily focused on test supermartingales obtained as products of e-variables. The equivalence
of the two definitions of e-processes was proved in Ramdas et al. [2020] using Snell envelopes and Doob
decompositions. Ramdas et al. [2022] showed the fundamental difference between e-processes and test
supermartingales in their study of testing exchangeability. Certain key geometric concepts like fork-convexity
play a key role: test supermartingales for P are also test supermartingales for the closed fork-convex hull of
P but this is not true for e-processes.

The universal inference e-process appears in Wasserman et al. [2020, Chapter 8], but it is a well known
statistic in sequential inference. For example it is called the adaptive likelihood ratio in Tartakovsky et al.
[2014, §5.4.2], but they do not appear to define or study e-processes as a more general concept beyond this
example. Dixit and Martin [2023] proved that when using a particular nonparametric mixture technique
(predictive recursion), universal inference is asymptotically log-optimal.

The modern framework of testing by betting appears in Shafer and Vovk [2019], but its roots can be
traced all the way back to Ville [1939]. The optional stopping theorem was proved by Doob [1953]. A modern
self-contained proof of Ville’s inequality [Ville, 1939] can be found in Howard et al. [2020].

The predictable process (λt)t∈T+
in the empirically adaptive e-process is also called the plug-in betting

strategy, or the optimal strategy for the growth rate adaptive to the particular alternative (GRAPA), which
was studied by Waudby-Smith and Ramdas [2024]. Sequential e-variables were first defined in Vovk and
Wang [2021] with respect to their natural filtration. Theorem 7.14 is based on Wang et al. [2025] and its
proof can be found in Wang et al. [2025, Theorem 3].
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Chapter 8

Handling multiple e-values

In this chapter, we discuss several methods handling multiple e-values. Throughout the chapter, let E1, . . . , EK
be K e-variables, where K ≥ 2 is a fixed positive integer. The presence of multiple e-values arises in multiple
testing as in Chapter 9 but it also can arise in single testing with e-values computed from different parts
of the data or data splitting as in Chapters 5 and 7. In this chapter, we do not distinguish how they are
computed, but focus on handling e-variables for some common hypothesis.

8.1 Merging e-values under arbitrary dependence

An important advantage of e-values over p-values is that they are easy to combine. This is the topic of this
section, in which we consider the general case, without any assumptions on the joint distribution of the
input e-variables. The cases of independent e-variables or those with some specific dependence structures
are considered in the next section. In what follows, inequalities between functions are understood to hold
everywhere.

Definition 8.1: Merging functions for e-values

(i) An e-merging function (of K e-values) is an increasing Borel function F : [0,∞)K → [0,∞) such
that for any hypothesis, F (E1, . . . , EK) is an e-variable for any e-variables E1, . . . , EK .

(ii) An e-merging function F is symmetric if F (e) is invariant under any permutation of e.

(iii) An e-merging function F dominates an e-merging function G if F ≥ G. The domination is strict
if F ≥ G and F (e) > G(e) for some e ∈ [0,∞)K . An e-merging function is admissible if it is not
strictly dominated by any e-merging function.

(iv) An e-merging function F essentially dominates an e-merging function G if, for all e ∈ [0,∞)K ,

G(e) > 1 =⇒ F (e) ≥ G(e).

We will treat K as fixed and will omit the dimension for an e-merging function, which should be clear
from the context. Similarly to the situation of Section 2.3, the defining property of F in Definition 8.1 (i) is
required to hold for any hypothesis, but it suffices for F to satisfy the property for one atomless probability
P on some (Ω,F); this is formally justified in Appendix A.1.

Although an e-variable may take the value ∞, this occurs with 0 probability under the null hypothesis.
Hence, it is safe to set the value of F to ∞ if any of its input is ∞. Therefore, without loss of generality, all
e-merging functions in this text are defined on [0,∞)K , and this spares us from specifying terms such as
0×∞ in our analysis.

The increasing monotonicity assumed for e-merging functions reflects the natural assumption that larger
individual e-values represent stronger evidence against the null hypothesis, and thus producing a larger
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e-value.
Remark 8.2. An increasing function on RK for K ≥ 2 is not automatically Borel, although it is when K = 1.
An example is given in the discussion after Theorem 4.4 of Graham and Grimmett [2006].

The interpretation of domination is self-evident: We would hope an e-merging function to be large,
providing useful e-values. The notion of essential domination weakens that of domination in a natural way:
We require that F is not worse than G only in cases where G carries evidence. A fact about admissibility is
that any e-merging function is dominated by an admissible e-merging function. For this reason, we are only
interested in admissible e-merging functions.

An important example of e-merging function is the arithmetic mean MK , defined by

MK(e1, . . . , eK) =
e1 + · · ·+ eK

K
, e1, . . . , eK ∈ [0,∞).

Another example is the weighted arithmetic mean. Let ∆n be the standard simplex in Rn for n ∈ N, that is,

∆n =

{
(x1, . . . , xn) ∈ [0, 1]n :

n∑
k=1

xk = 1

}
.

It is straightforward to verify that for λ = (λ1, . . . , λK+1) ∈ ∆K+1, the function

Mλ : (e1, . . . , eK) 7→
K∑
k=1

λkek + λK+1, (8.1)

is an e-merging function. We will refer to Mλ as the λ-weighted arithmetic mean, although strictly speaking
it is a weighted average of the input vector (e1, . . . , eK) and the constant 1.

We present two main results in this section. First, the arithmetic mean essentially dominates all other
symmetric e-merging functions. Second, all admissible e-merging functions take the form of Mλ.

Proposition 8.3

The arithmetic mean MK essentially dominates any symmetric e-merging function.

Proof.

Fix an atomless probability measure P. Let F be a symmetric e-merging function. Suppose
for the purpose of contradiction that there exists (e1, . . . , eK) ∈ [0,∞)K such that

b := F (e1, . . . , eK) > max

(
e1 + · · ·+ eK

K
, 1

)
=: a. (8.2)

Let SK be the set of all permutations of {1, . . . ,K}, π be randomly and uniformly drawn from
SK , and (D1, . . . , DK) := (eπ(1), . . . , eπ(K)). Further, let (D′

1, . . . , D
′
K) := (D1, . . . , DK)1A,

where A is an event independent of π and satisfying P(A) = 1/a (the existence of such random
π and A is guaranteed for any atomless probability space by Lemma A.1 in the Appendix).

For each k, since Dk takes the values e1, . . . , eK with equal probability, we have EP[Dk] =
(e1 + · · ·+ eK)/K, which implies EP[D′

k] = (e1 + · · ·+ eK)/(Ka) ≤ 1. Together with the fact
that D′

k is nonnegative, we know D′
k is an e-variable for P. Moreover, by symmetry,

EP[F (D′
1, . . . , D

′
K)] = P(A)F (e1, . . . , eK) + (1− P(A))F (0, . . . , 0) ≥ b/a > 1,

a contradiction. Therefore, we conclude that there is no (e1, . . . , eK) such that (8.2) holds.

In particular, Proposition 8.3 implies that if F is an e-merging function that is symmetric and positively
homogeneous (i.e., F (λe) = λF (e) for all λ > 0; this is satisfied by e.g., the geometric mean or the minimum),
then F is dominated by MK .
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It is clear that the arithmetic mean MK does not dominate every symmetric e-merging function; for
example, the convex mixtures of the trivial e-merging function 1 and MK , that is, λ+(1−λ)MK for λ ∈ [0, 1],
are pairwise non-comparable with respect to the relation of domination.

In the theorem below, we show that each function Mλ in (8.1) is admissible and that the class (8.1) is
precisely the class of all admissible e-merging functions. Moreover, every e-merging function is dominated by
one of (8.1).

Theorem 8.4

For a function F : RK+ → R+,

(i) if F is an e-merging function, then F ≤ Mλ for some λ ∈ ∆K+1;

(ii) F is an admissible e-merging function if and only if F = Mλ for some λ ∈ ∆K+1.

The proof of Theorem 8.4 is put in Chapter 11, as it requires several other advanced technical results.

8.2 Independent e-values and their products

In this section we consider merging functions for independent e-values.

Definition 8.5: Merging functions for independent e-values

(i) An ie-merging function is a Borel function F : [0,∞)K → [0,∞) such that for any hypothesis,
F (E1, . . . , EK) is an e-variable for any independent e-variables E1, . . . , EK .

(ii) An ie-merging function F weakly dominates an ie-merging function G if, for all e1, . . . , eK ,

(e1, . . . , eK) ∈ [1,∞)K =⇒ F (e1, . . . , eK) ≥ G(e1, . . . , eK).

The corresponding definitions of domination, strict domination, and admissibility are obtained from
Definition 8.1 by replacing “e-merging” with “ie-merging”; this also applies to the later definition of se-merging
functions.

One subtle distinction of the above definition from e-merging functions in the previous section is that we
do not require increasing monotonicity in all arguments for the ie-merging function. This relaxation is useful
in the broader class of se-merging functions, which will be explained in Section 8.3.

Similarly to the arithmetic mean for arbitrarily dependent e-values, there is an important ie-merging
function: the product ΠK , defined by

ΠK(e1, . . . , eK) =

K∏
k=1

ek, e1, . . . , eK ∈ [0,∞). (8.3)

For weak dominance, we require that F is not worse than G if all input e-values carry evidence. This
requirement is very weak because, especially for a large K, we are also interested in the case where some of
the input e-values are below 1.

The following proposition gives a simple condition for admissibility.

Proposition 8.6

Fix an atomless probability measure P ∈ Π. For an increasing Borel function F : [0,∞)K → [0,∞),
if EP[F (E)] = 1 for all vectors E of exact e-variables (resp., for all vectors E of independent exact
e-variables), then F is an admissible e-merging function (resp., an admissible ie-merging function). For
the statement on the ie-merging function, increasing monotonicity of F is not needed.
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Proof.

It is obvious that F is an e-merging function (resp., ie-merging function). Next we show that
F is admissible. Suppose for the purpose of contradiction that there exists an ie-merging function
G such that G ≥ F and G(e1, . . . , eK) > F (e1, . . . , eK) for some (e1, . . . , eK) ∈ [0,∞)K . Take a
vector (E1, . . . , EK) of independent exact e-variables such that P((E1, . . . , EK) = (e1, . . . , eK)) >
0. Such a random vector is easy to construct by considering any distribution with a positive
mass on each of e1, . . . , eK . Then we have

P(G(E1, . . . , EK) > F (E1, . . . , EK)) > 0,

which implies
EP[G(E1, . . . , EK)] > EP[F (E1, . . . , EK)] = 1,

contradicting the assumption that G is an ie-merging function. Therefore, no ie-merging
function strictly dominates F . Noting that an e-merging function is also an ie-merging function,
admissibility of F is guaranteed under both settings.

If E1, . . . , EK are independent e-variables, their product E1 . . . EK will also be an e-variable. This is the
analogue of Fisher’s method for p-values, according to the rough relation e ∼ 1/p mentioned in Section 2.3.
Fisher’s method will be discussed in Chapter 11. The ie-merging function ΠK is admissible by Proposition 8.6.
More generally, we can see that the U-statistic functions Un, defined by

Un(e1, . . . , eK) =
1(
K
n

) ∑
{k1,...,kn}⊆{1,...,K}

ek1 . . . ekn , n ∈ {0, 1, . . . ,K}, (8.4)

and their convex mixtures are ie-merging functions. Notice that this class includes product (for n = K),
arithmetic average MK (for n = 1), and constant 1 (for n = 0). Proposition 8.6 implies that the U-statistic
functions in (8.4) and their convex combinations are admissible ie-merging functions.

Let us now establish a very weak counterpart of Proposition 8.3 for independent e-values; on the positive
side it will not require the assumption of symmetry needed for Proposition 8.3.

Proposition 8.7

The product ie-merging function ΠK weakly dominates any ie-merging function.

Proof.

Indeed, suppose that there exists (e1, . . . , eK) ∈ [1,∞)K such that

F (e1, . . . , eK) > ΠK(e1, . . . , eK) = e1 · · · eK .

Fix an atomless P ∈ Π. Let E1, . . . , EK be independent random variables such that each Ek for
k ∈ {1, . . . ,K} takes values in the two-element set {0, ek} and Ek = ek with probability 1/ek.
Then each Ek is an e-variable but

EP[F (E1, . . . , EK)] ≥ F (e1, . . . , eK)P(E1 = e1, . . . , EK = eK)

> e1 · · · eK(1/e1) · · · (1/eK) = 1,

which contradicts F being an ie-merging function.

A natural question is whether the convex mixtures of (8.4) form a complete class of admissible ie-merging
functions. They do not, as shown by the following example.
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Example 8.8

Define a function f : [0,∞)2 → [0,∞) by

f(e1, e2) =
1

2

(
e1

1 + e1
+

e2
1 + e2

)
(1 + e1e2) .

Using Proposition 8.6, one can check that f is an admissible ie-merging function. Nevertheless, it is
different from any convex mixture of (8.4).

The assumption of the independence of e-variables E1, . . . , EK is not necessary for the product E1 · · ·EK
to be an e-variable. For instance, if the e-variables E1, . . . , EK are negative lower orthant dependent, meaning
that

P

 ⋂
k∈[K]

{Ek ≤ xk}

 ≤
∏
k∈[K]

P (Ek ≤ xk) for all (x1, . . . , xK) ∈ RK , (8.5)

then the product ΠK and any U-statistic functions in (8.4) of these e-variables are also e-variables. Clearly, if
the central inequality in (8.5) is replaced by an equality, then we get independence. In the next section, we
consider a particularly useful class of e-variables for which the product and the U-statistic functions are valid
merging functions.

8.3 Sequential e-values and martingale merging functions

The notion of sequential e-variables generalizes that of independent e-variables, and it appears in several
natural contexts that we will explain later. For conditional expectations, since they are defined in an
almost-sure sense, we omit “almost surely” in their statements.

Definition 8.9: Sequential e-values and their merging functions

(i) The e-variables E1, . . . , EK for P are sequential if EP[Ek | E1, . . . , Ek−1] ≤ 1 for all k ∈ [K] and
P ∈ P.

(ii) An se-merging function is a Borel function F : [0,∞)K → [0,∞) such that for any hypothesis,
F (E1, . . . , EK) is an e-variable for any sequential e-variables E1, . . . , EK .

(iii) An se-merging function F is exact if, for any hypothesis, F (E1, . . . , EK) is an exact e-variable for
all sequential exact e-variables E1, . . . , EK .

Sequential e-variables can also be defined with a general filtration (Ft)t∈{0,1,...,K} instead of the one
generated by E1, . . . , EK ; this is treated in Chapter 7.

It is straightforward to check that all convex mixtures of (8.4) are se-merging functions. Since independent
e-variables are sequential, se-merging functions also produce a valid e-variable for independent e-variables.
Example 8.8 gives an ie-merging function but not an se-merging function.

Among se-merging functions, the convex mixtures of (8.4) are admissible. They are also admissible in the
class of ie-merging functions by Proposition 8.6. We also note that it suffices for E1, . . . , EK to be sequential
in any order for these merging methods to be valid.

A particular class of se-merging functions, larger than (8.4), is defined below.
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Definition 8.10: Martingale merging functions

An function F : [0,∞)K → [0,∞) is a martingale merging function if

F (e1, . . . , eK) =

K∏
k=1

(1− λk + λkek) (8.6)

where λk := λk(e1, . . . , ek−1) for k ≥ 2 is a function of e1, . . . , ek−1 taking values in [0, 1], and λ1 ∈ [0, 1]
is a constant.

One can verify that, although not completely obvious, the arithmetic mean, the product and other
U-statistic functions in (8.4) are indeed all martingale merging functions. We leave these as exercises for the
reader.

A martingale merging function in (8.6) has a clear betting interpretation: At each round k, one uses λk
proportion of the capital to bet on the next e-value. With this interpretation, the arithmetic mean corresponds
to betting a fixed amount 1/K (but not a fixed proportion) at each round. The e-process (Mt)t∈T built
on (Et)t∈T+

in Definition 7.13 is constructed by merging e-values with a martingale merging function in
Definition 8.10 for each fixed t and also in a consistent way across different t.

The above connection to betting in Chapter 7 also reveals that non-monotonicity is quite natural under
the betting interpretation: If we gain evidence in an early round, then we may reduce our bet in the next
round, which leads to non-monotonicity of the resulting merging function (see Example 8.13 below).

It turns out that martingale merging functions play a special role among all se-merging functions. But let
us first verify that martingale merging functions are exact se-merging functions.

Proposition 8.11

Any martingale merging function is an exact se-merging function. Moreover, a convex combination of
martingale merging functions is again a martingale merging function.

Proof.

Let F be a martingale merging function. For sequential exact e-variables E1, . . . , EK for P,
by writing LK = λK(E1, . . . , EK−1) and FK−1 = σ(E1, . . . , EK−1), we have

EP[F (E1, . . . , EK) | FK−1] = F (E1, . . . , EK−1, 1)(1− LK + LKEP[EK |FK−1])

≤ F (E1, . . . , EK−1, 1).

Therefore, EP[F (E1, . . . , EK)] ≤ EP[F (E1, . . . , EK−1, 1)]. Using an induction, we get

EP[F (E1, . . . , EK)] ≤ EP[F (1, . . . , 1)] = 1.

This shows that the martingale merging function F is an se-merging function. If the e-variables
are exact, then the above inequalities are equalities, which shows that F is exact.

The last statement follows by noting the following equivalent formulation of a martingale
merging function: F ≥ 0 satisfies, for some measurable functions tk : [0,∞)k → [0,∞), k ∈ [K],
that for each k ∈ [K],

F (e1, . . . , ek, 1, . . . , 1) = F (e1, . . . , ek−1, 1, . . . , 1) + tk(e1, . . . , ek−1)(ek − 1),

and F (1, . . . , 1) = 1. A convex combination of several choices of F is the same as a convex
combination of several choices of (tk)k∈[K].

The next result shows that the class of martingale merging functions is precisely that of all admissible
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se-merging functions.

Theorem 8.12

Any se-merging function is dominated by a martingale merging function.

The proof of Theorem 8.12 is quite technical and not pursued in this book.
Different from the merging functions obtained in Sections 8.1 and 8.2, a useful martingale merging

function need not be increasing in all arguments. This is because λk is generally not increasing or decreasing
in its arguments. Although monotonicity does not hold, any martingale merging function F satisfies
a property of sequential monotonicity : for fixed k ∈ [K] and (e1, . . . , ek−1) ∈ [0,∞)k−1, the function
ek 7→ F (e1, . . . , ek−1, ek, 1, . . . , 1) is increasing. Intuitively it means that, for given k − 1 e-values, the overall
combined e-value is larger if the next observed e-value ek is larger, assuming that all future e-values are 1.
Treating future e-values as 1 is equivalent to using λj = 0 for all j > k, or not seeing these e-values at all.

Example 8.13: Hit and stop

The non-monotonicity of F appears naturally in a “hit-and-stop” strategy: for a fixed α ∈ (0, 1) and for
each k ∈ [K], if F (e1, . . . , ek, 1, . . . , 1) ≥ 1/α, then we choose λk+1 = 0 (which implies λj = 0 for all
j ≥ k + 1); otherwise we choose λk+1 > 0. It is clear from (8.6) that F is not increasing. This strategy
corresponds to stopping an e-process in Chapter 7 as soon as it can make a rejection at level α by
up-shooting 1/α.

Example 8.14: Merging via the empirically adaptive e-process

The empirically adaptive e-process in Definition 7.13 induces a martingale merging function. For a
parameter γ ∈ (0, 1], the martingale merging function is defined as by (8.6) with λ1 = 0 and λk for
k ∈ {2, . . . ,K − 1} are given by

λk(e1, . . . , ek−1) = argmax
λ∈[0,γ]

1

k − 1

k−1∑
s=1

log ((1− λ) + λes) .

This martingale merging function is uniquely determined by its parameter γ.

Advantages of the empirically adaptive martingale merging function in Example 8.14 are justified in The-
orem 7.14 via its corresponding e-process. This function can be used as a default choice without prior
information among se-merging functions.

8.4 Mean-variance trade-off

We now pay special attention to the product function ΠK in (8.3), which is both an ie-merging function
and an se-merging function. Proposition 8.6 shows that this function is optimal in a weak sense among
all ie-merging functions (hence among all se-merging functions). However, different from the case of the
arithmetic mean for arbitrarily dependent e-values treated in Section 8.1, this does not suggest that ΠK
is the best merging function to use for independent or sequential e-values. Indeed, ΠK has an undesirable
property, which also highlights the usefulness of other martingale merging functions.

We first present a simple lemma that is useful in the proof of the next result.

Lemma 8.15

For any ie-merging function F : [0,∞)K → [0,∞) and a ≥ 1, the function G : (e1, . . . , eK) 7→
F (ae1, e2, . . . , eK)/a is an ie-merging function.
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Proof.

Fix an atomless probability measure P. Take an event A with P(A) = 1/a. For any indepen-
dent e-variables E′

1, . . . , E
′
K , we can take independent e-variables E1, . . . , EK independent of A

such that (E1, . . . , EK) is distributed identically to (E′
1, . . . , E

′
K), since the probability space is

atomless (guaranteed by Lemma A.1). Therefore, it suffices to show EP[G(E1, . . . , EK)] ≤ 1 for
independent e-variables E1, . . . , EK independent of A. Let E′

1 := aE11A; this is an e-variable.
We can compute

EP[G(E1, . . . , EK)] =
1

a
EP[F (aE1, E2, . . . , EK)] ≤ EP[F (E′

1, E2, . . . , EK)] ≤ 1,

where the first inequality following from F ≥ 0. Hence, G is an ie-merging function.

Now we can compare the product function and other se-merging functions with respect to the moments of
the resulting e-variable. Recall that EQ[E] > 1 is the defining condition that E is nontrivial against Q.

Proposition 8.16

Let F : [0,∞)K → [0,∞) be an se-merging function. For independent nonnegative random variables
E1, . . . , EK under Q with EQ[Ek] ≥ 1, k ∈ [K], we have, for every m ∈ [1,∞),

EQ [F (E1, . . . , EK)m] ≤
K∏
k=1

EQ[Emk ] = EQ [ΠK(E1, . . . , EK)m] . (8.7)

In particular, if F is exact and E1, . . . , EK are independent exact e-variables for P, then

varP(F (E1, . . . , EK)) ≤ varP(ΠK(E1, . . . , EK)). (8.8)

Proof.

First, we argue that it suffices to show (8.7) for E1, . . . , EK being exact e-variables for Q.
Suppose that this condition holds true. For independent nonnegative X1, . . . , XK with mean
larger than or equal to 1, set ak := EP[Xk] ≥ 1, Ek := Xk/ak for k ∈ [K], and a :=

∏K
k=1 ak. Let

G : (e1, . . . , eK) 7→ F (a1e1, . . . , aKeK)/a. Clearly, E1, . . . , EK are independent exact e-variables.
Using Lemma 8.15 repeatedly, we deduce that G is an se-merging function. For m ∈ [1,∞), if
(8.7) holds for all exact e-variables, then

EP [F (X1, . . . , XK)m] = amEP
[(

F (a1E1, . . . , aKEK)

a

)m]
= amEP [G(E1, . . . , EK)m]

≤ amEP [ΠK(E1, . . . , EK)m]

= EP [ΠK(X1, . . . , XK)m] .

Therefore, the general case of (8.7) follows from the case of exact e-variables.
Let E1, . . . , EK be independent exact e-variables; we will show

EQ [F (E1, . . . , EK)m] ≤
K∏
k=1

EQ[Emk ]. (8.9)

Using Theorem 8.12, F is dominated by a martingale merging function. Hence, it suffices
to show the proposition for a martingale merging function F . We show the proposition by

VERSION SPRING BREAK, 2025
101



induction. Note that EQ[Em1 ] ≥ EQ[E1]
m ≥ 1. Moreover, this expectation is increasing in m

because for m > t, EQ[Em1 ] ≥ (EQ[Et1])
m/t ≥ EQ[Et1]. The inequality (8.9) holds for K = 1

since, by convexity of x 7→ xm, we have

EQ[(1− λ+ λE1)
m] ≤ (1− λ) + λEQ[Em1 ] ≤ EQ[Em1 ]

for all λ ∈ [0, 1]. To argue by induction, suppose that

EQ[G(E1, . . . , EK−1)
m] ≤

K−1∏
k=1

EQ[Emk ] (8.10)

for every se-merging function G : [0,∞)K−1 → [0,∞). Since F is a martingale merging function,
we can write

F (e1, . . . , eK) = G(e1, . . . , eK−1) (1− λK(e1, . . . , eK−1) + λK(e1, . . . , eK−1)eK) ,

for some λK : [0,∞)K−1 → [0, 1]. Let us write Y = (E1, . . . , EK−1) and L = λK(E1, . . . , EK−1).
We have

EQ[F (E1, . . . , EK)m | Y] = EQ[G(Y)m(1− L+ LEK)m | Y]

≤ G(Y)m
(
1− L+ LEQ[EmK |Y]

)
≤ G(Y)mEQ[EmK ].

As a consequence,

EP[F (E1, . . . , EK)m] ≤ EP[G(Y)m]EP[EmK ] ≤
K∏
k=1

EP[Emk ],

where the last inequality follows by the inductive assumption (8.10). Therefore, we obtain (8.7).
If F is an exact se-merging function, we obtain (8.8) from (8.9) with m = 2 and P = Q since
EP[F (E1, . . . , EK)] = EP[ΠK(E1, . . . , EK)] = 1.

Proposition 8.16 has two implications. First, under the alternative Q, if the e-variables are nontrivial
against Q, then all moments of the resulting combined e-variable are maximized by the product function.
Second, under the null, the product function ΠK results in the largest variance if the e-variables are exact
and independent.

Although having a large mean under Q can be seen as desirable, having a large variance (which is likely
the case for a large second moment) is generally not a desirable property. Hence the product function can be
seen as an extreme choice of ie-merging function.

In particular, if the mean under Q, EQ[F (E1, . . . , EK)], is chosen as an objective to optimize, then the
product function ΠK dominates all other se-merging functions F under the assumption that EQ[Ek] ≥ 1 for
all k. Putting this into the context of testing by betting as in Section 7.8, this means the “all-in” strategy
of choosing λt = 1 for all t yields an e-process with the largest expected value at any given time, if each
sequential e-value has mean larger than 1 under Q. Nevertheless, we remind the reader that e-power is
the right objective, instead of the expected value. Recall that the e-power is measured by the expected
logarithm under Q, not any of the moments. Generally, ΠK(E1, . . . , EK) does not have the largest e-power.
A comparison is provided in Example 8.17 below.
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Example 8.17: All-in versus log-optimal

We consider the e-processes built on (Et)t∈N as in Definition 7.13, allowing an infinite number of
e-variables. Suppose that under Q, each Et for t ∈ N is distributed as Q(Et = 4) = Q(Et = 0) = 1/2
and they are independent.

(a) The all-in strategy is to choose λt = 1 for all t, leading to Mall-in
k = Πk(E1, . . . , Ek) for any k ∈ N,

which has two-point distribution with probability 2−k taking the value 4k and with probability
1− 2−k taking the value 0.

(b) On the other hand, we can compute that the Q-log-optimal e-process built on (Et)t∈[k] in
Definition 7.13 M∗

k has λt = 1/3 for all t, leading to EQ[log(1− λt + λtEt)] = log(4/3). Then, by
the law of large numbers, M∗

k ∼ (4/3)k Q-almost surely as k → ∞. (This asymptotic growth rate
is also achieved by the empirically adaptive e-process by Theorem 7.14.)

One can see that, although EQ[Mall-in
k ] ≥ EQ[M∗

k ] for all k ∈ N (indeed, Mall-in
k has a largest expectation

among all e-processes built on (Et)t∈[k] by Proposition 8.16), its distribution has a large chance of
getting 0, and moreover Mall-in

k → 0 Q-almost surely. These are highly undesirable features of all-in
betting strategy.

8.5 Summary and a pathological example

The following points summarize the results in the previous few sections on choosing merging functions.

(i) For merging arbitrarily dependent e-values, one needs to use the arithmetic mean or a weighted
arithmetic mean.

(ii) For merging sequential e-values, one needs to use martingale merging functions. In particular, the
empirically adaptive martingale merging function in Example 8.14 can be used as a default method
without prior information on the e-values’ behaviour under the alternative hypothesis.

(iii) For merging independent e-values, one can use, among many choices, the product or the U-statistic
functions. Although the product e-merging function has a weak optimality, it also suffers from an
undesirable property of having large variance.

The e-power has been a useful criterion in the above considerations, especially in the context of sequential
or independent e-values. We close this chapter with two examples, showing that the e-power has some
limitations, similar to the ones discussed in Example 3.13, but in a sequential setting. The take-away message
from these examples is

(a) it is possible to find e-processes with positive infinite e-power at each fixed time but declines to 0 with
probability 1 under Q;

(b) it is possible to find e-processes with negative infinite e-power at each fixed time but increases to ∞
with probability 1 under Q.

Therefore, extra caution should be taken when infinity is involved in the calculation of e-power.
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Example 8.18

In both cases of E1, E2, . . . below, let M = (Mt)t∈N be given by Mt =
∏t
s=1Es, which is an e-process

in Chapter 7.

(a) Let E1, E2, . . . , be e-variables for P given by

Et = exp(t2 − Yt), t ∈ N,

where Y1, Y2, . . . , are iid Pareto(1) random variables under Q (that is, Q(Y1 > x) = 1/x for x ≥ 1),
and they are independent under P such that EP[Et] ≤ 1 for each t ∈ N. Simple calculation shows,
for any x > 0,

Q(Mt ≤ x) = Q

(
t∑

s=1

Yi ≥
t(t+ 1)(2t+ 1)

6
− log x

)

≤ tQ
(
Y1 ≥ (t+ 1)(2t+ 1)

6
− log x

t

)
→ 0 as t→ ∞.

Therefore, Mt → ∞ in probability under Q, and the probability of rejecting the null by thresholding
Mt approaches 1. However, because EQ[Y1] = ∞, we have ΛQ(Et) = ΛQ(Mt) = −∞ for each
t ∈ N, and the e-process M has the same e-power −∞ as the zero process.

(b) Suppose that E1, E2, . . . are independent e-variables for P. If E1 satisfies ΛQ(E1) = −∞ like in
(a) above and Et has finite e-power for all t ≥ 2, then the process M satisfies ΛQ(Mt) = −∞ for
all t ∈ N, no matter how fast it grows after t = 1; in particular, one can easily build M with
Mt → ∞ in probability under Q.

In either example above, we find an e-process that is intuitively powerful but has negative infinite
e-power. Taking a reciprocal in (a) and (b), we also find e-processes with positive infinite e-power but
declines to 0 with probability 1 under Q.

Bibliographical note

The content in this chapter is mainly based on Vovk and Wang [2021] and Vovk and Wang [2024a]. E-merging
functions were introduced by Vovk and Wang [2021]. The proof of Theorem 8.12 is in Vovk and Wang [2024a].
Negative lower orthant dependence was introduced by Block et al. [1982], and the corresponding results on
merging e-values are in Chi et al. [2024]. Example 8.18 was discussed in Wang [2024].
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Chapter 9

False discovery rate control using
compound e-values

Our purpose in this chapter is to show how e-values are (a) useful for multiple testing while controlling the
false discovery rate (FDR), (b) inherent and central to all FDR controlling procedures. The main setting is
as follows.

Suppose we observe data X drawn according to some unknown probability distribution P†. Here, X
denotes the entire dataset available to the researcher. We consider testing K different hypotheses; as elsewhere
in the paper, the null hypotheses are described by sets of probability measures P1, . . . ,PK . Let K = [K];
for k ∈ K, the k-th null hypothesis is P† ∈ Pk, corresponding to H0 : P† ∈ P in Chapter 1. Note that it
is possible that P† /∈

⋃
k∈K Pk, meaning that all null hypotheses could be false. As in the setting of single

hypothesis testing, the unknown data generating P† is used to formally state the multiple hypothesis testing
problem and will not appear in the subsequent analysis.

We write
N (P) = {k ∈ K : P ∈ Pk} ⊆ K, P ∈ M1,

which is the index set of true null hypotheses if P is the data generating distribution. Denote by N = N (P)
and K0 = |N (P)|, where we omit the reliance on P. In the setting of multiple testing, we will let P denote a
generic set of distributions. Unless otherwise specified, we simply take (explained in Section 9.1.1)

P =
⋃
k∈K

Pk.

Other specifications of P may represent some assumptions or restrictions on the distributions in the
testing problem, which will be useful in Section 9.1.4 and Chapter 10.

9.1 Compound e-variables and the e-BH procedure

9.1.1 Compound e-variables

A typical setting for our study here is that each hypothesis is associated with an e-variable Ek. Sometimes,
we also consider and compare with the classic setting, where each hypothesis is associated with a p-value Pk.
However, more generally, we will only require (E1, . . . , EK) to satisfy a more relaxed definition, given below.
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Definition 9.1: Compound e-variables

Fix the null hypotheses (P1, . . . ,PK) and a set P of distributions. Let E1, . . . , EK be [0,∞]-valued
random variables. We say that E1, . . . , EK are compound e-variables for (P1, . . . ,PK) under P if∑

k:P∈Pk

EP[Ek] ≤ K for all P ∈ P.

They are called tight compound e-variables if the supremum of the left hand side over P ∈ P equals K.

We omit “under P” in case P is the set of all distributions. For all conditions to be checked in the
above definition, it suffices to consider P ∈

⋃
k∈K Pk. Therefore, it is without loss of generality to assume

P ⊆
⋃
k∈K Pk, and by default (without any restrictions) it is

P =
⋃
k∈K

Pk.

When K = 1, Definition 9.1 coincides with the definition of an e-variable. Of course, a vector of e-variables
is a trivial but important special case of compound e-variables. As is clear from the definition, no restriction
is placed on the dependence structure of the e-variables.

Example 9.2: Weighted e-values

If each Ek is an e-variable for Pk, then E1, . . . , EK are compound e-variables for (P1, . . . ,PK). Further,
let w1, . . . , wK ≥ 0 be deterministic nonnegative numbers such that

∑
k∈K wk ≤ K and define Ẽk =

Ekwk. Then Ẽ1, . . . , ẼK are compound e-variables.

Note that the class of compound e-values is much richer than the class of weighted e-values in Example 9.2,
because the later satisfies the stronger constraint∑

k∈K

sup
P∈Hk

EP[Ẽk] ≤ K,

compared to the condition for the compound e-values

sup
P∈

⋃
k∈KHk

∑
k∈N (P)

EP[Ek] ≤ K.

We now give a more elaborate example of a nonparametric setting where one naturally encounters
compound e-variables. More importantly, these e-variables are dependent in a complicated way, making the
usual assumptions on the dependence structure, such as independence, inapplicable.
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Example 9.3: Multi-armed bandit testing

Suppose there are K traders (or machines), and a researcher is interested in knowing which ones are
skillful (or useful). This is a classic problem in finance. For k ∈ K, the null hypothesis Hk is that
trader k is not skillful, meaning that they make no profit on average (without loss of generality we
can assume the market risk-free return rate is 0). The nonnegative random variables Xk,1, . . . , Xk,n

are the monthly realized performance (i.e., the ratio of payoff to investment; Xk,j > 1 presents a profit
and Xk,j < 1 means a loss) of agent k from month 1 to month n. The no-skill null hypothesis is
E[Xk,j | Fj−1] ≤ 1 for j ∈ [n], where the σ-field Ft represents the available market information up to time
t ∈ {0, . . . , n}, and we naturally assume that (Xk,t)t is adapted to (Ft)t. Since the agents are changing
investment strategies over time and all strategies depend on the financial market evolution, there is
complicated serial dependence within (Xk,1, . . . , Xk,n) for single k, as well as cross dependence among
agents k ∈ K. Because of the complicated serial dependence and the lack of distributional assumptions
of the performance data, it is difficult to obtain useful p-values for these agents. Nevertheless, we can
easily obtain useful e-values: for instance, Ek =

∏n
j=1Xk,j is a valid e-value, as well as any mixture of

U-statistics of Xk,1, . . . , Xk,n, including the mean and the product; indeed, Xk,1, . . . , Xk,n are sequential
e-variables in Definition 7.11, and they can be combined using merging methods in Chapter 8. Moreover,
the obtained e-values E1, . . . , EK are dependent in a complicated way. Even if these e-values are not very
large, they can be useful for other studies on these traders. For this problem, other sophisticated e-values
can also be constructed such as the ones from the empirically adaptive e-processes; see Chapter 7.

In the above setting, we implicitly assumed that each agent has the same initial wealth 1. If they
have different initial wealth values c1, . . . , cK with c̄ = (c1 + · · ·+ cK)/K, then the wealth of the k-th
trader is E′

k = ckEk, and it is easy to check that E′
1/c̄, . . . , E

′
K/c̄ are compound e-variables, while

E′
1/c1, . . . , E

′
K/cK are e-variables.

We conclude this section with two general constructions of compound e-variables.

Example 9.4: Convex combinations of compound e-values

Suppose that E(ℓ)
1 , . . . , E

(ℓ)
K are compound e-variables for ℓ = 1, . . . , L. Let w1, . . . , wL ≥ 0 be determin-

istic nonnegative numbers such that
∑L
ℓ=1 wℓ = 1. Define Ek =

∑L
ℓ=1 wℓE

(ℓ)
k . Then E1, . . . , EK are

compound e-variables.

Example 9.5: Combining evidence from follow-up studies

Let E1, . . . , EK be compound e-variables calculated from data X. Based on these observations, suppose
that we select a subset of indices S ⊆ K of interest, for which we seek additional evidence. With this
goal in mind, suppose we collect additional data Y and summarize it in the form of e-variables {E′

j}j∈S
that are conditionally valid given the past data; in particular, EP[E′

j |Ej ] ≤ 1 for all j ∈ S with P ∈ Pj .
Then defining E′

j = 1 for j /∈ S, we have that E1E
′
1, . . . , EKE

′
K are also compound e-variables.

9.1.2 FDR and the e-BH procedure

We first define the concept of FDR, central to modern multiple hypotheses testing.

Definition 9.6: Multiple testing procedures

Let X represent the available data used for testing.

(i) A multiple testing procedure D is a Borel function of X that produces a subset of K representing
the indices of rejected hypotheses. A testing procedure D that takes e-values or compound e-values
as input is called an e-testing procedure.

(ii) The hypotheses that are rejected by D, given by D(X) ∈ 2K, are called discoveries.
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We overload notation and write both the procedure (the mapping from X to K) and the realized set of
discoveries (a random subset of K) as D, because it is typically clear which one is meant from context.

Definition 9.7: FDP and FDR

In the following objects, D should be interpreted as the random subset D(X) of K.

(i) A false discovery is a true null hypothesis rejected by D. Let

FD =
∑

k:P∈Pk

1{k∈D} = |N (P) ∩ D| and RD = |D|,

which are the number of false discoveries and the total number of discoveries, respectively.

(ii) The false discovery proportion (FDP) is FD/RD, always with the specification 0/0 = 0.

(iii) The false discovery rate (FDR) under P is the expected value of the FDP, that is,

FDRD = EP
[
FD

RD

]
= EP

[
FD

RD ∨ 1

]
.

(iv) A multiple testing procedure D has FDR control (at most) α ∈ (0, 1) under P if FDRD ≤ α for
all P ∈ P. We omit “under P” when P = M1 or P =

⋃
k∈K Pk.

Clearly, both FDRD and FD depend on the unknown P, and we omit this reliance for brevity. Similarly
to the case of compound e-values, FDR is trivially 0 if P is outside

⋃
k∈K Pk, so we do not need to check such

P. The specification 0/0 = 0 will be applied everywhere in the calculation of FDP and FDR.
The FDR has been the most popular metric for false discovery with wide applications in many scientific

disciplines. There are many FDR-controlling procedures with p-values as the input. The Benjamini-Hochberg
(BH) procedure of Benjamini and Hochberg [1995] is arguably the most popular and successful in this context
(which is, to our knowledge, the most cited paper in statistics at the time of writing of this book). We will
study a corresponding e-testing procedure called the e-BH procedure, which as an intimate connection to the
BH procedure that will be explained later.

Definition 9.8: The e-BH procedure

Suppose that e1, . . . , eK are realized compound e-values for the hypotheses H1, . . . ,HK . For k ∈ K, let
e[k] be the k-th order statistic of e1, . . . , eK , from the largest to the smallest. The e-BH procedure at
level α ∈ (0, 1) rejects all hypotheses with the largest k∗ e-values, where

k∗ := max

{
k ∈ K :

ke[k]

K
≥ 1

α

}
,

with the convention max(∅) = 0.

Before showing the FDR guarantee of the e-BH procedure, we slightly enlarge the scope of our methodology.
The e-BH procedure belongs to be larger class of self-consistent e-testing procedures.

Definition 9.9: Self-consistent e-testing procedures

An e-testing procedure D is self-consistent at level α ∈ (0, 1) if every rejected hypothesis Hk has a
realized compound e-value ek satisfying

ek ≥ K

αRD
.

The e-BH procedure dominates all other self-consistent e-testing procedures by definition, meaning that it
maximizes the number of discoveries within this class. Nevertheless, self-consistent testing procedures that
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reject a smaller set than that of the e-BH procedure may be useful if we want the set of discoveries to also
satisfy some additional structural or logical constraint. For example, if the hypotheses are structured as a
graph, then we may to reject a set of hypotheses that form connected subgraphs.

The main result in this section is the FDR control of self-consistent e-testing procedures for any compound
e-variables.

Theorem 9.10: FDR control and post-hoc FDR control

Any self-consistent e-testing procedure at level α ∈ (0, 1), including the e-BH procedure, has FDR at
most α. This claim holds for any P ∈ M1 and for arbitrary compound e-variables, regardless of the
dependence structure that P induces amongst them.

In fact, for any compound e-variables, and for any class of self-consistent e-testing procedures
(Dα)α∈(0,1) indexed by their level α, the post-hoc FDR guarantee holds for any P ∈ M1:

EP

[
sup

α∈(0,1)

FDα

αRDα

]
≤ 1.

Further, if the compound e-variables are in fact e-variables, then the upper bound above can be improved
to K0/K.

The last claim above allows for a formal guarantee even when α is itself a function of the data. Omitting the
supremum in the final statement yields the preceding FDR claim.

Proof.

Let E = (E1, . . . , EK) be an arbitrary vector of compound e-variables fed to the testing
procedure Dα and Dα(E) be the set of rejected hypotheses. By direct substitution, we have

FDα

αRDα

=
|Dα(E) ∩N|
α(RDα

∨ 1)
=
∑
k∈N

1{k∈Dα(E)}

α(RDα
∨ 1)

≤
∑
k∈N

1{k∈Dα(E)}Ek

K
≤
∑
k∈N

Ek
K
,

where the first inequality is due to self-consistency. By the definition of compound e-variables,
we immediately obtain for arbitrary P ∈ M1 that

EP

[
sup

α∈(0,1)

FDα

αRDα

]
≤ 1.

If E1, . . . , EK are e-variables, then we have

EP

[
sup

α∈(0,1)

FDα

αRDα

]
≤
∑
k∈N

EP
[
Ek
K

]
≤ K0

K
,

as claimed.

Most notably, the e-BH procedure controls FDR regardless of how the e-variables are dependent. This
key feature distinguishes it from the usual BH procedure with input p-values, for which the FDR guarantee
requires certain dependence assumptions, a topic we return to later in Section 9.1.4.

In the next proposition we provide an alternative description of the e-BH procedure, which illustrates
that the e-BH procedure rejects e-values according to a threshold tα that depends on all other input e-values.
This alternative description is useful in Section 9.1.3.
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Proposition 9.11

Let e1, . . . , ek ∈ R+ and α ∈ (0, 1). Define

R(t) = |{k ∈ K : ek ≥ t}| ∨ 1 and tα = inf{t ∈ [0,∞) : tR(t) ≥ K/α}.

For each k, the e-BH procedure at level α applied to the realizations e1, . . . , eK and rejects Hk if and
only if ek ≥ tα. Moreover, tαR(tα) = K/α, and tα takes values in {K/(kα) : k ∈ K}.

Proof.

For t ∈ [0,∞), let f(t) be the number of true null hypotheses with an e-value ek larger than
or equal to t. Define the quantity g(t) = tR(t)/K, and by definition tα = inf{t ∈ [0,∞) : g(t) ≥
1/α}. Clearly tα ∈ [1/α,K/α] since g(t) ≤ t and R(t) ≥ 1. Since g only has downside jumps
and g(0) = 0, we know g(tα) = 1/α, and thus tαR(tα) = K/α.

If ek ≥ tα, then Hk is rejected by the definition of e-BH. If e[k] < tα, then by definition of g,
we have

ke[k]

K
≤
R(e[k])e[k]

K
= g(e[k]) < 1/α.

Thus, each Hk is rejected by the e-BH procedure if and only if e′k ≥ tα.

9.1.3 Boosting the e-values with distributional information

If we know some information of the null distribution of the e-variables E1, . . . , EK fed to the e-BH procedure,
then we can enhance the power of the e-BH procedure by a mechanism called boosting e-values.

Let K/K := {K/k : k ∈ K}, and define a truncation function T : [0,∞] → [0,K] by letting T (x) be the
largest number in K/K ∪ {0} that is no larger than x. In other words,

T (x) =
K

⌈K/x⌉
1{x≥1} with T (∞) = K. (9.1)

Note that T truncates x to take only values in K/K ∪ {0}. For each k ∈ K, take a boosting factor bk ≥ 1 is
such that

EP[T (αbkEk)] ≤ α for P ∈ Pk, (9.2)

and let E′
k = bkEk. We call E′

1, . . . , E
′
K the boosted e-values. Note that choosing bk = 1 always satisfies (9.2)

because T (x) ≤ x for all x ∈ R+. One would try to choose the largest bk possible subject to (9.2). Computing
the precise value of bk depends on our knowledge of the distribution of Ek under P. In some situations, one
may have partial but not full distributional information of Ek under P, leading to a smaller bk than the one
that attains equality in (9.2). If no distributional information is available, i.e., one only knows that Ek is an
e-variable for Pk but nothing more, then one has to set bk = 1.

Theorem 9.12

Applied to arbitrary nonnegative random variables E′
1, . . . , E

′
K , the e-BH procedure D at level α ∈ (0, 1)

satisfies
EP
[
FD

RD

]
≤ 1

K

∑
k∈N

EP [T (αE′
k)] ,

for any P ∈ M1. In particular, if E′
1, . . . , E

′
K are e-variables for P1, . . . ,PK or the boosted e-values via

(9.2), then the FDR is controlled at K0α/K.
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The proof of Theorem 9.12 can be described with a very simple intuition: If e-values e1, . . . , eK are replaced
by T (αe1)/α, . . . , T (αeK)/α, then they will lead to the same set of rejected hypotheses, because by Proposi-
tion 9.11, e-values are rejected only at thresholds in (α−1K)/K. Therefore, for the desired FDR control, it
suffices to verify that T (αEk)/α are e-values. This leads to the condition (9.2), which justifies the use of
bkEk.

We can also boost compound e-values by using b1, . . . , bK satisfying∑
k:P∈Pk

EP[T (αbkEk)] ≤ Kα for P ∈ P,

following the same argument.

9.1.4 Connection between the e-BH and the BH procedures

In this section, we illustrate an important point that connects the e-BH procedure to the BH procedure with
arbitrary dependence correction.

Definition 9.13: The BH procedure

Suppose that p1, . . . , pK are realized p-values for the hypotheses H1, . . . ,HK . For k ∈ K, let p(k) be the
k-th order statistics of p1, . . . , pK , from the smallest to the largest. The BH procedure at level α ∈ (0, 1)
rejects all hypotheses with the smallest k∗ p-values, where

k∗ = max

{
k ∈ K :

Kp(k)

k
≤ α

}
,

with the convention max(∅) = 0. The BH procedure with arbitrary dependence correction is to apply
the BH procedure to ℓKp1, . . . , ℓKpK , where ℓK =

∑K
k=1 k

−1.

The following are classic results on the FDR control of the BH procedure.

(i) The BH procedure at level α controls FDR at level (K0/K)α if the p-variables are independent or satisfy
the PRDS condition defined below (that is, under the set P of distributions satisfying the specified
conditions).

(ii) The BH procedure at level α with arbitrary dependence correction controls FDR at level (K0/K)α.

Definition 9.14: Positive regression dependence on a subset

A set A ⊆ RK is said to be increasing if x ∈ A implies y ∈ A for all y ≥ x.
A vector (P1, . . . , PK) of p-variables satisfies positive regression dependence on a subset (PRDS)

if for any null index k ∈ N and increasing set A ⊆ RK , the function x 7→ P{(Pℓ)ℓ∈K ∈ A | Pk ≤ x} is
increasing on [0, 1].

A caveat of PRDS in Definition 9.14 is that it enforces certain positive dependence between the nulls and
non-nulls.

We can see that the price to pay to get validity under arbitrary dependence for the BH procedure is
a factor of ℓK , which is close to logK. Since p-values are less useful when they are large, this arbitrary
dependence correction makes the BH procedure to reject less, and typically much less, hypotheses.

With e-variables E1, . . . , EK , it is immediate that the e-BH procedure is precisely the BH procedure applied
to 1/E1, . . . , 1/EK . Since Pk := 1/Ek is a p-variable for Hk (Proposition 2.3), if the BH procedure controls
FDR with p-values P1, . . . , PK , then the e-BH procedure controls FDR with e-values E1, . . . , EK . However,
the e-BH procedure guarantees something more: the FDR control is valid under arbitrary dependence among
the e-values, whereas the BH procedure needs the arbitrary dependence correction under such a setting.

The main result in this section shows that the BH procedure with arbitrary dependence correction can be
recovered by applying the e-BH procedure to some e-values.
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Proposition 9.15

(i) With T in (9.1) and α ∈ (0, 1), the function f : p 7→ T (α/(ℓKp))/α is a calibrator.

(ii) Let P1, . . . , PK be p-variables for H1, . . . ,HK . The BH procedure with arbitrary dependence cor-
rection applied to P1, . . . , Pk is identical to the e-BH procedure to the e-variables f(P1), . . . , f(PK).

Proof.

(i) Clearly f is nonnegative and decreasing, and it takes value 0 on (1,∞). Let U be a
uniformly distributed random variable on [0, 1] (under some P). We can compute

EP[f(U)] = EP
[
1

α
T

(
α

ℓKU

)]
=

1

α

K∑
k=1

K

k
P
(
α(k − 1)

KℓK
≤ U <

αk

KℓK

)
=

1

α

K∑
k=1

α

ℓKk
= 1.

This shows that f is a calibrator.
(ii) As we explained in Section 9.1.3, applying the e-BH procedure to

1

α
T

(
α

ℓKP1

)
, . . . ,

1

α
T

(
α

ℓKPK

)
is the same as applying the e-BH procedure to 1/(ℓKP1), . . . , 1/(ℓKPK). This is further
equivalent to applying the BH procedure to ℓKP1, . . . , ℓKPK , thus the BH procedure with
arbitrary dependence correction.

As a direct consequence of Proposition 9.15, the FDR guarantee of the BH procedure with arbitrary
dependence correction directly follows from Theorem 9.10.

There is a different boosting method for the e-BH procedure under the PRDS condition, which we omit
here. This boosting method allows one to convert the e-BH procedure into the BH procedure with the same
FDR guarantee under PRDS, similarly to Proposition 9.15.

9.2 Universality of compound e-values and e-BH

9.2.1 From FDR control to compound e-values

The following result enables the construction of compound e-values from any FDR controlling procedure.

Theorem 9.16: From FDR control to compound e-values

Let D be any procedure that controls the FDR at a given level α ∈ (0, 1). Let Vk ∈ {0, 1} be an indicator
of whether hypothesis Hk is rejected by D, so that FD =

∑
k∈N Vk and RD =

∑
k∈K Vk. Define

Ek =
K

α

Vk
RD ∨ 1

. (9.3)

Then, E1, . . . , EK are compound e-variables for (P1, . . . ,PK).
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Proof.

The result can be seen from, for every P ∈ P,∑
k:P∈Pk

EP[Ek] =
∑

k:P∈Pk

EP
[
K

α

Vk
RD ∨ 1

]
=
K

α
EP
[

FD

RD ∨ 1

]
≤ K

α
α = K,

where the inequality follows from the definition of FDR guarantee.

9.2.2 Every FDR procedure is e-BH

In what follows, for a given set P of hypotheses, an FDR procedure D at level α is admissible if for any FDR
procedure D′ at level α such that D ⊆ D′, we have D = D′.

Theorem 9.17: Universality of e-BH with compound e-values

Let D be any procedure that controls the FDR at level α. Then, there exists a choice of compound
e-values such that the e-BH procedure yields identical discoveries as D. Further, if D is admissible, then
these compound e-values can be chosen to be tight.

Proof.

The first part directly follows from Theorems 9.16 and 10.23. To show the last statement,
consider an FDR procedure D at level α and take the compound e-values E1, . . . , EK from (9.3).
Define

K∗ := sup
P∈P

∑
k:P∈Pk

EP[Ek].

If K∗ is equal to K, then there is nothing to show as E1, . . . , EK are tight compound e-values.
Otherwise, K∗ < K. The case K∗ = 0 means one never rejects any hypotheses, for which
choosing E′

1 = · · · = E′
K = 1 would suffice as tight compound e-values that produce D via e-BH.

For K∗ > 0, we let

E′
k =

K

K∗Ek for k ∈ K,

and apply the e-BH procedure to E′
1, . . . , E

′
K (which are tight compound e-values). This new

procedure controls FDR at level α and produces at least as many discoveries as D. Since D
is admissible, this procedure must coincide with D, and hence D is e-BH applied to the tight
compound e-values E′

1, . . . , E
′
K .

It is worth noting that the above result holds for every fixed H1, . . . ,HK , meaning that the procedure D
that we consider could be tuned to this particular set of hypotheses and does not need to control FDR for
any other settings. If this tuned procedure D is admissible, it must still be recoverable via e-BH with tight
compound e-values.

For the classic BH procedure in Definition 9.13, it controls FDR if we assume probability measures
in P1, . . . ,PK guarantee that the p-values are independent or PRDS. It can be identified with the e-BH
procedure with e-variables given in (9.3), but these e-variables are not necessarily independent or PRDS.

9.2.3 Combination and derandomization

The connections between FDR controlling procedures, e-BH, and compound e-values laid out above motivate
the following general and practical mechanism for combining discoveries across multiple testing procedures.
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To be concrete, in order to test the hypotheses H1, . . . ,HK , suppose we run L different multiple testing
procedures D1, . . . ,DL (this can be easily generalized to the case where each procedure tests a different subset
of hypotheses). Assume that the ℓ-th procedure controls the FDR at level αℓ. Then we may proceed as
follows:

1. For the ℓ-th multiple testing procedure, form E
(ℓ)
1 , . . . E

(ℓ)
K , which are compound e-variables for

P1, . . . ,PK (which always exist by Theorem 9.16). They could be — but need not necessarily be
— the implied ones formed in Theorem 9.16.

2. Fix weights w1, . . . , wL ≥ 0 with
∑L
ℓ=1 wℓ = 1. Then construct E1, . . . , EK by convex combination as

in Example 9.4, i.e., Ek =
∑L
ℓ=1 wℓE

(ℓ)
k for all k ∈ K. These will be compound e-values for P1, . . . ,PK .

We also allow w1, . . . , wL ≥ 0 to be random, as long as they are independent of all e-values used in
the procedures, and in that case it suffice to require

∑L
ℓ=1 EP[wℓ] ≤ 1 for any P ∈ P (this condition is

similar to the condition for compound e-values).

3. Apply the e-BH procedure to the new compound e-values E1, . . . , EK at level α.

The above construction is guaranteed to control the FDR at level α. Note that the value of αℓ does not
matter, as it is only used in the construction of E(ℓ)

1 , . . . , E
(ℓ)
K , possibly implicitly (e.g., in Theorem 9.16).

One important application of the above recipe is derandomization. Suppose that Dℓ is a randomized
multiple testing procedure, that is, it is a function of both the data X as well as a random variable Uℓ
generated during the analysis. Such randomness may not be desirable, since different random number
generation seeds will lead to different sets of discoveries. In such cases, the above recipe can be used to
construct a new derandomized procedure D that is less sensitive to U1, . . . , UL (formally, full derandomization
would occur if Uℓ are iid and L→ ∞).

9.3 Log-optimal simple separable compound e-values

In this section we focus on sequence models, wherein the data X may be written as X = (Xk : k ∈ K) and in
principle we may test each hypothesis Hk using only Xk. We record the following definition, which we will
call upon throughout this section.

Definition 9.18: Simple separable e-variables

E1, . . . , EK are called separable if for all k, Ek is Xk-measurable, that is Ek = Ek(Xk). They are called
simple separable if Ek = f(Xk) for some function f (which is the same for all k).

In what follows, we provide a brief summary of compound decision theory, which motivates the nomenclature
“compound e-values” (Section 9.3.1) and then we provide a construction of compound e-values motivated by
compound decision theory in Section 9.3.2 (see also Section 10.4.4 for another related construction).

9.3.1 Background: compound decision theory

Let Pµ be the probability measure governing a Gaussian sequence model:

µ = (µ1, . . . , µK) fixed, Xk ∼ N(µk, 1) for k ∈ K. (9.4)

Suppose we are interested in constructing estimators µ̂k of µk such that the following expected compound
loss would be small:

1

K

∑
k∈K

Eµ[(µ̂k − µk)
2], (9.5)

where Eµ means EPµ . If µk has a prior distribution B, then, by denoting PB the joint distribution of µ and
X = (X1, . . . , XK), the best estimator is the Bayes estimator µ̂Bk = EPB [µk|X] = EPB [µk|Xk], which is simple
separable in the sense of Definition 9.18.
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Now suppose µ is deterministic as in (9.4). Given knowledge of µ, which function sµ : R → R leads to a
simple separable estimator µ̂sµk = sµ(Xk) that minimizes the risk in (9.5)? The answer lies in the fundamental
theorem of compound decisions, which formally connects (9.4) to the univariate Bayesian problem with prior
M =

∑
k∈K δµk

/K equal to the empirical distribution of µ (with δµk
denoting the Dirac measure at µk):

µ′ ∼M, X ′ | µ′ ∼ N(µ′, 1). (9.6)

The fundamental theorem of compound decision theory states the following. Given any fixed s : R → R,
we have that

1

K

∑
k∈K

Eµ[(s(Xk)− µk)
2] =

∑
k∈K

1

K
Eµk [(s(Xk)− µk)

2] = EPM [(s(X ′)− µ′)2]. (9.7)

In the left-hand side display, µ ∈ RK is treated as fixed (as in (9.4)), while in the right-hand side display, we
only have a single random µ′ ∈ R that is randomly drawn from M as in (9.6). From (9.7) it immediately follows
that the optimal simple separable estimator is the Bayes estimator under M , that is s(x) = EPM [µ′ | X ′ = x].

This construction motivates the construction of feasible non-separable estimators µ̂k = µ̂k(X) that have
risk close to the optimal simple separable estimator. Thus the optimal simple separable estimator defines an
oracle benchmark. Just as in classical decision theory, one often restricts attention to subclasses of estimators,
e.g., equivariant or unbiased, one sets a benchmark defined by simple separable estimators. What is slightly
unconventional here is a fundamental asymmetry: the oracle estimator must be simple separable but has
access to the true µ, while the feasible estimator is non-separable but must work without knowledge of µ.

9.3.2 The log-optimal simple separable compound e-values

The connection of compound e-values to the fundamental theorem of compound decisions is born from the
relaxation of the requirement of having a vector of e-variables to that of requiring only compound e-variables.

To further clarify the connection, we provide a construction of optimal simple separable compound e-values
in sequence models with dominated null marginals via the fundamental theorem of compound decisions.

Suppose that X = (Xk : k ∈ K), where Xk takes values in a space Y . For any distribution S ∈ M1, let Sk
be the k-th marginal of S, that is, the distribution of Xk when X ∼ S.

Suppose that for all k ∈ K, the k-th null hypothesis is specified as a simple point null hypothesis on the
k-th marginal, i.e.,

Pk = {S : Sk = Pk}

for some prespecified distribution Pk with dν-density equal to pk, where ν is a common dominating measure.
We assume that there exists at least one possible true data generating distribution P such that N = K (as
would be the case, e.g., if the Xk are independent and we take P =×k∈K Pk).

For k ∈ K, we let Qk be distributions on Y with dν-densities qk, representing the alternative distributions.
We seek to solve the following optimization problem:

maximize
s(·):Y→[0,∞]

1

K

∑
k∈K

EQk [log(s(Xk))]

subject to s(X1), . . . , s(XK) are compound e-variables for P1 . . . ,PK .
(9.8)

Theorem 9.19: Log-optimal simple separable compound e-values

The optimal solution to optimization problem (9.8) is given by the likelihood ratio of mixtures over the
null and alternative:

s(x) =

∑
j∈K qj(x)∑
j∈K pj(x)

. (9.9)
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Proof.

Let P be any probability measure with k-th marginal given by Pk for all k ∈ K. We will
first solve the optimization problem subject to the weaker constraint that s(X1), . . . , s(XK) are
compound e-values for P1, . . . ,PK .

Define the mixture distributions P =
∑
k∈K Pk/K and Q =

∑
k∈K Qk/K. Then, for any

fixed s : Y → [0,∞], we have the following equalities:

1

K

∑
k∈K

EQk [log(s(Xk))] = EQ[log(s(X))],
1

K

∑
k∈K

EPk [s(Xk)] = EP[s(X)],

where X is a generic random variable following the distribution specified with the expectation.
Thus, it suffices to solve the following optimization problem:

maximize
s:Y→[0,∞]

EQ[log(s(X))]

subject to EP[s(X)] ≤ 1.

As seen in Chapter 3, this has solution given by (9.9). Finally we may verify in that this s
indeed yields compound e-values for P1, . . . ,PK . To this end, write q for the dν density of Q.
Then, we have the following:∑

k:P∈Pk

EP[Ek] =
∑

k:P∈Pk

∫
Kq(x)∑
j∈K pj(x)

pk(x)ν(dx) ≤
∫
Kq(x)ν(dx) = K,

where the first equality holds because for any P ∈ Pk, its k-th marginal equals Pk, and the
inequality holds by dropping the constraint on k in the sum. This completes the proof.

Note that any tight simple separable compound e-value for testing the nulls in the above problem must
be of the form (9.9) for some densities q1, . . . , qK .

Proposition 9.20

Suppose that E1, . . . , EK are tight simple separable compound e-values (for the same nulls defined
as in the previous parts of this section). Then there exist dν-densities q1, . . . , qK such that Ek may
be represented as in (9.9) on the support of

∑
k∈K Pk/K and it is without loss of generality to take

q1 = · · · = qK .

Proof.

First, by definition of simple and separable, there exists a function s such that Ek = s(Xk).
The supremum in the definition of tightness must be attained when N = K, and so:∑

k∈K

EPk [s(Xk)] = K.

Now define p as the dν density of P, where the latter object is defined as in Theorem 9.19. Then
the above may be written as: ∫

s(x)p(x)dν(x) = 1.

Thus, if we define qk(x) = s(x)p(x) for all k ∈ K, we find that qk is indeed a dν-density and
s(x) may be represented as in (9.9).
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The objective value of the optimization problem (9.8) is given by KL(Q,P). By convexity, KL(Q,P) ≤∑
k∈K KL(Qk,Pk), which means that the optimal simple separable compound e-value has a worse objective

than using the optimal separable e-value for each individual testing problem of Pk vs Qk given by E∗
k =

qk(Xk)/pk(Xk).
In view of the above, why is the optimal simple separable compound e-value of interest? The reason is

that if K is large (but the individual statistical problems have limited sample sizes), then it may be possible
to mimic the log-optimal simple separable compound e-value without exact knowledge of the null Pk, e.g., via
empirical Bayes methods.

To elaborate, suppose we have a “nuisance parameter” θ ∈ Θ that is common to all hypotheses, meaning
that all null hypotheses are actually indexed by some θ: Pθ1 , . . . ,PθK , but θ is unknown. If θ were known, we
could simply find an e-value separately for each hypothesis. Since θ is unknown, we cannot do that, but since
θ is common across all hypotheses, we could potentially learn θ by pooling data from all hypotheses, and
then form (approximate) compound e-values from the data that asymptotically match the log-optimal simple
separable compound e-values.

Let us look at an explicit example that is in the spirit of the above discussion, but the resulting compound
e-values are not of the above form.

9.4 A minimally adaptive e-BH procedure

We describe a minimally adaptive procedure by proposing a tiny but uniform improvement of the e-BH
procedure. This improvement is negligible for large values of K and it may only be practically interesting for
small K such as K ≤ 10. We will focus on e-values and boosted e-values.

First, choose an e-merging function F : [0,∞)K → [0,∞) in Chapter 8. We allow for a general choice of
F other than MK as it will be useful for the case of boosted e-values.

With a chosen e-merging function F and a level α ∈ (0, 1), the improved e-BH procedure, denoted by DF
α ,

is designed as follows. We first test the global null
⋂K
k=1Hk via the rejection condition F (e1, . . . , eK) ≥ 1/α,

which has a type-I error of at most α, and if the global null is rejected, we then apply the e-BH procedure at
level α′ = Kα/(K − 1). In other words,

1. if F (e1, . . . , eK) < 1/α, then DF
α = ∅;

2. if F (e1, . . . , eK) ≥ 1/α, then DF
α = Dα′ where α′ = Kα/(K − 1) and Dα′ is the e-BH procedure at

level α′.

The next proposition shows that by choosing F = MK , the resulting improved BH procedure dominates the
base BH procedure.

Proposition 9.21

For α ∈ (0, 1), the improved e-BH procedure DF
α applied to arbitrary e-values has false discovery rate

at most α. In case F = MK , DMK
α dominates the e-BH procedure Dα, that is, Dα ⊆ DMK

α .

Proof.

Let A be the the event that F (E1, . . . , EK) ≥ 1/α. If K0 < K, then by using Theorem 9.10,

EP

[
FDF

α

RDF
α

]
= EP

[
FDα′

RDα′

1A

]
+ EP

[
F∅

R∅
(1− 1A)

]
= EP

[
FDα′

RDα′

1A

]
≤ EP

[
FDα′

RDα′

]
≤ K0

K
α′ ≤ α.
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If K0 = K, then the false discovery rate of DF
α is at most the probability P(A) of rejecting

the global null via F (E1, . . . , EK) ≥ 1/α. In this case, P(A) ≤ α by Markov’s inequality and
the fact that F is an e-merging function. Hence, in either case, the FDR of DF

α is at most α.
To show the statement on dominance, let

S : (e1, . . . , eK) 7→ max
k=1,...,K

ke[k]

K
. (9.10)

The function S is an e-merging function and it is dominated by MK because
∑K
k=1 ek ≥ ke[k].

By definition of the e-BH procedure, S(e1, . . . , eK) < 1/α implies Dα = ∅. Therefore, if
MK(e1, . . . , eK) < 1/α, then Dα = ∅ = DMK

α . Moreover, since α < α′, we always have
Dα ⊆ Dα′ . Hence, Dα ⊆ DMK

α .

Next, we briefly discuss the case of boosted e-values. The arithmetic average of boosted e-values is not
necessarily a valid e-value, so one must be a bit more careful. Nevertheless, it turns out that we can use the
function S in (9.10) on the boosted e-values in Section 9.1.3. The new procedure can be described as the
following steps.

1. Boost the raw e-values with level α.

2. If S(e′1, . . . , e′K) < 1/α where e′1, . . . , e′K are the boosted e-values in step 1, then return ∅.

3. Else: boost the raw e-values with level α′ = Kα/(K − 1).

4. Return the discoveries by applying the base e-BH procedure to the boosted e-values in step 3.

This new procedure dominates the e-BH procedure, and it has FDR at most α. The proof is similar to
that of Proposition 9.21.

9.5 Stochastic rounding of e-values and randomized e-BH

We next discuss an improvement of the e-BH procedure with randomization. The randomized Markov’s
inequality in Theorem 2.8 gives rise to a randomized test based on e-values, and a randomized e-to-p calibrator.
Here, we show how to use external randomization to convert given e-values to other (stochastically rounded)
e-values.

Consider any closed set G ⊆ [0,∞] (where G stands for “grid” since G will often be countable or finite
below). Denote g∗ := inf{x : x ∈ G} and g∗ := sup{x : x ∈ G}, and note that g∗, g∗ ∈ G since G is closed.
Further, for any x ∈ [g∗, g

∗], let

x+ := inf{y ∈ G : y ≥ x}, x− := sup{y ∈ G : y ≤ x},

and note that x+, x− ∈ G with x+ ≥ x and x− ≤ x, and if x /∈ G, then x− < x < x+.
Now define the stochastic rounding of x ∈ [0,∞] onto G, denote SG(x), as follows. If x < g∗, x > g∗,

x ∈ G, or x+ = ∞ then define SG(x) = x. Otherwise, define

SG(x) =

{
x− with probability x+−x

x+−x−
,

x+ with probability x−x−
x+−x−

.

Note that SG(x) need not lie in G, because if x lies outside the range of G then it is left unchanged. Also note
that when G = [0,∞], we have SG(x) = x for all x ∈ [0,∞]. In what follows, P denotes the joint distribution
of the random variable X and the stochastic rounding SG .
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Proposition 9.22

For any grid G, and any integrable random variable X, EP[X] = EP[SG(X)]. In particular, if X is an
e-variable, then SG(X) is also an e-variable.

The proof is simple: by design, EP[SG(x)] = x for any real x, and thus when applied to any random variable,
it leaves the expectation unchanged.

A key property is that SG(X) can be larger than X with (usually) positive probability, since it can get
rounded up to X+, and is at least X−, even when rounded down. Fix α ∈ (0, 1), and let

αi = αi/K, Gα = {α−1
i : i ∈ K} ∪ {0,∞}

denote the set of possible levels that e-BH may reject e-values at and in addition to 0 and ∞. If X ≥ K/(αk)
for some i ∈ K, then SGα

(X) ≥ K/(αk) as well. Thus, an e-value that is stochastically rounded to Gα can
only improve power when used in conjunction with e-BH. We elaborate and then improve on the above idea
in the next section.

One can also use a generalized version of rounding, where one stochastically rounds an input x by sampling
from a mixture distribution over all values in G that are larger than x, instead of only x+.

One can view the e-BH procedure as selecting a data-dependent threshold

α̂∗ := α(k∗ + 1)/K

and rejecting the ith hypothesis if and only if Xi ≥ 1/α̂∗ (indeed, if k∗ = K, the claim is trivially true, and
if k∗ < K, then there can only be k∗ hypotheses with e-values larger than K/(α(k∗ + 1)), otherwise we
violate the maximality of k∗ in its definition). Now, observe that 1/α̂∗ can only take values from the grid
{K/(kα) : k ∈ K}. If we “rounded” down each Xi to the closest value in the grid that is less than Xi (or 0 if
Xi is smaller than any value in the grid), the discovery set that is output by e-BH would be identical to the
one where no rounding had occurred. But if we could round up the e-value, we would potentially gain power;
however, this would inflate its expectation and it would no longer be an e-value. Our key insight is that if we
randomly rounded every e-value up or down — appropriately so that its expectation is unchanged — then we
could increase power with positive probability.

The fact that e-values are often continuous and will typically lie between grid points provides a broad
opportunity to significantly increase the power. In what follows, we use independent external randomness to
stochastically round e-values, as introduced previously, and increase the number of discoveries made by e-BH.

Let k∗ is the number of discoveries made by e-BH applied to e-values X1, . . . , XK . The stochastically-
rounded Re-BH procedure simply applies the e-BH procedure to the set of e-values {SGα

(Xk)}i∈K. Let D1 be
the set of rejections made by Re-BH, and DeBH be the set of rejections made by e-BH at level α.

Theorem 9.23

For any arbitrarily dependent e-values (X1, . . . , XK), the Re-BH procedure ensures FDR ≤ α and
D1 ⊇ DeBH. Further, for any P ∈ M1, P(D1 ⊋ DeBH) > 0, i.e., the probability that Re-BH makes extra
discoveries over e-BH is positive, if and only if

P
(
∃k ∈ [K − k∗] : X[k∗+j] >

K

α(k∗ + k + 1)
for all j ∈ [k]

)
> 0. (9.11)

The proof follows from the fact that if Xi ever takes on a value that is between levels in Gα, the e-BH
procedure will reject at the same level (and make the same rejections) as if (Xi)− were substituted in its place.
Stochastic rounding guarantees that SGα

(Xi) ≥ (Xi)− almost surely, so it can only increase the number
of rejections. Further, when Xi is between two levels in Gα, then SGα(Xi) = (Xi)+ > Xi with positive
probability, which leads to rejecting hypotheses that e-BH did not reject. This intuition leads us to the
condition in (9.11) for which Re-BH has strictly more power than e-BH. We omit the proof.

It is worth remarking that (9.11) is an extremely weak condition that would be very frequently satisfied.
For example, if the e-values are independent and continuously distributed over [0,K/α] (or a larger interval),
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then (9.11) will hold. As an explicit example, if the data Zi for testing the i-th hypothesis are Gaussian with
variance σ2, and we are testing whether the mean of Zi is nonpositive (or equal to zero) against the alternative
that the mean is positive, all admissible e-values are mixtures of likelihood ratios between a positive mean
Gaussian and a zero mean Gaussian: these likelihood ratio e-values take the form exp(λZi − λ2σ2/2) for
λ > 0, which are clearly continuous and unbounded, as are many other e-values for testing parametric and
nonparametric hypotheses. The independence mentioned above is far from necessary, but it is sufficient to
ensure that the probability in (9.11) is not pathologically equal to zero due to some awkward worst-case
dependence structure.

A note on randomization. While the set of randomized multiple testing procedures contains all deter-
ministic ones, it is far from clear when the most powerful randomized procedure is strictly more powerful (in
at least some situations) than the most powerful deterministic one. It could be the case that randomization
confers no additional benefit in any situation. As an important counterpoint, we do not know of any way for
randomization to improve the power of other procedures such as the BH procedure under positive dependence,
and indeed we conjecture that it does not. Both the BH and BY procedures have their FDR upper bounds
being achieved with equality in a particular setting; yet it appears as if the power of BY can be essentially
improved in almost all other situations, while we conjecture that without further knowledge, the BH procedure
cannot be strictly improved in any situation without worsening its power in other situations. Thus, it is not
the case that randomization should indeed always or “naturally” help in multiple testing.
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PRDS condition. That paper also showed that under arbitrary dependence, the FDR control achieved by the
BH procedure equals αℓK , a fact mentioned in Section 9.1.4.

The e-BH procedure was proposed by Wang and Ramdas [2022]. The proof of Theorem 9.12 can be found
in Wang and Ramdas [2022], where other boosting methods for e-values than the one in Section 9.1.3 are also
studied, including the boosting methods under the PRDS condition.

Compound e-values were first used (without being given a name) in Wang and Ramdas [2022, Theorem
3]. The term compound e-values first appeared in Ignatiadis et al. [2024b]. Other authors have used the term
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rounding of e-values in Section 9.5 was developed in Xu and Ramdas [2023].
Online multiple testing with e-values was studied in Xu and Ramdas [2024]. Recently, Fischer et al. [2024]

proposed an online analog of the BH and e-BH procedures.
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Part III

Advanced Topics
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Chapter 10

Approximate and asymptotic e-values

We have been studying e-values and p-values that are valid under the null. In many statistical contexts,
one may have approximate or asymptotic p-values and e-values, that satisfy relaxed conditions, and offer
relaxed statistical guarantees. This chapter formalizes the notions of approximate and asymptotic e-values,
compound e-values, and asymptotic compound e-values, show their versatility and usefulness for multiple
testing, as well as provide certain optimal constructions and examples.

10.1 Approximate p-values and e-values

We first define approximate p-variables and e-variables. The basic idea is that, for these approximate objects,
the conditions for p-variables and e-variables in Definition 1.2 should be satisfied approximately. It turns out
that two different forms of approximation error often exist in statistical applications:

1. One, represented by ε below, measures how much the value of the random variable deviates from a
p-variable or e-variable. For instance, the random variable (1 + ε)P for P d∼ U(0, 1) can be seen as
“ε-away” from a p-variable.

2. The other one, represented by δ below measures with how much probability the random variable deviates
from a p-variable or e-variable. For instance, the random variable P1A for P d∼ U[0, 1] and an event A
with probability P(A) = 1− δ can be seen as “δ-away” from a p-variable.

This consideration leads to the following formal definition of approximate p-variables and e-variables, and
their connections to the above two forms of approximation error is justified in Proposition 10.2.

Definition 10.1: Approximate p-variables and e-variables

Fix the null hypothesis P and two functions ε : P → R+ and δ : P → [0, 1], and write εP = ε(P) and
δP = δ(P) for P ∈ P.

(i) An R+-valued random variable P is an (ε, δ)-approximate p-variable for P if

P(P ≤ t) ≤ (1 + εP)t+ δP for all t ∈ (0, 1) and all P ∈ P.

(ii) A [0,∞]-valued random variable E is an (ε, δ)-approximate e-variable for P if

EP[E ∧ t] ≤ 1 + εP + δPt for all t ∈ R+ and all P ∈ P.

For two constants ε ∈ R+ and δ ∈ [0, 1], (ε, δ)-approximation is understood as those in Definition 10.1 with
the corresponding constant functions. Similarly to “e-values” and “p-values”, we also speak of “approximate
p-values” and “approximate e-values” when we do not emphasize them as random variables.
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We make some straightforward observations. Clearly, (0, 0)-approximate p-variables (e-variables) are just
p-variables (e-variables). For a constant ε ∈ R+, P is an (ε, 0)-approximate p-variable if and only if (1+ε)P is
a p-variable, and E is an (ε, 0)-approximate e-variable if and only if E/(1+ε) is an e-variable. The δ-parameter
is more lenient than the ε-parameter; for instance, (ε, δ)-approximation implies (0, ε+ δ)-approximation in
both classes (see Proposition 10.5 below for a sharper result). If δ = 1, then (ε, δ)-approximation puts no
requirements on P or E.

As mentioned above, the definitions of approximate p-variables and approximate e-variables can be
interpreted as allowing for a wiggle room in the definitions of p-variables and e-variables in two ways: (a)
the probability and expectation requirements have a multiplicative factor 1 + εP; (b) the requirements are
only required to hold on an event of probability 1− δP. This will be made transparent through the following
proposition.

Proposition 10.2

Let ε : P → R+ and δ : P → [0, 1] and P and E be nonnegative random variables ([0,∞]-valued for E).
For the following statements,

(P1) P is an (ε, δ)-approximate p-variable for P;

(P2) for every P ∈ P, there exists an event A such that

P(P ≤ t, A) ≤ (1 + εP)t for all t ∈ (0, 1) and P(A) ≥ 1− δP;

(E1) E is an (ε, δ)-approximate e-variable for P;

(E2) for every P ∈ P, there exists an event A such that

EP[E1A] ≤ 1 + εP and P(A) ≥ 1− δP;

we have that (P2) implies (P1) and (E2) implies (E1). Moreover, if each P ∈ P is atomless, then
(P1)–(P2) are equivalent, and (E1)–(E2) are equivalent.

Proof.

When P is atomless, for any random variable X, there exists an event A with P(A) = 1− δP
such that {X < t} ⊆ A ⊆ {X ≤ t} for some t ∈ R; a formal statement is presented in
Lemma A.7. This fact will be used in the proof below. If δP = 1 there is nothing to prove, so
we assume δP < 1 below.

(P2) ⇒ (P1): It suffices to notice

P(P ≤ t) ≤ P(P ≤ t, A) + P(Ac) ≤ (1 + εP)t+ δP

for P ∈ P and t ∈ [0, 1].
(P1) ⇒ (P2) in case each P is atomless: Let A be an event with P(A) = 1− δP such that

{P > s} ⊆ A ⊆ {P ≥ s} for some s ∈ [0, 1]. Note that P(P ≤ t, Ac) = min{P(P ≤ t),P(Ac)}.
Therefore,

P(P ≤ t, A) = (P(P ≤ t)− P(Ac))+ ≤ ((1 + εP)t+ δP − δP)+ = (1 + εP)t

for all t ∈ (0, 1), as desired.
(E2) ⇒ (E1): It suffices to notice

EP[E ∧ t] = EP[(E ∧ t)1A] + EP[(E ∧ t)1Ac ] ≤ EP[E1A] + EP[t1Ac ] ≤ (1 + εP) + δPt

for P ∈ P and t ∈ R+.
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(E1) ⇒ (E2) in case each P is atomless: Let A be an event with P(A) = 1− δP such that
{E < t} ⊆ A ⊆ {E ≤ t} for some t ∈ R+. Note that E ≥ t on Ac. We have,

EP[E1A] = EP[(E ∧ t)1A] = EP[E ∧ t]− EP[(E ∧ t)1Ac ] ≤ 1 + εP + tδP − EP[t1Ac ] ≤ 1 + εP,

as desired.

Without the atomless assumption on each P ∈ P, the implications (P1)⇒(P2) and (E1)⇒(E2) in
Proposition 10.2 do not hold, because the event A with desired probability may not exist (counterexamples
can be found on discrete spaces). We emphasize that the atomless assumption does not pertain to the
distribution of P or E (i.e., P or E can be discrete). For instance, this atomless assumption is automatic if
external randomization is permitted.

The two formulations (P1) and (P2) in the above proposition are obviously equivalent when δ = 0 without
requiring any condition; the same holds for (E1) and (E2).

In Chapter 2, we described calibrators from p-values to e-values and those from e-values to p-values. Recall
from Chapter 2 that a (p-to-e) calibrator is a decreasing function f : [0,∞) → [0,∞] satisfying

∫ 1

0
f(x)dx ≤ 1

and f(x) = 0 for x ∈ (1,∞). An e-to-p calibrator is a decreasing function g : [0,∞] → [0,∞) such that
g(x) ≥ (1/x) ∧ 1 for all x ∈ [0,∞], because the only admissible e-to-p calibrator is x 7→ (1/x) ∧ 1. The next
theorem demonstrates that we can calibrate approximate p-values and approximate e-values in exactly the
same way as in calibrating p-values and e-values.

Theorem 10.3

Let ε : P → R+ and δ : P → [0, 1]. Using any calibrators, calibrating an (ε, δ)-approximate p-variable
yields an (ε, δ)-approximate e-variable, and vice versa.

Proof.

Fix any P ∈ P. If δP = 1 there is nothing to prove, so we assume δP < 1 below. For the
first statement, let P be an (ε, δ)-approximate p-variable for P and f be a (p-to-e) calibrator
and b = (1 + εP)/(1 − δP) ≥ 1. Let F be a cdf on [0, 1/b] given by F (s) = (1 + εP)s + δP for
s ∈ [0, 1/b]. We have P(P ≤ s) ≤ F (s) for s ∈ [0, 1] and F (0) = δP. Hence, noting that the
calibrator f is decreasing, we have, for all t ∈ R+,

EP[f(P ) ∧ t] ≤
∫ 1/b

0

(f(s) ∧ t)dF (s)

≤ (1 + εP)

∫ 1/b

0

f(s)ds+ tF (0)

≤ (1 + εP)

∫ 1

0

f(s)ds+ δPt ≤ 1 + εP + δPt.

For the second statement, it suffices to consider the calibraotr x 7→ (1/x) ∧ 1, and we define
P = (1/E) ∧ 1. We have, for t ∈ (0, 1),

P(P ≤ t) = P(E ≥ 1/t)

= P(E ∧ (1/t) ≥ 1/t)

≤ tEP[E ∧ (1/t)] ≤ t

(
1 + εP +

δP
t

)
= (1 + εP)t+ δP,

as desired.
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Remark 10.4. Following a similar proof, the statements in Theorem 10.3 hold true also for if we use the
alternative formulations (P2) and (E2) in Proposition 10.2 for both approximate p-variables and approximate
e-variables.

The roles of ε and δ are asymmetric and, as mentioned earlier, the wiggle room created by δ is more
lenient. The following result shows that an (ε, δ)-approximate p-variable (or e-variable) with ε > 0 is always
also an (0, δ′)-approximate p-variable (or e-variable) where δ′ can be chosen strictly smaller than ε+ δ.

Proposition 10.5

Let ε : P → R+, δ : P → [0, 1], and δ′ = (ε+ δ)/(1 + ε).

(i) An (ε, δ)-approximate p-variable for P is also an (0, δ′)-approximate p-variable for P.

(ii) An (ε, δ)-approximate e-variable for P is also an (0, δ′)-approximate e-variable for P.

Proof.

Let P be an (ε, δ)-approximate p-variable. Fix P ∈ P . Then, for any t ∈ (0, (1−δP)/(1+εP)),
we have that:

P(P ≤ t) ≤ (1 + εP)t+ δ ≤ t+ εP
1− δP
1 + εP

+ δP = t+ δ′P.

Meanwhile the inequality P(P ≤ t) ≤ t+ δ′P is clearly true for t ≥ (1− δP)/(1 + εP) (since the
right hand side is ≥ 1). Thus P is an (0, δ)′-approximate p-variable for P.

The argument for the approximate e-variable is analogous (noting that only t ≥ 1 needs to
be checked in the condition for approximate e-variables) and omitted.

Proposition 10.5 also suggests that controlling δ is a stronger requirement, leading to two different notions
of asymptotic e-values and p-values in Section 10.2.

10.2 Asymptotic p-values and e-values

10.2.1 Definitions and conditions

We consider a sequence of datasets X = X(n) of growing size as n → ∞. Based on X(n) we compute a
[0, 1]-valued statistic P (n) = P (n)(X(n)). Similarly, we can compute a nonnegative extended random variable
E(n) = E(n)(X(n)). The following definitions give some intuitive conditions on P (n) and E(n) for them to be
considered as p-variables and e-variables in an asymptotic sense.
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Definition 10.6: Asymptotic p-variables and e-variables

A sequence (E(n))n∈N of [0,∞]-valued random variables is called a sequence of:

(i) asymptotic e-variables for P, if for each n, E(n) is (εn, δn)-approximate for P for some (εn, δn),
satisfying

for each P ∈ P, lim
n→∞

εn(P) = lim
n→∞

δn(P) = 0; (10.1)

(ii) strongly asymptotic e-variables for P, if condition (10.1) is replaced by

for each P ∈ P, lim
n→∞

εn(P) = 0 and δn(P) = 0 for n large enough;

(iii) uniformly asymptotic e-variables for P, if condition (10.1) is replaced by

lim
n→∞

sup
P∈P

εn(P) = lim
n→∞

sup
P∈P

δn(P) = 0;

(iv) uniformly strongly asymptotic e-variables for P, if condition (10.1) is replaced by

lim
n→∞

sup
P∈P

εn(P) = 0 and sup
P∈P

δn(P) = 0 for n large enough;

Sequences (P (n))n∈N of (uniformly, strongly) asymptotic p-variables for P are defined analogously.

We sometimes simply say that a nonnegative sequence is asymptotic for P, and it should be clear from
context whether we meant a sequence of asymptotic e-variables (allowed to be [0,∞]-valued) or that of
asymptotic p-variables (R+-valued). Clearly, if P is finite, then asymptotic e-variables or p-variables are also
uniformly asymptotic.

Several conditions for asymptotic p-values and e-values are often encountered in typical statistical contexts.
We summarize them together in the following proposition.

Proposition 10.7

(i) If under each P ∈ P, a nonnegative sequence converges to an e-variable (resp. a p-variable) in
distribution, then it is a sequence of asymptotic e-variables (resp. p-variables) for P.

(ii) The nonnegative sequence (E(n))n∈N is uniformly strongly asymptotic for P if and only if

lim sup
n→∞

sup
P∈P

EP[E(n)] ≤ 1.

Similarly, it is strongly asymptotic for P if and only if lim supn→∞ EP[E(n)] ≤ 1 for all P ∈ P.

(iii) If a sequence of asymptotic e-variables is uniformly integrable for each P ∈ P, then it is strongly
asymptotic.

(iv) The nonnegative sequence (P (n))n∈N is uniformly asymptotic for P if and only if

lim sup
n→∞

sup
P∈P

P(P (n) ≤ t) ≤ t

for all t ∈ (0, 1). Similarly, it is asymptotic for P if and only if lim supn→∞ P(P (n) ≤ t) ≤ t for all
P ∈ P and t ∈ (0, 1).
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Proof.

(i) Fix P ∈ P . Suppose that (P (n))n∈N converges in distribution to a p-variable P . Note that
lim supn→∞ P(Pn ≤ t) ≤ P(P ≤ t) ≤ t for each t ∈ [0, 1]. This implies limn→∞ P(Pn ≤
t) ∨ t = t for each t ∈ [0, 1]. Since point-wise convergence of increasing functions to a
continuous function on a compact interval implies uniform convergence, we have

lim
n→∞

sup
t∈[0,1]

(P(Pn ≤ t) ∨ t− t) = 0 =⇒ lim
n→∞

sup
t∈[0,1]

(P(Pn ≤ t)− t)+ = 0.

This shows that (P (n))n∈N is a sequence of asymptotic p-variables.
Next we show the statement on asymptotic e-variables. For δ ∈ [0, 1], and a nonnegative
random variable E, consider the function

fδ(E) = sup
t∈R+

(EP[E ∧ t]− δt)− 1.

By definition, if ε := fδ(E) ∨ 0 is finite, then E is an (ε, δ)-approximate e-variable for
{P}. Let E be the limit of the nonnegative sequence (E(n))n∈N in distribution, and take
m ∈ R+ be such that P(E ≥ m) < δ. Since E(n) → E in distribution, there exists N ∈ N
such that P(E(n) ≥ m) < δ for n > N by the portmanteau theorem. It follows that, for
all t ∈ R+,

EP[E(n) ∧ t]− EP[E(n) ∧m]− δt ≤ P(E(n) ≥ m)(t−m)+ − δt ≤ δ(t−m)+ − δt ≤ 0,

and hence fδ(E(n)) ≤ EP[E(n) ∧m] − 1 → EP[E ∧m] − 1 ≤ 0 as n → ∞. This implies,
in particular, that for any δ > 0, there exists N ′ ∈ N such that for n > N ′, E(n) is an
(δ, δ)-approximate e-variable. Since P ∈ P is arbitrary, this shows that (E(n))n∈N is a
sequence of asymptotic e-variables for P.

(ii) We prove this result for the non-uniform case. The other argument is analogous. First
suppose that (E(n))n∈N is a sequence of strongly asymptotic e-variables for P . Fix P ∈ P .
Then:

EP[E(n)] ≤ 1 + εn(P) → 1 as n→ ∞,

where the first inequality holds for large enough n. For the other direction, note that any
nonnegative extended random variable E(n) is an (εn, 0)-approximate e-variable for P with
the choice εn(P) = (EP[E(n)]− 1)+ as long as EP[E(n)] is finite. If lim supn→∞ EP[E(n)] ≤
1, this implies that EP[E(n)] < ∞ for n large enough and the above εn(P) satisfies
limn→∞ εn(P) = 0, that is, (E(n))n∈N is a sequence of strongly asymptotic e-variables.

(iii) Fix P ∈ P. Note that for t ∈ R+,

EP[E(n)] ≤ EP[E(n) ∧ t] + EP[E(n)1{E(n)≥t}].

By uniform integrability, for any η > 0 there exists T > 0 such that

sup
n∈N

EP
[
E(n)1{E(n)≥T}

]
≤ η.

Thus,
EP[E(n)] ≤ 1 + εn(P) + δn(P)T + η,

and hence,
lim sup
n→∞

EP[E(n)] ≤ 1 + η.

Since η > 0 is arbitrary, we conclude by using part (ii).

(iv) The proof is similar to that of part (i) and omitted here.
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In Proposition 10.7, part (iii) gives a sufficient condition that best describes the intuition behind asymptotic
e-variables and p-variables, via convergence in distribution. Converging to an e-variable or p-variable in
distribution is a sufficient condition for a sequence to be asymptotic e-variables or asymptotic p-variables, but
this condition is not necessary. For instance, any sequence that is smaller than an e-variable is a sequence
of asymptotic e-variables, and it does not need to converge. Part (ii) gives an intuitive condition on the
expectation for strongly asymptotic e-variables. Part (iii) connects asymptotic e-variables and strongly
asymptotic e-variables via uniform integrability, and part (iv) gives equivalent conditions for uniformly (but
not strongly) asymptotic p-variables.

We can naturally calibrate asymptotic p-variables and e-variables by applying a (possibly different)
calibrator to each element in the sequence, in the sense of Theorem 10.3.

Proposition 10.8

Calibrating a sequence of (uniformly, strongly) asymptotic p-variables yields a sequence of (uniformly,
strongly) asymptotic e-variables, and vice versa.

The above result follows directly from Theorem 10.3.
The most common way of constructing asymptotic p-variables and e-variables is via limit theorems such

as the central limit theorem.

Proposition 10.9

Let Z(n) be a statistic computed based on X(n) for n ∈ N. Suppose that

Z(n) → Z in distribution as n→ ∞ under every P ∈ P,

where Z is a random variable with a continuous cumulative distribution function F .

(i) Let P (n) = F (Z(n)) or P (n) = 1−F (Z(n)) for n ∈ N. Then (P (n))n∈N is a sequence of asymptotic
p-variables for P.

(ii) Let h : R → [0,∞] be a function with E[h(Z)] ≤ 1 that is increasing, decreasing, or upper
semi-continuous, and E(n) = h(Z(n)) for n ∈ N. Then (E(n))n∈N is a sequence of asymptotic
e-variables for P. If h is further bounded, then (E(n))n∈N is strongly asymptotic for P.

Proof.

By the continuous mapping theorem, P (n) converges weakly to the uniform distribution,
and hence item (i) directly follows from Proposition 10.7, part (i).

For (ii) we may argue as follows. If h would have been continuous, then the result would
follow from the continuous mapping theorem and Proposition 10.7, part (i). For upper semi-
continuity, note that lim supn→∞ P(E(n) ≥ x) ≤ P(h(Z) ≥ x) for all x ∈ R by convergence in
distribution. This gives lim supn→∞ fδ(E

(n)) ≤ fδ(h(Z)) ≤ 0 using the notation and argument
in the proof of Proposition 10.7, part (i). The last statement follows from Proposition 10.7, part
(iii). When h is increasing or decreasing, replacing it with its upper semi-continuous version,
which does not change E[h(Z)], yields the desired statements.

The most common cases in practice where we can apply Proposition 10.9 include the following standard
examples:

1. Z d∼ N(0, 1) as would follow from the central limit theorem.

2. Z d∼ |N(0, 1)|, where |N(0, 1)| is the folded normal distribution (i.e., the distribution of |X| where
X

d∼ N(0, 1)).
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3. Z d∼ χ2
ν , where χ2

ν denotes the chi-square distribution with ν degrees of freedom. Such a limit occurs
e.g., for likelihood ratio or chi-square tests.

10.3 An asymptotic e-value via the central limit theorem

We next provide a prototypical example of asymptotic e-variables along the lines of the central limit theorem.

Example 10.10: Testing the mean with unknown variance

Suppose we observe the dataset X(n) = (X1, . . . , Xn) where Xi iid∼ P. We assume that their variance,
varP(Xi), is positive and finite, but is unknown. We seek to test the hypothesis

P = {P ∈ M1 : EP[Xi] = 0, varP(Xi) ∈ (0,∞)}, (10.2)

where M1 denotes the set of all probability measures on R. Define

X̄(n) =
1

n

n∑
i=1

Xi, S(n) =

√√√√ 1

n

n∑
i=1

(Xi)2, σ̂(n) =

√√√√ 1

n− 1

n∑
i=1

(
Xi − X̄(n)

)2
, (10.3)

and for fixed λ ∈ R, let

E(n) = exp

(
λ

√
nX̄(n)

S(n)
− λ2

2

)
, (10.4)

and

Ẽ(n) =
1

2
exp

(
λ

√
nX̄(n)

S(n)
− λ2

2

)
+

1

2
exp

(
−λ

√
nX̄(n)

S(n)
− λ2

2

)
. (10.5)

The next proposition justifies that (10.4) defines a sequence of strongly asymptotic e-variables.

Theorem 10.11

The sequences of random variables E(n) in (10.4) and Ẽ(n) in (10.5) are strongly asymptotic e-variables
for P in (10.2). If σ̂(n) is used in place of S(n) in (10.4) and (10.5), then E(n) and Ẽ(n) are asymptotic
e-variables for P. In either case, for λ > 0, E(n) (resp. Ẽ(n)) grows to infinity with probability 1
under the alternative that X1, . . . , Xn are drawn iid from Q with EQ[Xi] > 0 (resp. EQ[Xi] ̸= 0) and
varQ(Xi) <∞.

Proof.

Take any P ∈ P. By the central limit theorem, the law of large numbers and Slutsky’s
theorem,

√
nX̄(n)/S(n) converges in distribution to N(0, 1) as n→ ∞. We may verify that

EP
[
exp

(
λZ − λ2

2

)]
= 1,

for Z ∼ N(0, 1). By Proposition 10.9 it follows that E(n) are asymptotic e-variables. To upgrade
this result to strongly asymptotic, we can apply Theorem 2.5 of Giné et al. [1997] to show that
the sequence (E(n))n∈N is uniformly integrable and then conclude the proof by Proposition 10.7,
part (iii).

Next take an alternative Q with EQ[Xi] > 0, varQ(Xi) < ∞, and suppose that λ > 0.
Observe the following. By the strong law of large numbers

X̄(n) → EQ[Xi] > 0 almost surely as n→ ∞,
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and
S(n) →

√
varQ(Xi) + EQ[Xi]2 > 0 almost surely as n→ ∞.

The above imply that

λ

√
nX̄(n)

S(n)
→ ∞ almost surely as n→ ∞,

which also means that E(n) goes to ∞ with probability 1. The argument for Ẽ(n) is analogous
and omitted. The argument for σ̂(n) follows from Proposition 10.9.

The above conclusion extends to a broader class of asymptotic e-variables obtained by mixing in (10.4)
over λ with respect to a distribution with bounded support. Concretely, let G be any distribution on R with
compact support. Then, under the assumptions of this section,∫

exp

(
λ

√
nX̄(n)

S(n)
− λ2

2

)
dG(λ),

is a strongly asymptotic e-variable.
One central purpose of defining asymptotic e-variables is to handle cases where one does not know how to

construct a nonasymptotic e-variable. Indeed, for the above P , we do not know of nonasymptotic e-variables
(other than constants). Had a bound on the variance been known, such nonasymptotic e-variables do exist,
as shown next.

Example 10.12: Testing the mean with bounded variance

Given some σ > 0, consider the null hypothesis

Pσ =
{
P ∈ M1 : EP[X] = 0, varP(X) ≤ σ2

}
.

Then X2/σ2 is an e-variable for Pσ (see Section 2.6.3), and for any λ ∈ R the following are e-variables
for Pσ:

exp

(
λX − λ2

6
(X2 + 2σ2)

)
and

exp

(
ϕ(λX)− λ2

2
σ2

)
,

where ϕ(x) = log(1 + x + x2/2) for x ≥ 0 and ϕ(x) = − log(1 − x + x2/2) for x < 0. The different
choices of e-variables have large e-power against different alternatives.

10.4 Approximate/asymptotic compound p-values and e-values

In this section we extend the setting of Sections 10.1 and 10.2 to the multiple hypothesis testing setting,
introduced in Chapter 9.

10.4.1 Compound p-values

Compound e-values are defined in Definition 9.1. We next define their counterpart, compound p-values.
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Definition 10.13: Compound p-variables

Fix the null hypotheses (P1, . . . ,PK) and a set P of distributions. Let P1, . . . , PK be nonnegative
random variables. We say that P1, . . . , PK are compound p-variables for (P1, . . . ,PK) under P if∑

k:P∈Pk

P(Pk ≤ t) ≤ Kt for all t ∈ (0, 1) and all P ∈ P.

Similar to Theorem 10.3, compound p-variables and compound e-variables can be transformed via
calibration.

Theorem 10.14

Let h be any (p-to-e) calibrator. If P1, . . . , PK are compound p-variables for (P1, . . . ,PK) under P,
then Ek = h(Pk), k ∈ K, are compound e-variables for (P1, . . . ,PK) under P. Similarly, calibration in
the e-to-p direction is also valid.

Proof.

Fix an atomless P and it suffices to verify the statement for this P. Let K0 = |N (P)| and
take L ∼ Unif(N (P)) and U ∼ Unif[0, 1], mutually independent and independent of everything
else. Then

P̃ := PL1{U≤K0/K} + 1{U>K0/K}

is a bona fide p-value because for t ∈ (0, 1),

P(P̃ ≤ t) = P(PL ≤ t)P(U ≤ K0/K) =
K0

K

1

K0

∑
k:P∈Pk

P(Pk ≤ t) ≤ t.

Therefore,

1

K

∑
k:P∈Pk

EP [h(Pk)] =
K0

K
EP [h(PL)] ≤ EP [h(PL)1{U≤K0/K} + h(1)1{U>K0/K}

]
= EP

[
h(P̃ )

]
≤ 1,

where the last inequality holds since h is a calibrator. The other direction of calibration can be
checked directly.

Similarly to Example 9.2, an example of compound p-variables is given by weighted p-variables.

Example 10.15: Weighted p-values

Let w1, . . . , wK ≥ 0 be deterministic nonnegative numbers such that
∑
k∈K wk ≤ K. Let P ′

1, . . . , P
′
K

be p-variables and define P̃k = P ′
k/wk for k ∈ K with the convention 0/0 = 0. Then, P̃1, . . . , P̃K are

compound p-variables.

Example 10.16: Combining p-variables and compound e-variables

Suppose that Pk is a p-variable for Pk for all k ∈ K; P1, . . . , PK can be arbitrarily dependent. Moreover,
let E1, . . . , EK be compound e-variables for (P1, . . . ,PK) under P. If (E1, . . . , EK) is independent of
(P1, . . . , PK), then P1/E1, . . . , PK/EK are compound p-variables for (P1, . . . ,PK) under P. This can
be seen from Theorem 2.8.
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10.4.2 Approximate compound p/e-values

Just as in Definition 10.1 we introduced approximate p-variables and e-variables, below we define approximate
compound p-variables and e-variables.

Definition 10.17: Approximate compound p-variables and e-variables

Fix the null hypotheses P1, . . . ,PK , a set of distributions P, and two functions ε : P → R+ and
δ : P → [0, 1]. Write εP = ε(P) and δP = δ(P) for P ∈ P.

(i) The nonnegative random variables P1, . . . , PK are (ε, δ)-approximate compound p-variables for
(P1, . . . ,PK) under P if∑

k:P∈Pk

P(PK ≤ t) ≤ K((1 + εP)t+ δP) for all t ∈ (0, 1) and all P ∈ P.

(ii) The [0,∞]-valued random variables E1, . . . , EK are (ε, δ)-approximate compound e-variables for
(P1, . . . ,PK) under P if∑

k:P∈Pk

EP[Ek ∧ t] ≤ K(1 + εP + δPt) for all t ∈ R+ and all P ∈ P.

If we start with per-hypothesis approximate p-variables (or e-variables), then we directly recover approxi-
mate compound p-variables (or e-variables) for the multiple testing problem.

Example 10.18

Suppose that for all k ∈ K, Pk (resp. Ek) is an (εk, δk)-approximate p-variable (resp. e-variable) for Pk.
Then, P1, . . . , PK (resp. E1, . . . , EK) are (ε, δ)-approximate compound p-variables (resp. e-variables)
for the choice:

ε =
1

K

∑
k∈K

εk, δ =
1

K

∑
k∈K

δk.

We can calibrate approximate compound p-variables to compound e-variables and vice versa as per usual if
we use the same calibrator for all hypotheses. For instance, given a calibrator h, if P1, . . . , PK are approximate
compound p-variables for P1, . . . ,PK under P , then h(P1), . . . , h(Pk) are approximate compound e-variables
for the same hypotheses.

Proposition 10.19

Let ε : P → R+ and δ : P → [0, 1]. Using the same calibrator, calibrating (ε, δ)-approximate compound
p-variables yields (ε, δ)-approximate compound e-variables, and vice versa.

Proof.

We only prove the calibration result from approximate compound p-variables to e-variables.
To this end, let P1, . . . , PK be (ε, δ)-approximate compound p-variables for P1, . . . ,PK and let
h be an e-to-p calibrator. Fix P ∈ P. Define PL and P̃ as in the proof of Theorem 10.14 and
P̃ = {P} as a singleton null hypothesis. Then, P̃ is an (ε, δ)-approximate p-variable for P̃ . Thus,
by Theorem 10.3, h(P̃ ) is an (ε, δ)-approximate e-variable for P̃.
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Hence, further arguing as in the proof of Theorem 10.14, for any t > 0,

1

K

∑
k:P∈Pk

EP [h(Pk) ∧ t] =
K0

K
EP [h(PL ∧ t)] ≤ EP

[
h(P̃ ) ∧ t

]
≤ 1 + εP + δPt.

Thus h(P1), . . . , h(PK) are (ε, δ)-approximate e-variables for P1, . . . ,PK .

Just as Proposition 10.2 shows that approximate e-variables can be interpreted as allowing for a wiggle
room in the definitions of p-variables and e-variables, a similar interpretation is also available for approximate
compound p-variables and e-variables. We omit the proof as it is similar to the proof of Proposition 10.2.

Proposition 10.20

Let ε : P → R+ and δ : P → [0, 1] and E1, . . . , EK be [0,∞]-valued random variables. For the following
statements,

(E1) E1, . . . , EK are (ε, δ)-approximate compound e-variables for (P1, . . . ,PK) under P;

(E2) for every P ∈ P, there exists an event A such that∑
k:P∈Pk

EP[E1A] ≤ K(1 + εP) and P(A) ≥ 1− δP;

we have that (E2) implies (E1). Moreover, if each P ∈ P is atomless, then (E1)–(E2) are equivalent.

We omit the corresponding statements for approximate compound p-variables, which have a similar form
to Proposition 10.2.

10.4.3 Asymptotic compound p/e-values

In the context of multiple testing procedures in Chapter 9, compound e-values are the essential quantities for
their FDR control. The next definition introduces compound e-variables in the approximate or asymptotic
sense. The reader may directly anticipate the definitions that follow. However, what is most important, is to
clarify the asymptotic setup. As before, we seek to test hypotheses P1, . . . ,PK based on data X(n). We are
interested in asymptotics in which either n→ ∞ (with K fixed) or K → ∞ (with n fixed) or both K,n→ ∞.

Formally, we consider triangular-array type of asymptotics indexed by a single parameter m ∈ N that
determines the dataset size, n = n(m), and the number of hypotheses, K = K(m). We require that m→ ∞
and that max{K,n} → ∞ as m→ ∞.

All three asymptotic regimes are frequently encountered in the multiple testing literature. When using
Gaussian approximations to construct Z-test or t-test p-values, one is relying on asymptotics as the size of X
grows to infinity. When using empirical Bayes arguments to share strength and learn nuisance parameters
across hypotheses, one is relying on asymptotics as K grows to infinity.
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Definition 10.21: Asymptotic compound p-variables and e-variables

A sequence (
E

(n(m))
1 , . . . , E

(n(m))
K(m)

)
m∈N

of tuples of [0,∞]-valued random variables is called a sequence of:

(a) asymptotic compound e-variables for P1, . . . ,PK(m) under P, if for each m, E(n(m))
1 , . . . , E

(n(m))
K(m)

are (εm, δm)-approximate compound e-variables for P1, . . . ,PK(m) under P for some (εm, δm),
satisfying

for each P ∈ P, lim
m→∞

εm(P) = lim
m→∞

δm(P) = 0; (10.6)

(b) strongly asymptotic compound e-variables for P1, . . . ,PK(m) under P , if condition (10.6) is replaced
by

for each P ∈ P, lim
m→∞

εm(P) = 0 and δm(P) = 0 for m large enough.

Uniformly (strongly) asymptotic compound e-variables are defined analogously.

Sequences of (uniformly, strongly) asymptotic compound p-variables can be defined analogously.
For the remainder of this section, we assume that each P is atomless; this means that we can simu-

late a uniformly distributed random variable under P. This allows us to use the equivalent definition in
Proposition 10.2 of approximate e-variables through an event A with a constraint on its probability. As in
Definition 9.7, we denote by FD and RD the number of false discoveries and the total number of discoveries,
that is,

FD =
∑

k:P∈Pk

1{k∈D} = |N (P) ∩ D| and RD = |D|.

Definition 10.22: Approximate and asymptotic FDR control

Let P be a set of distributions, D be a multiple testing procedure, and let ε : P → R+ and δ : P → [0, 1].
The procedure D is said to have

(a) (ε, δ)-approximate FDR control at level α for hypotheses (P1, . . . ,PK) under P , if for every P ∈ P ,
there exists an event A such that

EP
[
FD

RD
1A

]
≤ α(1 + εP) and P(A) ≥ 1− δP;

(b) asymptotic FDR control at level α for hypotheses (P1, . . . ,PK(m)) under P if for each m ∈ N it
has (εm, δm)-approximate FDR control at level α for some (εm, δm), satisfying

for each P ∈ P, lim
m→∞

εm(P) = lim
m→∞

δm(P) = 0.

It is clear that the (0, 0)-approximate FDR control is equivalent to the FDR control defined in Definition 9.7.
A procedure with (ε, δ)-approximate FDR control also satisfies

FDRD = EP
[
FD

RD

]
≤ α(1 + εP) + δP for any P ∈ P.

Conversely, any procedure satisfying the above inequality has (ε, δ/α)-approximate FDR control, by invoking
the equivalence in Proposition 10.2; more precisely, the above condition implies, for all t ≥ 1,

EP
[
FD

αRD
∧ t
]
≤ EP

[
FD

αRD

]
≤ (1 + εP) +

δp
α

≤ (1 + εP) +
δP
α
t.
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With Definitions 10.21 and 10.22, we can formally state that the e-BH procedure applied to asymptotic
compound e-values has asymptotic FDR control.

Theorem 10.23

Suppose that we apply the e-BH procedure at level α to E1, . . . , EK . Then:

(i) If E1, . . . , EK are compound e-variables, then e-BH controls the FDR at level α.

(ii) If E1, . . . , EK are (ε, δ)-approximate compound e-variables, then e-BH satisfies (ε, δ)-approximate
FDR control, and so it controls the FDR at level α(1 + ε) + δ.

(iii) If E1, . . . , EK are asymptotic compound e-variables, then e-BH has asymptotic FDR control at
level α.

The same conclusions also hold for any self-consistent e-testing procedures at level α (Definition 9.9).

Theorem 10.23 follows directly from the definitions and the previous results on the e-BH procedure.

10.4.4 The simultaneous t-test sequence model

We next describe a prototypical model of constructing asymptotic compound e-variables in a setting with
composite null hypotheses.

In our setting, we observe K groups of data of size n, that is, we observe X = (X1
k , . . . , X

n
k )k∈K. We

consider distributions P according to which all observations are jointly independent and the data within each
group are iid. The universe of distributions P is understood to obey the above assumptions. Given any
P ∈ P, we write Pk for its k-th group-wise marginal so that X ∼ P entails that

Xi
k

iid∼ Pk for i = 1, . . . , n.

We seek to test the hypotheses,

Pk = {P ∈ P : EPk [Xi
k] = 0, varPk(Xi

k) ∈ (0,∞)}.

To this end, we start by constructing summary statistics in a group-wise manner, similar to (10.3):

X̄
(n)
k =

1

n

n∑
i=1

Xi
k, S

(n)
k =

√√√√ 1

n

n∑
i=1

(Xi
k)

2, σ̂
(n)
k =

√√√√ 1

n− 1

n∑
i=1

(
Xi
k − X̄

(n)
k

)2
.

To motivate the construction that follows, fix any P ∈ P and write µk(P) = EPk [Xi
k] and σ2

k(P) = varPk(Xi
k)

(supposing these exist). Observe that for any k ∈ K,

EPk [(S
(n)
k )2] = σ2

k(P) + µ2
k(P) for all k ∈ K and so EPk [(S

(n)
k )2] = σ2

k(P) for P ∈ Pk.

One can check that for any P ∈ (
⋃
k∈K Pk)

⋂
P,

∑
k:P∈Pk

EP
[
Ẽ

(n)
k (P)

]
= K, where Ẽ

(n)
k (P) =

K
(
S
(n)
k

)2∑
j:P∈Pj

σ2
j (P)

.

The above construction is not directly usable in practice because of the dependence of Ẽ(n)
k (P) on P. However,

it motivates a construction in which we conservatively estimate the P-dependent quantity
∑
j:P∈Pj

σ2
j (P) by∑

j∈K(σ̂
(n)
j )2 and then let

E
(n)
k =

K
(
S
(n)
k

)2∑
j∈K

(
σ̂
(n)
j

)2 , k ∈ K.
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We will show that the above are asymptotic compound e-variables under an asymptotic setup indexed by
m ∈ N such that n = n(m), K = K(m) and max{n,K} → ∞ as m → ∞. In case K → ∞, we further
restrict the class P to require that for any P ∈ P, |{k ∈ N : P ∈ Pk}| = ∞. In addition to this restriction
(which remains implicit in our notation), our formal result will be stated in terms of the following two sets of
distributions. The first set imposes some restrictions on moments of the marginals for null groups,

PB = {P ∈ P : EPk [|Xi
k − EPk [Xi

k]|2(1+δ)] ≤ C, varPk(Xi
k) ≥ c for all k with P ∈ Pk},

where δ, c, C ∈ (0,∞) are fixed constants. The second set also imposes normality of the marginals for null
groups,

PN = {P ∈ P : Pk = N(0, varPk(Xi
k)), c ≤ varPk(Xi

k) ≤ C for all k with P ∈ Pk}

for some constants c, C ∈ (0,∞).

Proposition 10.24

Suppose that n = n(m) ≥ 2 and K = K(m) ≥ 1 are such that max{n,K} → ∞ as m→ ∞. Then:

(i) (E
(n)
1 , . . . , E

(n)
K )m∈N is a sequence of asymptotic compound e-variables for (P1, . . . ,PK) under

PB.

(ii) (E
(n)
1 , . . . , E

(n)
K )m∈N is a sequence of strongly asymptotic compound e-variables for (P1, . . . ,PK)

under PN.

Proof.

Fix an arbitrary distribution P ∈ (
⋃
k Pk)

⋂
PB and write σ2

k = σ2
k(P), omitting the depen-

dence on P. We write K0(P) = |N (P)| = {k ∈ K : P ∈ Pk}. Note that max{K0(P), n} → ∞
and that

1

K

∑
k:P∈Pk

E
(n)
k ≤

∑
k:P∈Pk

(
S
(n)
k

)2∑
k:P∈Pk

(
σ̂
(n)
k

)2 . (10.7)

We will argue that the right hand side of the above expression converges in probability (and
thus also in distribution) to the constant 1. Arguing as in Proposition 10.7, part (i), it will then
follow that E(n)

1 , . . . , E
(n)
K are asymptotic compound e-variables. We claim that

n
∑
k:P∈Pk

(
S
(n)
k

)2
n
∑
k:P∈Pk

σ2
k

P→ 1 as m→ ∞.

Writing U (m) = n
∑
k:P∈Pk

(
S
(n)
k

)2
=
∑
k:P∈Pk

∑n
i=1(X

i
k)

2, we see that EP[U (m)] = n
∑
k:P∈Pk

σ2
k.

Moreover, by our assumptions, there exists another constant C ′ that depends only on δ > 0
such that:

EP[U (m)] ≥ cnK0(P), EP[|U (m) − EP[U (m)]|1+δ] ≤ C ′CnK0(P).

Thus, since nK0(P) → ∞ and using Markov’s inequality, it follows that U (m)/EP[U (m)] converges
in probability to 1 as desired. We can analogously argue that:

n
∑
k:P∈Pk

(
σ̂
(n)
k

)2
n
∑
k:P∈Pk

σ2
k

P→ 1 as m→ ∞.

Thus implies that E(n)
1 , . . . , E

(n)
K are asymptotic compound e-variables.

Next fix P ∈ (
⋃
k Pk)

⋂
PN. It suffices to prove uniform integrability of the right hand side

in (10.7) (using an argument analogous to the one of Proposition 10.7, part (iii)). We prove
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uniform integrability by controlling the following η-th moment for η ∈ (1, 1.25):

EP

[(∑
k:P∈Pk

(
S
(n)
k

)2∑
k:P∈Pk

(
σ̂
(n)
k

)2
)η]

≤ EP

( ∑
k:P∈Pk

(
S
(n)
k

)2)2η
1/2

EP

( 1∑
k:P∈Pk

(
σ̂
(n)
k

)2
)2η

1/2

.

Notice that by our assumptions, σ2
k = σ2

k(P) is both uniformly lower bounded and upper bounded
for all k such that P ∈ Pk. Ignoring multiplicative constants, it suffices to bound:

EP

( ∑
k:P∈Pk

n
(
S
(n)
k /σk

)2)2η
1/2

EP

( 1∑
k:P∈Pk

(n− 1)
(
σ̂
(n)
k /σk

)2
)2η

1/2

.

This can be accomplished by noting that,∑
k:P∈Pk

n
(
S
(n)
k /σk

)2 ∼ χ2
nK0(P),

∑
k:P∈Pk

(n− 1)
(
σ̂
(n)
k /σk

)2 ∼ χ2
(n−1)K0(P),

where χ2
d denotes the chi-square distribution with d degrees of freedom. The remainder of the

calculation amounts to direct evaluation of the 2η-th moment (resp. negative 2η-th moment) of
chi squared random variables.

Bibliographical note

Materials in this chapter are largely based on Ignatiadis et al. [2024a]. The notion of (ε, 0)-approximate
e-variable (not using this terminology) was considered by Wang and Ramdas [2022, Section 6.2]. The standard
examples following Proposition 10.9 in Section 10.2.1 can be found in standard textbooks Van Der Vaart
[1998], Lehmann and Romano [2005]. Example 10.12 is found in [Wang and Ramdas, 2023]. The notion
of compound p-variables was introduced by Armstrong [2022] under a different name (average significance
controlling p-values and tests) and further studied in an empirical Bayes setting by Ignatiadis and Sen
[2025]. The notion of approximate compound e-variables appears implicitly in Ignatiadis et al. [2024b]. A
notion related to approximate FDR control was used as proof technique (without being given that name)
by Blanchard and Roquain [2008]. The construction in Section 10.4.4 appeared in Ignatiadis et al. [2024b]
and pertains to the problem of conducting multiple t-tests.
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Chapter 11

Combining e-values and using e-values as
weights

In this chapter, we first present a classic result in optimal transport. Using this result, we prove Theorem 8.4,
which characterizes the class of all e-merging functions. Then, we discuss how to combine an e-value and a
p-value. Based on this combination, we illustrate how e-values can be used as weights in multiple testing
procedures.

Throughout this chapter, K ≥ 2 is a positive integer. We continue to fix one atomless probability P on
some (Ω,F) as in Chapter 8.

11.1 Optimal transport duality

A technical tool that will be useful in two main proofs in Sections 11.2 and 12.1 is optimal transport duality.
We state a classic version of multi-marginal optimal transport duality without proving it.

Let F : [0,∞)K → R be a bounded Borel function. Denote by B the set of Borel functions on [0,∞), and
define the operator

⊕
as(

K⊕
k=1

ϕk

)
(x1, . . . , xK) :=

K∑
k=1

ϕk(xk), (ϕ1, . . . , ϕK) ∈ BK , (x1, . . . , xK) ∈ [0,∞)K .

Define

DF =

{
(ϕ1, . . . , ϕK) ∈ BK :

K⊕
k=1

ϕk ≥ F

}
.

Let Γ(µ1, . . . , µK) be the set of all Borel measures on RK with marginal distributions µ1, . . . , µK on R. In
what follows, we always write ϕ = (ϕ1, . . . , ϕK) and µ = (µ1, . . . , µK).

Lemma 11.1: Optimal transport duality

For any bounded Borel function F : [0,∞)K → R and distributions µ1, . . . , µK on R,

sup
π∈Γ(µ)

∫
Fdπ = inf

ϕ∈DF

K∑
k=1

∫
ϕkdµk, (11.1)

where in the infimum we only consider those with
∑K
k=1

∫
ϕkdµk well-defined. Moreover, if F is upper

semicontinuous, then the infimum is attainable, and the functions ϕ1, . . . , ϕK in (11.1) can be chosen as
upper semicontinuous. If F is decreasing (nonnegative), then ϕ1, . . . , ϕK can be chosen as decreasing
(nonnegative). If F is bounded in [0, 1], then ϕ1, . . . , ϕK can be chosen as bounded in [0, 1].
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At an abstract level, the reason why optimal transport duality appears in this chapter and the next
one is that merging functions both for p-values and for e-values need to produce an output under arbitrary
dependence, and optimization under arbitrary dependence is precisely the topic of optimal transport theory.
In our context, it concerns multi-marginal optimal transport, to be precise.

11.2 Admissible e-merging functions

The main content of this section is to prove Theorem 8.4, recalled here.

Recalling Theorem 8.4

For a function F : RK+ → R+,

(i) if F is an e-merging function, then F ≤ Mλ for some λ ∈ ∆K+1;

(ii) F is an admissible e-merging function if and only if F = Mλ for some λ ∈ ∆K+1.

It suffices to show statement (i). Statement (ii) follows directly from (i) and the simple fact that Mλ is an
e-merging function.

First, we characterize the simplest case K = 1, which will be used in the proof of Theorem 8.4. All
e-variables in this section are for P.

Lemma 11.2

Let θ ∈ [1,∞] and r ∈ R+. If a function g : [0, θ] → R+ satisfies EP[g(E)] ≤ r for all e-variables E
taking values in [0, θ], then there exists λ ∈ [0, 1] such that g(x) ≤ r(1− λ+ λx) for x ∈ [0, θ] ∩ R.

As a particular case of Lemma 11.2 with r = 1, if g is an e-merging function of dimension 1, then there
exists λ ∈ [0, 1] such that g(x) ≤ (1− λ) + λx for x ∈ R+. Hence, the desired statement in Theorem 8.4 holds
for K = 1.

Lemma 11.2 has the following useful implication. If one is supplied with an e-variable E, but wants
another e-value (hoping that it would work better than E in some context), then one has to use (1− λ) + λE
for some λ ∈ [0, 1], as all other ways are dominated by this class. For instance,

√
E is a valid e-variable for

any E ∈ E, but Lemma 11.2 says that it is dominated by (1− λ) + λE for some λ, which turns out to be 1/2
in this case. This is the reason why there is no way of betting in each round other than using (1− λt + λtEt)
in Section 7.8 to build an e-process from given sequential e-variables (Et)t∈T+

.

Proof of Lemma 11.2.

The case r = 0 is trivial as g is the constant function 0. Otherwise, r > 0, and without loss
of generality we can assume r = 1.

If θ = 1, then g(x) ≤ 1 for all x, and taking λ = 0 gives the desired inequality. In what
follows, we assume θ ∈ (1,∞], and all points x, y that appear below are in [0, θ] ∩ R.

First, it is easy to note that g(y) ≤ y for y > 1; indeed, if g(y) > y then taking a random
variable X with P(X = y) = 1/y and 0 otherwise gives EP[g(X)] > 1 and breaks the assumption.
Moreover, g(y) ≤ 1 for y ≤ 1 is also clear, which in particular implies g(1) ≤ 1.

Suppose for the purpose of contradiction that the statement in the lemma does not hold.
This means that for each λ ∈ [0, 1], either (a) g(x) > (1 − λ) + λx for some x < 1 or (b)
g(y) > (1− λ) + λy for some y > 1 (or both). Since g(y) ≤ y for y > 1 and g(x) ≤ 1 for x < 1,
we know that λ = 1 implies (a) and λ = 0 implies (b).
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We claim that there exists λ0 ∈ (0, 1) for which both (a) and (b) happen. To show this
claim, let

Λ0 = {λ ∈ [0, 1] : g(y) > (1− λ) + λy for some y > 1};
Λ1 = {λ ∈ [0, 1] : g(x) > (1− λ) + λx for some x < 1}.

Clearly, the above arguments show Λ0 ∪ Λ1 = [0, 1], 0 ∈ Λ0, and 1 ∈ Λ1. Moreover, since the
function λ 7→ (1− λ) + λx is monotone for either x < 1 or x > 1, we know that both Λ0 and Λ1

are intervals. Let λ∗ = supΛ0 and λ∗ = inf Λ1. We will argue λ∗ ̸∈ Λ0 and λ∗ ̸∈ Λ1. If λ∗ ∈ Λ0,
then there exists y > 1 such that g(y) > (1−λ∗)+λ∗y. By continuity, there exists λ̂∗ > λ∗ such
that g(y) > (1− λ̂∗) + λ̂∗y, showing that λ̂∗ ∈ Λ0, contradicting the definition of λ∗. Therefore,
λ∗ ̸∈ Λ0. Similarly, λ∗ ̸∈ Λ1, following the same argument. If λ∗ = λ∗, then this point is not
contained in Λ0 ∪ Λ1, a contradiction to Λ0 ∪ Λ1 = [0, 1]. Hence, it must be λ∗ > λ∗, which
implies that Λ0 ∩ Λ1 is not empty.

Let x0 < 1 and y0 > 1 be such that

g(x0) > 1− λ0 + λ0x0 and g(y0) > 1− λ0 + λ0y0.

Let X be distributed as P(X = y0) = (1− x0)/(y0 − x0) and P(X = x0) = (y0 − 1)/(y0 − x0),
which clearly satisfies EP[X] = 1 and is binary. Moreover,

EP[g(X)] =
1− x0
y0 − x0

g(y0) +
y0 − 1

y0 − x0
g(x0)

>
1− x0
y0 − x0

(1− λ0 + λ0y0) +
y0 − 1

y0 − x0
(1− λ0 + λ0x0) = 1.

This yields a contradiction.

In what follows, 0 and 1 represent a vector of zeros and a vector of ones of the appropriate dimension,
respectively. The next lemma allows us to only consider upper semicontinuous e-merging functions.

Lemma 11.3

If F is an e-merging function, then its upper semicontinuous version F ∗ is given by

F ∗(e) = lim
ε↓0

F (e+ ε1), e ∈ [0,∞)K ;

is also an e-merging function, and F ∗ ≥ F .

Proof.

Take any vector E of e-variables. For every rational ε ∈ (0, 1), let Aε be an event independent
of E with P(Aε) = 1− ε, and Eε = (E+ ε1)1Aε

(here we use the convention that Eε = 0 if the
event Aε does not occur). For each ε, E[Eε] ≤ (1− ε)(1+ ε1) ≤ 1. Therefore, Eε is a vector of
e-variables, and hence

1 ≥ E[F (Eε)] = (1− ε)E [F (E+ ε1)] + εF (0),

which implies

E [F (E+ ε1)] ≤ 1− εF (0)

1− ε
.
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Fatou’s lemma yields

E[F ∗(E)] = E
[
lim
ε↓0

F (E+ ε1)

]
≤ lim

ε↓0
E [F (E+ ε1)] ≤ lim

ε↓0

1− εF (0)

1− ε
= 1.

Therefore, F ∗ is an e-merging function. The domination F ∗ ≥ F follows from the fact that F is
increasing.

Proof of Theorem 8.4

By Lemma 11.3, it suffices to consider an upper semicontinuous e-merging function F .
Let ME be the set of all distributions on R+ with mean no larger than 1, i.e., the set of all
distributions of e-variables, and Mθ

E be the subset of ME containing all distributions on [0, θ]
for θ ≥ 1.

Fix θ ≥ 1. Since F is bounded and nonnegative on [0, θ]K and upper semicontinuous, using
Lemma 11.1 we get

sup
µ∈(Mθ

E)
K

sup
π∈Γ(µ)

∫
Fdπ = sup

µ∈(Mθ
E)

K

inf
ϕ∈DF

K∑
k=1

∫
ϕkdµk = sup

µ∈(Mθ
E)

K

inf
ϕ∈D+

F

K∑
k=1

∫
ϕkdµk, (11.2)

where D+
F is the subset of DF containing all ϕ with nonnegative and upper semicontinuous

components. Define the mapping

J : (µ,ϕ) 7→
K∑
k=1

∫
ϕkdµk.

We will verify a few conditions, which allows us to apply a minimax theorem.

(i) The mapping J is bilinear, and therefore both convex and concave.

(ii) Since [0, θ] is compact, the set (Mθ
E)
K equipped with the weak topology is tight. By

Prokhorov’s theorem, it is sequentially compact, and hence compact.

(iii) Since each component of ϕ is upper semicontinuous, µ 7→ J(µ,ϕ) is upper semicontinuous
with respect to weak convergence in µ for each ϕ.

The above conditions allow us to use Fan [1953, Theorem 2] to conclude

sup
µ∈(Mθ

E)
K

inf
ϕ∈D+

F

K∑
k=1

∫
ϕkdµk = inf

ϕ∈D+
F

sup
µ∈(Mθ

E)
K

K∑
k=1

∫
ϕkdµk, (11.3)

Since F is an e-merging function, each term in (11.2) is bounded by 1. Using (11.3), we get

1 ≥ inf
ϕ∈D+

F

sup
µ∈(Mθ

E)
K

K∑
k=1

∫
ϕkdµk = inf

ϕ∈D+
F

K∑
k=1

sup
µk∈Mθ

E

∫
ϕkdµk. (11.4)

Denote by Tϕ = supµ∈Mθ
E

∫
ϕdµ for ϕ ∈ B. For any ε > 0, by (11.4), we can find (ϕ1, . . . , ϕK) ∈

D+
F such that

∑K
k=1 Tϕk

≤ 1 + ε. Using Lemma 11.2, for each k ∈ K, there exists a constant
hϕk

∈ [0, 1] such that

ϕk(x) ≤ Tϕk
(1− hϕk

+ hϕk
x) for all x ∈ [0, θ].
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Since (ϕ1, . . . , ϕK) ∈ D+
F , we have

F (x1, . . . , xK) ≤
K∑
k=1

Tϕk
(1− hϕk

+ hϕk
xk) for all x1, . . . , xK ∈ [0, θ].

This means that there exists λε,θ ∈ ∆K+1 such that F ≤ (1 + ε)Mλε,θ
on [0, θ]K . Since ∆K+1

is compact, we can find a limit λ0 ∈ ∆K+1 of some subsequence of λε,θ as ε ↓ 0 and θ → ∞.
Continuity of λ 7→ Mλ yields F ≤ Mλ0

on RK+ , thus the desired statement.

11.3 Cross-merging: merging an e-value and a p-value

Here we consider the setting where we have one e-variable E and one p-variable P for the same hypothesis.
This will help to design and understand procedures when both p-values and e-values are available, treated in
Section 11.4.

Propositions 2.3 and 2.4 in Chapter 2 identify all admissible calibrators between p-values and e-values.
We consider four cases of merging a p-value P and an e-value E: whether P and E are independent, and
whether the output is a p-value or an e-value.

To discuss these cases, we define combiners, in a similar way as calibrators and merging functions.

Definition 11.4

A function f : [0, 1] × [0,∞] → [0,∞] is called an i-pe/e combiner if f(P,E) is an e-value for any
independent p-value P and e-value E, and (p, e) 7→ f(p, e) is decreasing in p and increasing in e.
Similarly, we define i-pe/p, pe/p, and pe/e combiners, where i indicates independence, and p and e are
self-explanatory. If the output is a p-value, the combiner is increasing in p and decreasing in e.

In what follows we omit “pe” in “i-pe/e” and other terms to be concise. We provide four natural combiners
to the above four cases, some relying on an admissible calibrator h.

[ie] Return h(P )E by using the function C ie
h : (p, e) 7→ h(p)e. The convention here is 0×∞ = ∞.

[ip] Return P/E, capped at 1, by using the function C ip : (p, e) 7→ (p/e) ∧ 1.

[e] Return λh(P ) + (1− λ)E by using the function Ce
λ,h : (p, e) 7→ λh(p) + (1− λ)e for some λ ∈ (0, 1).

[p] Return 2min(P, 1/E), capped at 1, by using the function Cp : (p, e) 7→ (2(p ∧ e−1)) ∧ 1.

The superscript in the notation C ie suggests that the combiner assumes independence and outputs an
e-value; the other cases are similar. The combiners C ie

h and Ce
λ,h depend on h whereas C ip and Cp do not,

similarly to the situation of calibrators: There are many more choices when the output is an e-value, compared
to the case when the output is a p-value. For the combiner Ce

λ,h, it may be convenient to choose λ = 1/2, so
that Ce

λ,h(P,E) is the arithmetic average of two e-values h(P ) and E, although this choice has no special
advantage, since the positions of h(P ) and E are not symmetric.

Validity of these combiners is straightforward to verify. Admissibility of the above combiners is obtained
in the following result.

Theorem 11.5

For an admissible calibrator h and λ ∈ (0, 1), C ie
h is an admissible i-pe/e combiner, C ip is an admissible

i-pe/p combiner, Ce
λ,h is an admissible pe/e combiner, and Cp is an admissible pe/p combiner.
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The most useful combiner is the i-pe/p combiner C ip that produces a p-value based on independent P
and E. We omit the proof of Theorem 11.5, but checking that C ip is a valid i-pe/p combiner is simple (seen
already in Corollary 2.9 in Section 2.4): For t ∈ (0, 1) and any independent pair (P,E) of p-variable and
e-variable for P, we have

P(C ip(P,E) ≤ t) = P(P/E ≤ t) = P(P ≤ tE) = EP[P(P ≤ tE |E)] ≤ EP[tE] ≤ t.

Certainly, both (P/E)∧ 1 and P/E are p-variables. We will call C ip the quotient combiner because it outputs
the quotient of P and E (capped at 1). This combiner typically leads to more powerful procedures compared
to the other combiners and provides the foundation for our insight that e-values can act as unnormalized
weights in multiple testing in Section 11.4.

Example 11.6: Randomization

Consider an e-variable E for P and generate an independent uniform variable U ∼ U[0, 1]. Then, using
the quotient combiner, U/E is a p-variable that satisfies U/E ≤ 1/E. Hence, the unique admissible
e-to-p calibrator f : e 7→ (1/e) ∧ 1 in Proposition 2.3 can be improved if we allow for randomization.
Although U/E may not be practical in general due to external randomization, it becomes practical
when applied to a p-value P (computed from data) that is independent of E.

The quotient combiner is a useful general-purpose method for meta-analysis from two independent datasets.
The quotient combiner is immediately applicable when the researcher summarizes the first dataset as a single
p-value, and the second dataset as a single e-value. Such a situation could occur when the second dataset is
collected in such a way, e.g., with optional stopping and continuation, that inference is more natural with
e-values. It could also be the case that one dataset comprises of a large sample size, allowing for asymptotic
approximations to compute p-values, while the second dataset is smaller and may require finite-sample
inference methods.

The quotient combiner is also useful when the above data constraints are not in place and the researcher
can in principle compute both a p-value P ′ and an e-value E on the second dataset, both of which are
independent of the p-value P computed on the first dataset. In that case, the researcher could apply a p-value
combination method based on P and P ′, e.g., Fisher’s combination PF := 1− χ4(−2 log(PP ′)), where χ4 is
the cdf of the chi-square distribution with 4 degrees of freedom. However, the researcher may still prefer to
proceed with the quotient combiner P/E (we omit the cap at 1 for simplicity, which does not affect testing
results). We suggest the following rule of thumb:

The Fisher combination is preferable to the quotient combiner under dataset exchangeability: Suppose
that the analyst considers the two datasets as a-priori exchangeable. In that case, it may be undesirable to
use an asymmetric combination rule such as P/E, and Fisher’s combination PF is preferable on conceptual
grounds. If the two datasets are also exchangeable in terms of their statistical properties (i.e., they have
similar power), then PF will typically have higher power than P/E.

The quotient combiner is preferable to the Fisher combination for imbalanced datasets: When one dataset
(the “primary” dataset) is substantially more well-powered (larger anticipated signal or sample size) than the
secondary dataset, and the investigator knows which dataset is more well-powered, then the P/E combiner
can often outperform Fisher’s combination test in terms of power. A proviso is that the p-value is computed
on the primary (more well-powered) dataset and the e-value on the secondary dataset.
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Figure 11.1: Simulation study for a meta-analysis combining two samples: We compare the likelihood
ratio test, the quotient combiner (Q-combiner), and the Fisher combination test, plotting power against
signal strength δ. The panels correspond to different choices of the two sample sizes m and n. The quotient
combiner is visibly more powerful on the left (matching the likelihood ratio), and Fisher’s combination is
marginally better on the right.

Example 11.7: A stylized example illustrating the rule of thumb

Suppose we have two independent samples of iid data points, X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn),
both from a distribution P, where n ≥ m ≥ 1. We seek to test H0 : P = N(0, 1) against H1 : P = N(δ, 1),
where δ > 0 is known. The optimal (Neyman-Pearson) p-value based on X is given by PX := 1−Φ(TX),
where Φ is the standard normal distribution function and TX := m−1/2

∑m
i=1Xi. Analogously we may

compute p-values PY based on Y, as well as PZ, where Z = (X,Y) is the full dataset. The optimal
e-value EX based on X is the likelihood ratio of N(δ, 1)m over N(0, 1)m.

By the Neyman-Pearson Lemma, the most powerful test is the likelihood ratio test, which coincides
with a test based on the p-value PZ. We compare PZ against the quotient combiner PE := PY/EX and
PF by considering the hypothesis tests that reject H0 when the p-value is smaller than or equal to some
α > 0. Omitting details, we report the following conclusions.

(i) Theoretically, using the notion of asymptotic relative efficiency, we can prove that PE is as efficient
as PZ in two asymptotically settings: (a) α→ 0, that is, when the type-I error is very stringent, and (b)
m/n→ 0, that is, when Y is substantially more informative than X.

(ii) A small simulation study (Fig. 11.1) yields the following observations: (a) if m/n is small, then
PE has almost the same power as PZ, and both outperform the PF; (b) when m = n, PF has slightly
more power than PE , and both have slightly less power than the PZ.

These observations also confirm that, in case of using one p-value and one e-value, the primary
dataset should be used to generate the p-value.

11.4 E-values as weights in p-value based multiple testing

In this section, we study how the cross-merging methods in Section 11.3 can be useful in the context of
multiple testing in Chapter 9.

The basic setting is that a vector P = (P1, . . . , PK) of p-values and a vector E = (E1, . . . , EK) of e-values
are available for the hypotheses H1, . . . ,HK . More precisely, Pk is a p-variable for Hk, and Ek is an e-variable
for Hk for each k ∈ K. A useful context could be that e-values are obtained from preliminary data analysis
and p-values are obtained from follow-up confirmatory research on these hypotheses (recall from Example 11.7
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that, in the context of testing a single hypothesis, we would like to choose the primary dataset to generate
the p-value). We allow for some hypotheses with missing p-value or e-value, and in these cases Pk and Ek are
set to 1. The interpretation is that these hypotheses miss either a preliminary or a follow-up analysis.

Definition 11.8: E-weighted p-value procedure (ep-D)

Let p-D be a multiple testing procedure based on p-values. We define the e-weighted p-value procedure
ep-D which proceeds as follows: for k ∈ K, compute the quotient combiner P ∗

k := (Pk/Ek) ∧ 1, and
then supply P∗ to p-D.

We mainly focus on the e-weighted version of the BH procedure in Section 9.1.4, which we call the ep-BH
procedure. Recall that the BH procedure at level α has valid FDR control in case the p-values are PRDS,
as mentioned in Section 9.1.4. In the e-BH procedure, we interpret the e-values as weights for the p-values.
Intuitively, if Ek > 1, then there is evidence against Hk being a null, and we have Pk/Ek < Pk (assuming
Pk ̸= 0), that is, the weight strengthens the signal of Pk. Conversely, if Ek < 1, then there is no evidence
against Hk being a null, and we have Pk/Ek > Pk. The above interpretation of e-values as weights is quite
natural, and the perspective is useful in deriving guarantees. Below we prove that ep-BH controls the FDR
under the assumption that P is PRDS and P and E are independent. Note that these two conditions do
not imply PRDS of P∗, and hence some arguments are needed to establish the FDR control of the ep-BH
procedure. The following result integrates over the randomness in the weights, i.e., the e-values.

Theorem 11.9

Suppose that P is independent of E and that P satisfies PRDS (Definition 9.14). Then, the ep-BH
procedure has FDR at most K0α/K.

Proof.

Let ep-D be the ep-BH procedure at level α. Since E is independent of P, conditional on E,
the ep-BH procedure becomes a weighted p-BH procedure with weight vector E applied to the
p-values P that are PRDS. Using well-known existing results on the false discovery rate of the
weighted p-BH procedure (e.g., Ramdas et al., 2019, Theorem 1), we get

E
[
Fep-D

Rep-D

∣∣∣ E] ≤ 1

K

∑
k∈N

Ekα.

Hence, by iterated expectation, the FDR of ep-D is at most E[
∑
k∈N Ekα/K] ≤ π0α.

Compared with the weighted BH procedure using constant weights, the ep-BH procedure uses weights
that do not necessarily add up to K, i.e., they are not normalized. This allows us to save evidence obtained
from the preliminary analysis using e-values. Moreover. the above result does not require any assumption
whatsoever about the dependence within E.

There are many other types of procedures that take p-values as input, and they can be generalized with
e-values as weights.

Bibliographical note

The optimal transport duality statements in Lemma 11.1 can be verified with several results in Kellerer
[1984]; the formula (11.1) can be found in Rachev and Rüschendorf [2006, Theorem 2.1.1] and Rüschendorf
[2013, Theorem 2.3]. A standard textbook on optimal transport theory is Villani [2009]. Vovk and Wang
[2021] identified all symmetric admissible e-merging functions, but not the non-symmetric ones. Theorem 8.4
as presented in Section 11.2 was obtained by Wang [2025].
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The content of Sections 11.3–11.4 is based on Ignatiadis et al. [2024b]. The proof of Theorem 11.5 can be
found in Ignatiadis et al. [2024b, Appendix S1]. Using deterministic weights for the BH procedure to control
FDR was studied by Benjamini and Hochberg [1997]. The e-weighted BH procedure in Section 11.4 was
introduced by Ignatiadis et al. [2024b], along with results on many other procedures weighted by e-values.
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Chapter 12

Using e-values to combine dependent
p-values

In this chapter we study merging functions of p-values, and show how e-values appear as an essential step in
such merging functions. We first consider deterministic methods for arbitrarily dependent p-values. Then
we turn to methods based on the assumption of exchangeability among p-values, and methods based on
randomization.

As in Chapter 11, we fix a positive integer K ≥ 2 and an atomless probability P on some (Ω,F) throughout
this chapter.

12.1 Merging p-values under arbitrary dependence

The structure of merging functions for p-values is much richer than that of e-merging functions. It turns out
that admissible ways of merging p-values under arbitrary dependence have to go through merging e-values.
At a high level, the reason why merging p-values relies on e-values is due to optimal transport duality in
Lemma 11.1, which converts constraints on probability into constraints on expectation.

12.1.1 P-merging functions and examples

We first give the definition of p-merging functions, which is analogous to e-merging functions in Definition 8.1.

Definition 12.1

(i) An p-merging function (of K p-values) is an increasing Borel function F : [0,∞)K → [0,∞) such
that for any hypothesis, F (P1, . . . , PK) is a p-variable for any p-variables P1, . . . , PK .

(ii) A p-merging function F is symmetric if F (p) is invariant under any permutation of p.

(ii) A p-merging function F is homogeneous if F (λp) = λF (p) for all λ ∈ (0, 1] and p with F (p) ≤ 1.

(iii) A p-merging function F dominates a p-merging function G if F ≤ G. The domination is strict if
F ≤ G and F (p) < G(p) for some p ∈ [0,∞)K . A p-merging function is admissible if it is not
strictly dominated by any p-merging function.

Similarly to the situation in Chapters 8 and 11, it suffices to consider p-variables for the fixed atomless
probability P. We let U be the set of all p-variables for P.

Note that p-values are more useful to be small, and hence domination between p-merging functions is
defined via an opposite direction to that between e-merging functions. We will speak of admissibility within
smaller classes of p-merging functions, such as the class of symmetric p-merging functions.
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All p-merging functions that we encounter in this chapter are homogeneous and symmetric. Although
we allow the domain of F to be [0,∞)K in order to simplify presentation, the informative part of F is its
restriction to [0, 1]K .

We have some specific notation for this section. Denote by 0 the K-vector of zeros, and 1 the K-vector of
ones. All vector inequalities and the operation ∧ of taking the minimum of two vectors are component-wise.
For a, b, x, y ∈ R, ax ∧ by should be understood as (ax) ∧ (by).

Finally, a p-merging function F is precise if

sup
P∈UK

P(F (P) ≤ ε) = ε for all ε ∈ (0, 1).

In other words, ε by ε, F attains the largest possible probability allowed for F (P) to be a p-value.
We collect some basic properties of admissible p-merging functions, which will be useful in our analysis

later. We skip the proofs.

Proposition 12.2

(i) Any admissible p-merging function is precise and lower semicontinuous, takes value 0 on [0,∞)K \
(0,∞)K , and satisfies F (p) = F (p ∧ 1) ∧ 1 for all p ∈ [0,∞)K .

(ii) The point-wise limit of a sequence of p-merging functions is a p-merging function.

(iii) Any p-merging function is dominated by an admissible p-merging function.

We will always write p = (p1, . . . , pK). Two natural families of p-merging functions are the order-family
based on order statistics and the mean-family based on generalized mean. All functions that we see below
are homogeneous and symmetric.

Example 12.3: Order-family

The order-family is parameterized by k ∈ K, and its k-th element is the function

Gk,K : p 7→ K

k
p(k) ∧ 1,

where p(k) is the k-th ascending order statistic of p1, . . . , pK .

Example 12.4: Mean-family

The mean-family is parameterized by r ∈ [−∞,∞], and its element with index r has the form

Fr,K : p 7→ br,KMr,K(p) ∧ 1, (12.1)

where Mr,K is given by

Mr,K(p) =

(
pr1 + · · ·+ prK

K

)1/r

and br,K ≥ 1 is a suitable constant making Fr,K a p-merging function. The average Mr,K is also
defined for r ∈ {0,∞,−∞} as the limiting cases of (12.1), which correspond to the geometric mean, the
maximum, and the minimum, respectively. Another useful member of the mean-family is the multiple
F−1,K of the harmonic mean M−1,K .
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Example 12.5: Bonferroni correction and maximum

The initial and final elements of the M- and O-families coincide: the initial element is the Bonferroni
p-merging function

G1,K = F−∞,K : p 7→ Kmin(p) ∧ 1,

and the final element is the maximum p-merging function

GK,K = F∞,K : p 7→ max(p).

Example 12.6: Simes and Hommel functions

By minimizing over k in the order-family, we get the Simes function

SK :=

K∧
k=1

Gk,K

which is not a p-merging function, but it produces a p-variable if the input p-variables are independent
or PRDS. Moreover, one can show that the Simes function is the minimum of all symmetric p-merging
functions. Multiplied by a constant ℓK :=

∑K
k=1 k

−1 representing a factor of penalization, we get a
precise p-merging function, called the Hommel function,

HK :=

(
K∑
k=1

1

k

)
K∧
k=1

Gk,K = ℓKSK .

12.1.2 Using e-values to merge p-values

We first explain a simple way of merging p-values through e-values. Recall that a calibrator f : [0,∞) → [0,∞]

transforms a p-variable to an e-variable, and they satisfy
∫ 1

0
f(p)dp ≤ 1 and f(p) = 0 for p > 1. Let ∆K be

the standard K-simplex, that is,

∆K := {(λ1, . . . , λK) ∈ [0, 1]K : λ1 + · · ·+ λK = 1}.

For any calibrators f1, . . . , fK and any (λ1, . . . , λK) ∈ ∆K , define the function

G(p) := λ1f1(p1) + · · ·+ λKfK(pK).

For any vector P of p-variables, the function G produces an e-variable G(P), since it is a convex combination
of e-variables f1(P1), . . . , fK(PK). Markov’s inequality implies

P
(
G(P) ≥ 1

ε

)
≤ ε for all ε ∈ (0, 1).

Thus, 1/G is a p-merging function, and this can also be seen as applying the e-to-p calibrator t 7→ (1/t) ∧ 1
in Proposition 2.3 to the e-variable G(P).

Such a “naive” (but valid) procedure of merging p-values through merging e-values, producing 1/G, is
generally not admissible, as the last conversion step is wasteful. However, perhaps surprisingly, all admissible
and homogeneous p-merging functions can be obtained via the above procedure, choosing different functions
G for each ε. This is shown in Theorem 12.7 below, the main result of this section.

To explain this result, we reformulate p-merging functions by their rejection regions. The rejection region
of a p-merging function F at level ε ∈ (0, 1) is defined as

Rε(F ) :=
{
p ∈ [0,∞)K : F (p) ≤ ε

}
.
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If F is homogeneous, then Rε(F ), ε ∈ (0, 1), takes the form Rε(F ) = εA for some A ⊆ [0,∞)K . Conversely,
any increasing collection of Borel lower sets {Rε ⊆ [0,∞)K : ε ∈ (0, 1)} determines an increasing Borel
function F : [0,∞)K → [0, 1] by the equation

F (p) = inf{ε ∈ (0, 1) : p ∈ Rε}, (12.2)

with the convention inf ∅ = 1. It is immediate that F is a p-merging function if and only if P(P ∈ Rε) ≤ ε
for all ε ∈ (0, 1) and P ∈ UK .

Theorem 12.7

(i) For any p-merging function F and any ε ∈ (0, 1), there exists a homogeneous p-merging function
G such that Rε(F ) ⊆ Rε(G).

(ii) For any admissible p-merging function F and any ε ∈ (0, 1), there exist (λ1, . . . , λK) ∈ ∆K and
admissible calibrators g1, . . . , gK such that

Rε(F ) ⊆

{
p ∈ [0,∞)K :

K∑
k=1

λkgk(pk) ≥
1

ε

}
. (12.3)

(iii) If F is an admissible homogeneous p-merging function, then there exist (λ1, . . . , λK) ∈ ∆K and
admissible calibrators f1, . . . , fK such that

Rε(F ) =

{
p ∈ [0,∞)K :

K∑
k=1

λkfk

(pk
ε

)
≥ 1

}
for each ε ∈ (0, 1). (12.4)

(iv) For any (λ1, . . . , λK) ∈ ∆K and calibrators f1, . . . , fK , (12.4) determines a homogeneous p-merging
function.

As a consequence of Theorem 12.7 part (i), if the level α of type-I error control is determined before
choosing the p-merging function, then it suffices to consider homogeneous ones, since their rejection sets are
at least as larger as those of other p-merging functions. Note that this does not imply that there exists a
homogeneous p-merging function G dominating F in general, because the construction of G depends on the
given α.

The calibrators in (ii) and (iii) of Theorem 12.7 are connected via gk(x) = fk(x/ε)/ε, x ∈ [0,∞), for each
k ∈ K. This choice yields admissible calibrators by Proposition 2.5. Therefore, when F is an admissible
homogeneous p-merging function, the calibrators for different ε-levels are generated by one tuple of calibrators
through rescaling in the sense of Proposition 2.5.

The p-merging function in (12.4) can be explicitly expressed via (12.2) as

F (p) =

{
ε ∈ (0, 1] :

K∑
k=1

λkfk

(pk
ε

)
≥ 1

}
for p ∈ [0,∞)K . (12.5)

To prove Theorem 12.7, we need an additional lemma. We say that a set R ⊆ [0,∞)K is a decreasing
set if x ∈ R implies y ∈ R for all y ∈ [0,∞)K with y ≤ x (componentwise). Let U0 be the set of uniformly
distributed random variables on [0, 1] under P (i.e., they are exact p-variables). Clearly, U0 ⊆ U. For any
decreasing set L, we have

sup
P∈UK

0

P(P ∈ L) = sup
P∈UK

P(P ∈ L), (12.6)

because replacing an p-variable with a smaller exact p-variable does not reduce the above probability. The
fact (12.6) will be repeatedly used in the proof below.
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Lemma 12.8

Let R ⊆ [0,∞)K be a decreasing Borel set. For any β ∈ (0, 1), we have

sup
P∈UK

0

P(P ∈ βR) ≥ β ⇐⇒ sup
P∈UK

0

P(P ∈ R) = 1.

Proof.

We first prove the ⇐ direction by contraposition. Suppose

γ := sup
P∈UK

0

P(P ∈ βR) < β.

Take an event A with probability β and any P ∈ UK0 independent of A. Define P∗ by

P∗ = βP× 1A + 1× 1Ac .

It is straightforward to check P∗ ∈ UK . Hence, by (12.6),

βP (P ∈ R) = P(A)P (P ∈ R) ≤ P(P∗ ∈ βR) ≤ γ,

and thus P(P ∈ R) ≤ γ/β. Since γ/β < 1, this yields supP∈UK
0
P(P ∈ R) < 1 and completes

the ⇐ direction.
Next we show the ⇒ direction. Suppose supP∈UK

0
P(P ∈ βR) ≥ β. For any ε ∈ (0, β), there

exists P = (P1, . . . , PK) ∈ UK0 such that P(P ∈ βR) > β−ε. Let A = {P ∈ βR}, γ = P(A), and
B be an event containing A with P(B) = β ∨ γ. Let P∗ = (P ∗

1 , . . . , P
∗
K) follow the conditional

distribution of P/β given B. We have

P(P∗ ∈ R) = P(P ∈ βR | B) = P(A | B) =
γ

β ∨ γ
.

Note that for k ∈ {1, . . . ,K},

P(P ∗
k ≤ p) = P(Pk/β ≤ p | B) ≤ P(Pk ≤ βp)

P(B)
=

βp

β ∨ γ
≤ p,

and hence P∗ ∈ UK . Since γ > β−ε and ε ∈ (0, β) is arbitrary, we can conclude supP∈UK P(P ∈
R) = 1, yielding supP∈UK

0
P(P ∈ R) = 1 via (12.6).

Proof of Theorem 12.7.

For part (i), since any p-merging function has an admissible p-merging function dominating
it (Proposition 12.2), it suffices to prove (i) for admissible p-merging functions.

Let F be an admissible p-merging function and fix ε ∈ (0, 1). Note that the set Rε(F ) is
a lower set, and it is closed due to Proposition 12.2. Hence 1Rε(F ) is upper semicontinuous.
Using optimal transport duality, Lemma 11.1,

min
(h1,...,hK)∈BK

{
K∑
k=1

∫ 1

0

hk(x)dx :

K⊕
k=1

hk ≥ 1Rε(F )

}
= max

P∈UK
0

P(P ∈ Rε(F )) = ε,

where the last equality holds because F is precise (Proposition 12.2). Take (hε1, . . . , h
ε
K) ∈ BK

such that
⊕K

k=1 h
ε
k ≥ 1Rε(F ) and

∑K
k=1

∫ 1

0
hεk(x)dx = ε. By the corresponding conditions on
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1Rε(F ) in Lemma 11.1, we can choose each hεk to be nonnegative, decreasing and left-continuous.
Moreover, one can also require hεk(0) = ∞ for each k.

Lemma 12.8 gives

max
P∈UK

0

P(P ∈ Rε(F )) = ε =⇒ max
P∈UK

0

P(εP ∈ Rε(F )) = 1. (12.7)

Therefore, using duality in Lemma 11.1 again,

min
(h1,...,hK)∈BK

{
K∑
k=1

1

ε

∫ ε

0

hk(x)dx :

K⊕
k=1

hk ≥ 1Rε(F )

}
= 1,

implying
∑K
k=1

∫ ε
0
hεk(x)dx ≥ ε. As

∑K
k=1

∫ 1

0
hεk(x)dx = ε and each hεk is nonnegative, we know

hεk(x) = 0 for x > ε.

Define the set Aε := {p ∈ [0,∞)K :
∑K
k=1 h

ε
k(pk) ≥ 1}. Since

⊕K
k=1 h

ε
k ≥ 1Rε(F ), we have

Rε(F ) ⊆ Aε. Note that Aε is a closed lower set. By Markov’s inequality,

sup
P∈UK

0

P

(
K⊕
k=1

hεk(P) ≥ 1

)
≤ sup
P∈U0

K∑
k=1

EP[hεk(P )] = ε.

Hence, we can define a function G : [0,∞)K → R via Rδ(G) = δε−1Aε for all δ ∈ (0, 1). By the
above properties of Aε and Lemma 12.8, we can check that G is a valid homogeneous p-merging
function, and Rε(F ) ⊆ Rε(G). This proves part (i). To see the result in part (ii), it suffices to
take λk = ε−1

∫ ε
0
gε(x)dx and gk : [0,∞) → R, x 7→ ε−1hεk(x)/λk for each k = 1, . . . ,K, with

fk = 1 if λk = 0, which gives that g1, . . . , gK are admissible calibrators, and

Aε =

{
p ∈ [0,∞)K :

K∑
k=1

λkgk(pk) ≥
1

ε

}
.

Before proving part (iii), we first prove part (iv). For a function F defined by (12.5), the
condition P(F (P) ≤ ε) ≤ ε for P ∈ UK0 follows from Proposition 2.5 and Markov’s inequality.
Its increasing monotonicity and homogeneity are straightforward to check. Therefore, it is a
homogeneous p-merging function.

Now we can prove part (iii). Let fk(x) = εgk(εx) for x ∈ [0,∞), and define H via the
rejection regions in (12.4), which is a homogeneous p-merging function by part (iv). Then we
have Rε(F ) ⊆ Aε = Rε(H). Since F and H are both homogeneous, this means Rδ(F ) ⊆ Rδ(H)
for all δ ∈ (0, 1). The admissibility of F now gives F = H, and this proves part (iii).

If the homogeneous p-merging function F is symmetric, then f1, . . . , fK , as well as λ1, . . . , λK , in
Theorem 12.7 can be chosen identical.

Theorem 12.9

For any F that is admissible within the family of homogeneous symmetric p-merging functions, there
exists an admissible calibrator f such that

Rε(F ) =

{
p ∈ [0,∞)K :

1

K

K∑
k=1

f
(pk
ε

)
≥ 1

}
for each ε ∈ (0, 1). (12.8)

Conversely, for any calibrator f , (12.8) determines a homogeneous symmetric p-merging function.
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The p-merging function in (12.8) can be explicitly expressed as

F (p) =

{
ε ∈ (0, 1] :

1

K

K∑
k=1

f
(pk
ε

)
≥ 1

}
for p ∈ [0,∞)K . (12.9)

Proof.

The proof is similar to that of Theorem 12.7 and we only mention the differences. For the
first statement, it suffices to notice two facts. First, if Rε is symmetric, then hε1, . . . , hεK in the
proof of Theorem 12.7 can be chosen as identical; for instance, one can choose the average
of them. Second, the symmetry of Rε(F ) guarantees that G in the proof of Theorem 12.7
is symmetric, and hence it is sufficient to require the admissibility of F within homogeneous
symmetric p-merging functions in this proposition. The last statement in the proposition follows
from Theorem 12.7 by noting that (12.8) defines a symmetric rejection region.

The requirement f(0) = ∞ for an admissible calibrator f implies that the combined test (12.8) gives a
rejection as soon as one of the input p-values is 0, which is obviously necessary for admissibility (Proposi-
tion 12.2). Although many examples in the M- and O-families, in particular Fr,K for r > 0 and Gk,K for
k > 1, do not satisfy this, we can make the zero-one adjustment

F̃ (p) :=

{
F (p ∧ 1) ∧ 1 if p ∈ (0,∞)K

0 otherwise,

which does not affect the validity of the p-merging function.
For a decreasing function f : [0,∞) → [0,∞] and a p-merging function F taking values in [0, 1], we say

that f induces F if (12.8) holds; similarly, we may say that λ1, . . . , λK and f1, . . . , fK induce F if (12.3)
holds. Theorems 12.7 and 12.9 imply that any admissible p-merging function F is induced by some admissible
calibrators (but they need not be uniquely determined by F ).

The converse direction, constructing an admissible p-merging function, is more delicate. In general,
a p-merging function induced by admissible calibrators is not necessarily admissible. Using (12.7) and a
compactness argument, a necessary and sufficient condition for a calibrator f to induce a precise p-merging
function (a weaker requirement than admissibility) via (12.8) is

P

(
1

K

K∑
k=1

f(Pk) ≥ 1

)
= 1 for some (P1, . . . , PK) ∈ UK0 . (12.10)

Condition (12.10) may be difficult to check for a given f in general. A special known as is that f is convex. In
this case, (12.10) holds if and only if f ≤ K on (0, 1], which is a highly nontrivial mathematical result. This
condition turns out to be also sufficient for admissibility of F in Theorem 12.9. The proof of Theorem 12.10
is advanced and omitted here.

Theorem 12.10

If f is an admissible calibrator that is strictly convex on (0, 1], f ≤ K on (0, 1], and f(1) = 0, then the
p-merging function induced by f via (12.8) is admissible.

More generally, the same holds true if f is an admissible calibrator satisfying the following condition:
For some η ∈ [0, 1/K) and τ = 1− (K − 1)η, f = K on (0, η], f(η+) ≤ K, f is strictly convex on (η, τ ],
and f(τ) = 0.

Remark 12.11. There is a statement for the case of concavity instead of convexity. The p-merging function
induced by f via (12.8) is admissible if f satisfies the following condition: For some η ∈ [0, 1/K) and
τ = 1− (K − 1)η, f = K on (0, η], f(η+) ≥ K/(K − 1), f is strictly concave on (η, τ ], and f(τ) = 0.

VERSION SPRING BREAK, 2025
154



12.1.3 Examples

We present a few examples of p-merging functions.

Example 12.12: Order-family

The p-merging function F := Gk,K , k ∈ K, is induced by the calibrator f(p) = (K/k)1p∈[0,k/K]. Its
zero-one adjusted version is admissible for k ∈ [K − 1].

Example 12.13: Twice the arithmetic mean

The function 2M1,K , which is twice the arithmetic mean, is a precise p-merging function but not
admissible.

This p-merging function can be written in the form (12.9) with f(p) = 2− 2p for p ≥ 0, but this f
is not a calibrator because f(p) is not 0 for p > 1. Using the calibrator p 7→ (2− 2p)+ in (12.9) gives a
p-merging function that dominates 2M1,K , a slight improvement.

Example 12.14: e times the geometric mean

The function eM0,K , that is, e times the geometric mean, is a p-merging function that is not precise,
but approximately precise for large K.

This p-merging function can be written in the form (12.9) with f(p) = − log(p) for p ≥ 0. Using the
calibrator p 7→ (− log(p))+ in (12.9) gives a slight improvement.

Example 12.15: logK times the harmonic mean

Let TK = logK + log logK +1. The function (TK +1)M−1,K , that is, TK +1 times the harmonic mean,
is a p-merging function that is not precise, but approximately precise for large K.

This p-merging function can be written in the form (12.9) with

f(p) =

(
1

TKp
− 1

TK

)
∧K

for p ≥ 0, and it is an elementary exercise in calculus to check that p 7→ (f(p))+ is a calibrator, and
using it in (12.9) gives a slight improvement.

Example 12.16: Hommel function

The Hommel function HK is a precise p-merging function but not admissible. For K ≥ 4, it is strictly
dominated by the p-merging function H∗

K induced by the calibrator f given by

f(x) =
K1{ℓKx≤1}

⌈KℓKx⌉
, x ≥ 0,

and H∗
K is admissible when K is not a prime number (this is an intriguing fact; for example, if K = 2

or 3, H∗
K is shown to be not admissible).

12.2 Combining exchangeable p-values

In this section, we additionally assume that the input p-variables are exchangeable. Exchangeability among
p-values is encountered, for example, in statistical testing via sample splitting. Reasons for sample splitting
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include to relax the assumptions needed to obtain theoretical guarantees and to reduce computational
costs. The drawback of methods based on sample-splitting is that the obtained p-values are affected by the
randomness of the split, and thus repeated re-sampling can be performed, resulting in exchangeable p-values.

One can of course combine the obtained p-values by using the rules obtained in Section 12.1 (such as
twice the average in Example 12.13) for arbitrarily dependent p-values. But we can do better by exploiting
exchangeability. However, the constant 2 in front of the arithmetic average cannot be directly improved.
Indeed, we show that if we stick to symmetric merging functions, there is no hope to improve even assuming
exchangeability.

Definition 12.17

An ex-p-merging function is an increasing Borel function F : [0,∞)K → [0,∞) such that P(F (P) ≤
α) ≤ α for all α ∈ (0, 1) and P ∈ UK that is exchangeable. It is homogeneous if F (λp) = λF (p) for all
λ ∈ (0, 1] and p with F (p) ≤ 1.

Proposition 12.18

A symmetric ex-p-merging function is necessarily a p-merging function. Hence, for an ex-p-merging
function to strictly dominate an admissible p-merging function, it cannot be symmetric.

Proof.

Let P ∈ UK , and let π be a random permutation of {1, . . . ,K}, uniformly drawn from all
permutations of {1, . . . ,K} and independent of P. Let Pπ = (Pπ(1), . . . , Pπ(K)). Note that Pπ

is exchangeable by construction. If F is a symmetric ex-p-merging function, it must satisfy
F (Pπ) = F (P). Because F (Pπ) is a p-variable, so is F (P), showing that F is a p-merging
function.

In many practical settings, the exchangeable p-values can be generated one by one by repeating the same
randomized procedure many times, generating a stream of p-values. We introduce combination rules that
would simply process these p-values in the order that they are generated.

The next result follows by combining the exchangeable Markov inequality in Theorem 5.6, the p-merging
method from Theorem 12.9 and the formula (12.5).

Theorem 12.19: Combination of exchangeable p-values

Define the function F : [0,∞)K by

F (p) =

{
ε ∈ (0, 1] :

K∨
ℓ=1

(
1

ℓ

ℓ∑
k=1

f
(pk
ε

))
≥ 1

}
,

where f is a calibrator. Then, for any vector P of p-variables that is exchangeable, F (P) is a p-variable.
That is, F is an ex-p-merging function.

In fact, for the method in Theorem 12.19, we do not need to fix the number of p-values ahead of time,
they can just be processed online, yielding a p-value whenever this procedure is stopped. This makes our
merging rules particularly simple and practical. However, note that the online procedure requires that the
calibrator f does not depend on K.

12.3 Randomized combinations of p-values

In Section 12.1, we obtained methods to merge p-values using e-values in Theorems 12.7 and 12.9, and they
are admissible with the condition in Theorem 12.10. When randomization is allowed, the Markov inequality
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can be enhanced to the randomized Markov inequality, presented in Theorem 2.8. This allows us to design
more powerful way of merging p-values under randomization. We continue to work under the assumption
that the p-values are arbitrarily dependent, as in Section 12.1. The following result describes a method that
uses randomization to improve p-merging functions. This result can be seen as a combinations of Theorem
2.8 and 12.7 and the formula (12.5).

Theorem 12.20: Randomized combination of p-values

Define the function F : [0,∞)K × [0,∞) by

F (p, u) = min

{
ε ∈ (0, 1] :

K∑
k=1

λkfk

(pk
ε

)
≥ u

}
, (12.11)

where (λ1, . . . , λK) ∈ ∆K and f1, . . . , fK are calibrators. Then, for any vector P of p-variables and
another p-variable U independent of P, F (P, U) is a p-variable.

Proof.

If U d∼ U[0, 1], then the condition P(F (P, U) ≤ α) ≤ α for all α ∈ (0, 1) follows from the
randomized Markov inequality in Theorem 2.8. For a general p-variable U , it suffices to notice
that F (p, u) is increasing in u, and hence P(F (P, U) ≤ α) ≤ P(F (P, V ) ≤ α) ≤ α, where
V

d∼ U[0, 1] is independent of P.

A simple subclass of (12.11) is

F (p, u) = min

{
ε ∈ (0, 1] :

1

K

K∑
k=1

f
(pk
ε

)
≥ u

}
,

for a calibrator f , similarly to (12.5).
For the deterministic choice U = 1, Theorem 12.20 gives the validity statement in Theorem 12.7 (iv). In

practice, when randomization is allowed, U should be chosen as uniformly distributed on [0, 1]. This merging
method produces a smaller p-value than the deterministic p-merging function in (12.5).

Randomization is undesirable in many statistical applications. One deterministic remedy is that, when
one of the p-variables Pk in P is known to be independent of the others, one can use U = Pk and apply the
merging function to the rest of the p-variables with randomization through U .

If randomization is permitted, one can also improve the existing rules for combining arbitrarily dependent
p-values by using the exchangeable combination rule in Section 12.3 applied to a random permutation of the
p-values.

Table 12.1 summarizes some examples of p-merging methods under arbitrary dependence, randomization,
or exchangeability. They are derived from Theorems 12.9, 12.19 and 12.20 with different calibrators f , and
correspond to Examples 12.12–12.15.

Bibliographical note

The content of Section 12.1 is mainly based on Vovk et al. [2022], and the content of Sections 12.2–12.3 is
based on Gasparin et al. [2025].

Merging p-values has a long history, and some early works include Tippett [1931], Pearson [1933] and
Fisher [1948]. The Simes and Hommel functions in Example 12.6 were proposed by Simes [1986] and Hommel
[1983], respectively. The order-family was proposed by Rüger [1978]. The result on arithmetic mean was
derived by Rüschendorf [1982]. The harmonic mean was proposed by Wilson [2019]. The mean-family was
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Context
Arbitrary dependence

(Section 12.1)
Exchangeability
(Section 12.2)

Arbitrary dependence,
randomized (Section 12.3)

Result Theorem 12.9 Theorem 12.19 Theorem 12.20

Order statistics K
k p(k)

K
k

∧K
m=1 p

m
(λm)

K
k p(⌈Uk⌉)

Arithmetic mean 2M1(p) 2
∧K
m=1 M1(pm) 2

2−UM1(p)

Geometric mean eM0(p) e
∧K
m=1 M0(pm) eUM0(p)

Harmonic mean (TK + 1)M−1(p) (TK + 1)
∧K
m=1 M−1(pm) (TKU + 1)M−1(p)

Table 12.1: Some combination rules corresponding to Examples 12.12–12.15. The order-statistics family is
indexed by k ∈ {1, . . . ,K}. Here, p = (p1, . . . , pK) denotes the vector of p-values, and pm represents the
vector containing the first m values of p. In the table, p(k) is the k-th smallest value of p, while pm(λm) is
the λm = ⌈mk/K⌉ ordered value of pm. The random variable U is uniformly distributed on the interval
[0, 1] independent of the p-values. The functions M1, M0 and M−1 respectively denote the arithmetic mean,
the geometric mean, and the harmonic mean of the suitable dimension (we omit the dimension from the
subscript). The value TK is given by TK = logK + log logK + 1 for K ≥ 2.

formally studied by Vovk and Wang [2020]. In some the above works, often the p-values are assumed to be
independent or follow a certain dependence structure; key exceptions are Rüger [1978], Rüschendorf [1982]
and Vovk and Wang [2020].

The necessary and sufficient condition for (12.10) to hold for convex f is given in Theorem 3.2 of Wang
and Wang [2016]. This result is also needed to prove Theorem 12.10. The proof of Theorem 12.10 and
justifications for statements in Section 12.1.3 are found in Section 6 of Vovk et al. [2022].
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Chapter 13

False coverage rate control using
e-confidence intervals

This chapter studies confidence intervals formulated by e-values, that we call e-confidence intervals. These
will often not be intervals, but confidence sets (regions), but we still call them as confidence intervals for
simplicity (and to enable the common abbreviation CI).

We will see that these e-confidence intervals have additional properties compared to the usually constructed
confidence intervals. In this chapter, we let P denote the set of all possible data distributions. The data will
be drawn from some P† ∈ P, and we will be interested in estimating ϑ(P†), where ϑ : P → Θ is a predefined
functional of interest (such as the mean, median, and so on). Since P† is unknown, we will consider generic
distributions P ∈ P, as in Chapter 9. Let Pθ := {P ∈ P : ϑ(P) = θ} denote the set of all distributions whose
functional equals θ. We continue to write K = [K] as in the previous chapters.

13.1 Defining and constructing E-CIs

We first define e-confidence intervals as a generalization of the usual confidence intervals.

Definition 13.1: Families of e-variables and e-confidence intervals (e-CIs)

We say that {E(θ)}θ∈Θ is a family of e-variables for {Pθ}θ∈Θ if for each θ ∈ Θ, E(θ) is an e-variable
wrt Pθ.

For a fixed α ∈ [0, 1], a set C(α) ⊆ Θ is called a (1− α)-confidence interval (CI) for a functional ϑ if
P(ϑ(P) ∈ C(α)) ≥ 1− α for all P ∈ P . We say that {C(α)}α∈[0,1] is a family of confidence intervals for
ϑ if for every α ∈ [0, 1], C(α) is a (1− α)-CI for ϑ.

For a fixed α ∈ [0, 1], we say that C(α) is an (1 − α)-e-CI if there exists a family of e-variables
{E(θ, α)}θ∈Θ for {Pθ}θ∈Θ such that

C(α) =

{
θ ∈ Θ : E(θ, α) <

1

α

}
.

We often omit the level (1 − α) for CIs and e-CIs, which should be clear from the notation C(α) or
from the context.

We say that {C(α)}α∈[0,1] is a family of e-confidence intervals (e-CIs) if C(α) is an e-CI for every
α ∈ [0, 1]. Finally, a family of e-CIs called level-free if the above e-variable E(θ, α) does not depend on
α; in this case we simply write it E(θ).

Without loss of generality, we can take C(0) = Θ, C(1) = ∅. Moreover, we usually would assume
C(α) ⊇ C(α′) if α ≤ α′; this is automatically true for a level-free family of e-CIs.
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It is straightforward to observe that every e-CI is a CI and every family of e-CIs is a family of CIs: for
the latter case, observe that for any P ∈ Pθ, we have P(θ ̸∈ C(α)) = P(E(θ, α) ≥ 1/α) ≤ α by Markov’s
inequality, since EP[E(θ, α)] ≤ 1 for any P ∈ Pθ. (This also explains why we formulated C(α) using < 1/α
instead of ≤ 1/α; our choice leads to a smaller CI.)

Moreover, every CI is actually an e-CI by using

E(θ, α) = 1{θ∈C(α)},

which is an all-or-nothing e-variable in Section 3.1. Therefore, the more interesting object to us is the level-free
e-CI families.

We have already seen one general construction of e-CIs: those obtained via universal inference in Section 5.5.
Here, we develop two more examples: via stopped confidence sequences and calibrated CIs.

13.1.1 E-CIs from stopped confidence sequences

Let us first define the central concept of a confidence sequence. The setup here is inherently sequential, as
in Chapter 7. One observes an increasing amount of data from an unknown distribution P, and desires to
estimate its functional ϑ. Rather than a single σ-algebra F , one must now consider a filtration {Ft}t≥0,
which is a nested sequence of σ-algebras, indicating obtaining an increasing amount of information with the
passage of time. A stopping time τ is a random variable such that {τ ≤ t} is Ft-measurable for all t ≥ 0.

Definition 13.2

Given α ∈ [0, 1], a (1− α)-confidence sequence for a functional ϑ is a sequence of sets (Ct(α))t∈N such
that Cτ (α) ⊆ Θ is an (1− α)-CI for any stopping time τ . It also has the following equivalent definition:
for any P ∈ P, we have

P(ϑ(P) ∈ Ct(α) for all t ∈ N) ≥ 1− α.

A universal way to construct such an object is using a family of e-processes, which are sequential versions
of e-values, as introduced in Chapter 7.

For any fixed α, let E(θ, α) ≡ {Et(θ, α)}t≥0 denote an e-process wrt Pθ. Then, Ville’s inequality implies
that the set

Ct(α) =

{
θ ∈ Θ : Et(θ, α) <

1

α

}
is a confidence sequence for ϑ.

Proposition 13.3

If {Ct(α)}t∈N is a confidence sequence as constructed above, then for any stopping τ , Cτ (α) is an e-CI.
Further, if E(θ, α) does not depend on α, then {Cτ (α)}α∈[0,1] is a level-free family of e-CIs.

Proposition 13.3 directly follows from Ville’s inequality stated in Fact 7.5.

13.1.2 E-CIs by calibrating CIs

Recall the notion of a calibrator from Definition 2.2. Define f−1 to be the right inverse of the calibrator f ,
i.e., f−1(x) := sup{p : f(p) ≥ x}. When f is invertible, f−1 is the inverse of f . Using f−1, we can convert
any CI to an e-CI. Before we do so, define two properties about any set-valued CI function C : [0, 1] 7→ 2Θ.
Let C be decreasing if, for any α, β ∈ [0, 1], α ≤ β implies that C(α) ⊇ C(β). Further, define continuous
from below to be the property that for any α ∈ [0, 1], C(α) =

⋃
β>α C(β).
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Theorem 13.4

Let C : [0, 1] 7→ 2Θ be a decreasing function that is continuous from below such that C(α) produces a
(1−α)-CI, and f be a calibrator with right inverse f−1. Then, the following set Ccal(α) is a (1−α)-e-CI:

Ccal(α) = C

(
f−1

(
1

α

))
⊇ C(α).

Moreover, {Ccal(α)}α∈[0,1] is a level-free family of e-CIs.

Theorem 13.4 exploits the duality between CIs and families of tests (or families of p-values). For each
θ ∈ Θ, we can test the null hypothesis Pθ. The CI then corresponds to the values of θ for which the
aforementioned test does not reject at level α. We can invert this process to use the CI to define a p-value for
every null hypothesis Pθ. We can then calibrate the implicit p-value to yield an e-value, from which we can
produce our e-CI. This is formalized in the proof below.

Proof of Theorem 13.4.

The inclusion Ccal(α) ⊇ C(α) follows directly from the fact that f(p) ≤ 1/p for all p ∈ [0, 1]
(explained in Section 2.3), and hence f−1(1/α) ≥ α, and thus C(f−1(1/α)) ⊇ C(α). We next
prove that {Ccal(α)}α∈[0,1] is a level-free family of e-CIs.

For any θ ∈ Θ, note that the following is a p-variable for Pθ:

P dual(θ) := inf {α ∈ [0, 1] : θ ̸∈ C(α)} .

Consequently, Ecal(θ) := f(P dual(θ)) is an e-variable. Hence,{
θ ∈ Θ : Ecal(θ) <

1

α

}
yields a (1− α)-e-CI. The theorem now follows because{

θ ∈ Θ : Ecal(θ) <
1

α

}
=

{
θ ∈ Θ : f(P dual(θ)) <

1

α

}
=

{
θ ∈ Θ : P dual(θ) > max

{
p : f(p) ≥ 1

α

}}
=

{
θ ∈ Θ : P dual(θ) > f−1

(
1

α

)}
= C

(
f−1

(
1

α

))
.

Above, the third equality is a result of f being decreasing and upper semicontinuous at 1/α; hence
the supremum is achieved and the equality holds. The final equality is because C is decreasing
and continuous from below at f−1 (1/α); if P dual(θ) = f−1 (1/α), then θ ̸∈ Ci(P

dual(θ)) by C
being continuous from below.

13.2 The Benjamini-Yekutieli (BY) procedure

Consider a scientist who observes some data, X = (X1, . . . , XK) drawn from some distribution P ∈ P. The
scientist is potentially interested in the values of K of its functionals ϑ1, . . . , ϑK through the parameter
values θ∗ := (θ∗1 , . . . , θ

∗
K), where θ∗i := ϑi(P). The functionals ϑ1, . . . , ϑK could each take values in different
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spaces, but this complicates notation, and we will not explicitly need these sets later on. Each ϑi need not be
bijective; for example, it could capture the median of a distribution.

The scientist may be interested in identifying the L ≥ 1 indices corresponding to the largest L values of
θ∗, assuming they are real-valued. Or they may be interested in any index k such that θ∗k is larger than some
prespecified (or data dependent) threshold. In short, the scientist may not know which indices are of interest
to them before observing the data, and it is quite likely that after observing the data, only a small fraction of
indices are actually of interest.

For each i ∈ K, we assume that from Xi, the scientist can construct a (1− α)-confidence interval for θ∗i .
The scientist uses the data X to select a subset of “interesting” parameters, S ⊆ K, using some potentially

complex data-dependent selection rule S : X 7→ S. The scientist must then devise confidence levels for the CI
of each selected parameter, {αi}i∈S , that can depend on the data X. The false coverage proportion (FCP)
and false coverage rate (FCR) of such a procedure are defined by

FCP = FCP(S, {αi}i∈S) :=
∑
i∈S 1{θ∗i ̸∈Ci(αi)}

|S| ∨ 1
, FCR = EP [FCP] .

Note the obvious similarity between the concepts of FCR and FCP and between the concepts of FDR and
FDP in Chapter 9; all of these terms depend on P ∈ P through θ∗i = ϑi(P) and EP. If every αi equals the
same constant (say γ), we use the more succinct notation FCP(S, γ) to abbreviate FCP(S, {αi}i∈S).

Our goal is to design a method for choosing {αi}i∈S that guarantees FCR ≤ δ (for all P ∈ P) at a
predefined level δ ∈ [0, 1] provided by the scientists in advance, regardless of what the selection rule S is, and
in particular even if the rule is unknown and we only observe the selected set S = S(X).

Our primary point of comparison is the so-called Benjamini-Yekutieli (BY) procedure. The BY procedure’s
choice of {αi}i∈S and resulting guarantees depend upon assumptions (or knowledge) of the dependence
structure in X and the selection algorithm S. Under certain restrictions (omitted here for brevity) on S, the
BY procedure sets αi = δ|S|/K to ensure that the FCR is controlled at level δ for mutually independent
X1, . . . XK . However, when no such assumptions can be made (i.e., under arbitrary dependence and an
unknown selection rule) the BY procedure sets αi = δ|S|/(KℓK), where ℓK :=

∑K
i=1 i

−1 ≈ logK is the K-th
harmonic number. Clearly, the BY procedure produces much more conservative CIs when no assumptions
can be made about dependence or selection.

The above facts are reminiscent of the BH procedure discussed in Section 9.1.4, and one may, analogously
to the situation of e-BH versus BH procedures in Chapter 9, hope that an e-CI based procedure has FCR
control without the additional assumptions and the multiplicative penalty ℓK . This will be addressed next.

13.3 The e-BY procedure

Now, we formally define the e-BY procedure as follows.

Definition 13.5

The e-BY procedure at level δ ∈ [0, 1] sets αi = δ|S|/K for each i ∈ S.

We show that a FCR bound can be proven quite simply given the fact that e-CIs are constructed for each
selected parameter.

Theorem 13.6

Let {Ci(α)}α∈[0,1] be a level-free family of e-CIs for each i ∈ K. Then, the e-BY procedure ensures
FCR ≤ δ for any δ ∈ (0, 1) under any dependence structure between X1, . . . , XK , and for any selection
rule S. In fact, the e-BY procedure satisfies the stronger guarantee:

EP

[
sup
S∈2K

sup
δ∈(0,1)

FCP(S, δ|S|/K)

δ

]
≤ 1 for all P ∈ P.
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Proof of Theorem 13.6

We directly show an upper bound for the FCR as follows:

FCR = EP
[∑

i∈S 1{θ∗i /∈Ci(δ|S|/K)}

|S| ∨ 1

]
= EP

[∑
i∈K 1{Ei(θ∗i )|S|δ/K>1} · 1{i∈S}

|S| ∨ 1

]
≤
∑
i∈K

EP
[
Ei(θ

∗
i )|S|δ

K(|S| ∨ 1)

]
=
∑
i∈K

δ

K
EP
[
Ei(θ

∗
i ) ·

|S|
|S| ∨ 1

]
≤ δ,

where the first inequality is because 1{x>1} ≤ x for all x ≥ 0. The second inequality is a result
of the definition of the e-value for θ∗i having its expectation under P be upper bounded by 1.
This achieves our desired bound.

The proof of the more general claim follows by an easy amendment of the above proof.

We note in passing that FCR control of the e-BY procedure implies FDR control of the e-BH procedure,
while the converse is not true.

13.4 Combining CIs via majority vote

Given K uncertainty sets that are arbitrarily dependent — for example, confidence intervals for an unknown
parameter obtained with K different estimators, or prediction sets obtained via conformal prediction based on
K different algorithms on shared data — we now address the question of how to efficiently combine them in
a black-box manner to produce a single uncertainty set. We present a simple and broadly applicable majority
vote procedure that produces a merged set with nearly the same error guarantee as the input sets. We then
extend this core idea in a few ways: we show that weighted averaging can be a powerful way to incorporate
prior information, and a simple randomization trick produces strictly smaller merged sets without altering
the coverage guarantee. Further improvements can be obtained if the sets are exchangeable. Underlying all
of these methods are e-values and various versions of Markov’s inequality.

Formally, we start with a collection of K different sets Ck (one from each “agent”) for the same target
quantity c, each having a confidence level 1− α for some α ∈ (0, 1):

P
(
c ∈ Ck

)
≥ 1− α, k ∈ K. (13.1)

The probability measure P in this section is the one that generates the data. We say that Ck has exact
coverage if P(c ∈ Ck) = 1− α. Since the sets Ck are based on data, they are random quantities by definition,
but c can be either fixed or random; for example, in the case of confidence sets for a target functional of
a distribution it is fixed, but it is random in the case of prediction sets for an outcome (e.g., conformal
prediction). Our method will be agnostic to such details.

Our objective as the “aggregator” of uncertainty is to combine the sets in a black-box manner in order to
create a new set that exhibits favorable properties in both coverage and size. A first (trivial) solution is to
define the set CJ as the union of the others:

CJ =

K⋃
k=1

Ck.

Clearly, CJ respects the property defined in (13.1), but the resulting set is typically too large and has
significantly inflated coverage. On the other hand, the set resulting from the intersection CI =

⋂K
k=1 Ck is

narrower, but typically has inadequate coverage — it guarantees at least 1−Kα coverage by the Bonferroni
inequality, but this is uninformative when K is large.
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If the aggregator knows the (1− α)-confidence intervals not just for a single α but for every α ∈ (0, 1),
using the duality between CIs and tests, one can calculate a p-value for each θ ∈ Θ, each agent k ∈ K. We
have already seen many ways to combine dependent p-values, for example, by averaging them and multiplying
by two, and these can be used to combine these p-values across agents into a single one and then obtain a
(1− α)-confidence interval for any α of the aggregator’s choice. The current section addresses the setting
where only a single interval is known from each agent, ruling out the above averaging schemes.

13.4.1 The majority vote procedure

Let the observed data Z lie in a sample space Z, while our target c is a point in a measure space (S,A, ν),
where A is a σ-algebra on S and ν is a measure on S. As mentioned earlier, it is important to note that c
can itself be a random variable. The sets Ck = Ck(z) ⊆ S, k ∈ K, based on the observed data, follow the
property (13.1), where the probability refers to the joint distribution (Z, c) (or only Z if c is fixed). Let us
define a new set CM that includes all points voted by at least half of the sets:

CM :=

{
s ∈ S :

1

K

K∑
k=1

1{s∈Ck} >
1

2

}
. (13.2)

Theorem 13.7

Let C1, . . . , CK be K ≥ 2 different sets based on the observed data z, satisfying property (13.1). Then,
the set CM defined in (13.2) has coverage of at least 1− 2α:

P
(
c ∈ CM

)
≥ 1− 2α. (13.3)

Proof

Let ϕk = ϕk(Z, c) = 1{c/∈Ck} be a Bernoulli random variable such that EP[ϕk] ≤ α, k ∈ K.
Thus Ek = ϕk/α is an e-value, meaning that Ē = (E1 + · · ·+ EK)/K is an e-value. Thus,

P(c /∈ CM ) = P

(
1

K

K∑
k=1

ϕk ≥ 1

2

)
= P

(
Ē ≥ 1

2α

)
≤ 2α,

by Markov’s inequality, concluding the proof.

Actually, a slightly tighter bound can be obtained if K is odd. In this case, for a point to be contained in
CM , it must be voted for by at least ⌈K/2⌉ of the other sets. This implies that, with the same arguments as
used in Theorem 13.7, the probability of miscoverage is equal to αK/⌈K/2⌉ = 2αK/(K + 1), approaching
(13.3) for large K.

This result is known to be tight in a worst-case sense; a simple example shows that if K is odd and if the
sets have a particular joint distribution, then the error will equal (αK)/⌈K/2⌉. This worst-case distribution
allows for only two types of cases: either all agents provide the same set that contains c (so majority vote is
correct), or ⌊K/2⌋ sets contain c but the others do not (so majority vote is incorrect). Each of the latter cases
happens with some probability p, so the probability that majority vote makes an error is

(
K

⌊K/2⌋+1

)
p. The

probability that any particular agent makes an error is
(
K−1
⌊K/2⌋

)
p, which we set as our choice of α, and then

we see that the probability of error for majority vote simplifies to αK/⌈K/2⌉. Despite the apparent tightness
of majority vote in the worst-case, we will develop several ways to improve this procedure in non-worst-case
instances, while retaining the same worst-case performance.
Remark 13.8 (When does majority vote overcover and when does it undercover?). While the worst case
theoretical guarantee for majority vote is a coverage level of 1− 2α, sometimes it will get close to the desired
1−α coverage, and sometimes it may even overcover, achieving coverage closer to one. Here, we provide some
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intuition for when to expect each type of behavior in practice assuming α < 1/2, foreshadowing many results
to come. If the sets are actually independent (or nearly so), we should expect the method to have coverage
more than 1−α. This can be seen via an application of Hoeffding’s inequality in place of Markov’s inequality
in the proof of Theorem 13.7: since each ϕk has expectation (at most) α, we should expect 1

K

∑K
k=1 ϕk to

concentrate around α, and the probability that this average exceeds 1/2 is exponentially small (as opposed
to 2α), being at most exp(−2K(1/2− α)2) by Hoeffding’s inequality. In contrast, if the sets are identical
(the opposite extreme of independence), clearly the method has coverage 1− α. As argued in the previous
paragraph, there is a worst case dependence structure that forces majority to vote to have an error of
(essentially) 2α. Finally, if the sets are exchangeable, it appears more likely that the coverage will be closer
to 1− α than 1− 2α. While one informal reason may be that exchangeability connects the two extremes of
independence and being identical (with coverages close to 1 and 1− α), a slightly more formal reason is that
under exchangeability, we will later in this section actually devise a strictly tighter set CE than CM which
also achieves the same coverage guarantee of 1− 2α, thus making CM itself likely to have a substantially
higher coverage.

The above method and result can be easily generalized beyond the threshold value of 1/2. We record it as
a result for easier reference. For any τ ∈ [0, 1), let

Cτ :=

{
s ∈ S :

1

K

K∑
k=1

1{s∈Ck} > τ

}
. (13.4)

Theorem 13.9

Let C1, . . . , CK be K ≥ 2 different sets satisfying property (13.1). Then,

P
(
c ∈ Cτ

)
≥ 1− α/(1− τ).

The proof follows the same lines as the original results outlined in Theorem 13.7 and is thus omitted. As
expected, it can be noted that the obtained bounds decrease as τ increases. In fact, for larger values of τ ,
smaller sets will be obtained. One can check that this result also yields the right bound for the intersection
(τ = 1− 1/K) and the union (τ = 0). In certain situations, it is possible to identify an upper bound to the
coverage of the set resulting from the majority vote.

Even if the input sets are intervals, the majority vote set may be a union of intervals. One can easily
construct a simple aggregation algorithm to find this set quickly by sorting the endpoints of the input intervals
and checking some simple conditions.

Frequently, the majority vote set is indeed an interval. In fact, it is easy to check that if C1, . . . , CK are
one-dimensional intervals and

⋂K
k=1 Ck ̸= ∅, then Cτ is an interval for any τ .

How large can the majority vote set be? One naive way to combine the K sets is to randomly select one
of them as the final set; this method clearly has coverage 1− α, and its length is in between their union and
intersection, so it seems reasonable to ask how it compares to majority vote. Surprisingly, majority vote is
not always strictly better than this approach in terms of the expected length of the set: consider, for example,
three nested intervals C1, C2, C3 of width 10, 8 and 3, respectively. The majority vote set is C2, with a length
of 8, but randomly selecting an interval results in an average length of 7. However, we show next that the
majority vote set cannot be more than twice as large. In addition, when the input sets are intervals, it is
never wider than the the largest interval.
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Theorem 13.10

Let ν(Cτ ) be the measure (size) of Cτ in (13.4). Then, for all τ ∈ [0, 1),

ν(Cτ ) ≤ 1

Kτ

K∑
k=1

ν(Ck). (13.5)

If the input sets are K one-dimensional intervals, for all τ ∈ [ 12 , 1), we have that

ν(Cτ ) ≤ max
k

ν(Ck). (13.6)

Above, ν could be the Lebesgue measure (for intervals), or the counting measure (for discrete, categorical
sets), for example. The proof uses the fact that the majority vote set is elementwise monotonic in its input
sets, meaning that if any of the input sets gets larger, the majority vote set can never get smaller. From
(13.5) we have that if τ = 1/2, then the measure of the majority vote set is never larger than 2 times the
average of the measure of the initial sets. This result is essentially tight as can be seen in the following
example involving one-dimensional intervals. For odd K, let (K + 1)/2 intervals have a length L, while the
rest have a length of nearly 0. The average length is then (K + 1)L/(2K), and the majority vote has length
L, whose ratio approaches 1/2 for large K. In addition, (13.5) gives the right bound for the intersection
(τ ↑ 1) and for the union (τ ↑ 1/K).

Consider a scenario similar to that of the last example. Suppose we have K ≥ 2 confidence intervals
such that C1 = · · · = C⌈K/2⌉ = (0, 2) and C⌈K/2⌉+1 = · · · = CK = (1, 3). It is possible to see that if
τ = (K − 2)/(2K), then the set Cτ coincides with the union of the initial sets, which is larger than the input
intervals. Furthermore, for finite K we have τ = (K − 2)/(2K) < 1/2, which implies that the bound in (13.6)
is also tight. This fact provides a practical justification for choosing 1/2 as value of τ : it is the smallest τ for
which the combined set cannot be larger than the input sets. In particular, a simple majority vote seems to
offer a good compromise between coverage and size.

13.4.2 Exchangeable, randomized and weighted variants

Surprisingly, when C1, . . . , CK are not independent, but are exchangeable, something better than a naive
majority vote can be accomplished. To describe the method, let CM (1 : k) denote the majority vote of sets
C1, . . . , Ck. Now define

CE :=

K⋂
k=1

CM (1 : k),

which can be equivalently represented as

CE =

s ∈ S :
1

k

k∑
j=1

1{s∈Cj} >
1

2
holds for all k ∈ K

 .

Essentially, CE is formed by the intersection of sets obtained through sequential processing of the sets derived
from the majority vote.

Theorem 13.11

If C1, . . . , CK are K ≥ 2 exchangeable sets having coverage 1− α, then CE is a 1− 2α uncertainty set,
and it is never worse than majority vote (CE ⊆ CM ).

The proof mimics that of Theorem 13.7, but uses the exchangeable Markov inequality from Chapter 5 in
place of Markov’s inequality. This method shares a same idea as in designing the ex-p-merging functions in
Section 12.2.
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This result points at a simple way at improving majority vote for arbitrarily dependent sets: process them
in a random order. To elaborate, let π be a uniformly random permutation of {1, . . . ,K} that is independent
of the K sets, and define

Cπ :=

K⋂
k=1

CM (π(1) : π(k)).

Since CM (π(1) : π(K)) = CM (1 : K), Cπ is also never worse than majority vote despite satisfying the
same coverage guarantee:

Corollary 13.12

If C1, . . . , CK are K ≥ 2 arbitrarily dependent uncertainty sets having coverage 1 − α, and π is a
uniformly random permutation independent of them, then Cπ is a 1 − 2α uncertainty set, and it is
never worse than majority vote (Cπ ⊆ CM ).

The proof follows as a direct corollary of Theorem 13.11 by noting that the random permutation π induces
exchangeability of the sets (the joint distribution of every permutation of sets is the same, due to the random
permutation). Of course, if the sets were already “randomly labeled” 1 to K (for example, to make sure there
was no special significance to the labels), then the aggregator does not need to perform an extra random
permutation.

Moving in a different direction below, we demonstrate that the majority vote can be improved with the
aim of achieving a tighter set through the use of independent randomization, while maintaining the same
coverage level.

Let U be an independent random variable that is distributed uniformly on [0, 1], and let u be a realization.
We then define a new set CR as:

CR :=

{
s ∈ S :

1

K

K∑
k=1

1{s∈Ck} >
1

2
+
u

2

}
. (13.7)

As a small variant, define

CU :=

{
s ∈ S :

1

K

K∑
k=1

1{s∈Ck} > u

}
.

Theorem 13.13

Let C1, . . . , CK be K ≥ 2 different sets satisfying the property (13.1). Then, the set CR has coverage
at least 1− 2α and is never larger than CM , while the set CU has coverage at least 1− α and is never
smaller than CR.

The proof follows that of Theorem 13.7, but uses the randomized Markov inequality in Theorem 2.8 from
Chapter 2 in place of Markov’s inequality. This is related to randomized p-merging functions in Section 12.3,
in particular to the randomized order-family combination. Even though CU does not improve on CM , we
include it since it involves random thresholding and delivers the same coverage as the input sets, a feature
that we do not know how to obtain without randomization.

It is not unusual for each interval to be assigned distinct “weights” (importances) in the voting procedure.
This can occur, for instance, when prior studies empirically demonstrate that specific methods for constructing
uncertainty sets consistently outperform others. Alternatively, a researcher might assign varying weights to
the sets based on their own prior insights.

Assume as before that the sets C1, . . . , CK based on the observed data follow the property (13.1). In
addition, let w = (w1, . . . , wK) be a set of weights, such that

wk ∈ [0, 1] and

K∑
k=1

wk = 1.
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These weights can be interpreted as the aggregator’s prior belief in the quality of the received sets. A
higher weight signifies that we attribute greater importance to that specific interval. As before, let U be
an independent random variable that is distributed uniformly on [0, 1], and let u be a realization. We then
define a new set CW as:

CW :=

{
s ∈ S :

K∑
k=1

wk1{s∈Ck} >
1

2
+ u/2

}
. (13.8)

Theorem 13.14

Let C1, . . . , CK be K ≥ 2 different sets satisfying property (13.1). Then, the set CW defined in (13.8)
has coverage of at least 1− 2α:

P
(
c ∈ CW

)
≥ 1− 2α.

In addition, let ν(CW ) be the measure associated with the set CW , then

ν(CW ) ≤ 2

K∑
k=1

wkν(Ck). (13.9)

If the weights are equal to wk = 1
K , for all k ∈ K, then the set CW coincides with the set CR defined in

(13.7) and it is a subset of that in (13.2). This means that in the case of a democratic (equal-weighted) vote
CR ⊆ CM , since CM is obtained by choosing u = 0. Furthermore, (13.9) says that the measure of the set
obtained using the weighted majority method cannot be more than twice the average measure obtained by
randomly selecting one of the intervals with probabilities proportional to w. When there are only two sets
and u = 0, the weighted majority vote set will correspond to the set with the greater weight.

Proposition 13.15

If C1, . . . , CK are K ≥ 2 different sets having coverage 1−α1, . . . , 1−αK (possibly unknown), then the
set CW defined in (13.8) has coverage

P(c ∈ CW ) ≥ 1− 2

K∑
k=1

wkαk.

In particular, this implies that the majority vote of asymptotic (1−α) intervals has asymptotic coverage
at least (1− 2α).

The proof is identical to that of Theorem 13.14, with the exception that the expected value for the
variables ϕk is equal to αk, and is thus omitted. If the αk levels are known (which they may not be, unless
the agents report it and are accurate), and if one in particular wishes to achieve a target level 1− α, then
it is always possible to find weights (w1, . . . , wK) that achieve this as long as α/2 is in the convex hull of
(α1, . . . , αK).

Since it is desirable to have as small an interval as possible if coverage (13.1) is respected, we would like
to assign a higher weight to intervals of smaller size. However, the weights must be assigned before seeing the
sets.

Suppose now that we have K different confidence sequences for a parameter that need to be combined
into a single confidence sequence. For this setting we show a simple result:

Proposition 13.16

Given K different 1− α confidence sequences for the same parameter that are being tracked in parallel,
their majority vote set is a 1− 2α confidence sequence.

It may not be initially apparent how to deal with the time-uniformity in the definitions. The proof
proceeds by first observing that an equivalent definition of a confidence sequence is a confidence interval
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that is valid at any arbitrary stopping time τ (here the underlying filtration is implicitly that generated by
the data itself). The sequence (C

(t)
k )t≥1 is a confidence sequence if and only if for every stopping time τ ,

P(c ∈ C
(τ)
k ) ≥ 1− α, for all k ∈ K. Now, the proof follows by applying our earlier results.

Now, let the data be fixed, but consider the setting where an unknown number of confidence sets arrive
one at a time in a random order, and need to be combined on the fly. Now, we propose to simply take a
majority vote of the sequences we have seen thus far. Borrowing terminology from earlier, denote by

CE(1 : t) :=

t⋂
i=1

CM (1 : i).

We claim that the above sequence of sets is actually a 1− 2α confidence sequence for c.

Theorem 13.17

Given an exchangeable sequence of confidence sets C1, C2, . . . (or confidence sets arriving in a uniformly
random order), the sequence of sets formed by their “running majority vote” (CE(1 : t))t≥1 is a 1− 2α
confidence sequence:

P
(
∃t ≥ 1 : c /∈ CE(1 : t)

)
≤ 2α.

Such a result is useful when derandomizing a statistical procedure, by repeating it many times one by
one, and attempting to combine the results of these repetitions on the fly.

Bibliographical note

E-confidence intervals were studied by Vovk and Wang [2023] and Xu et al. [2024]. Confidence sequences
were introduced by Darling and Robbins [1967]. The original BY procedure for false coverage rate control
was proposed by Benjamini and Yekutieli [2005], while the e-BY procedure was proposed and studied in Xu
et al. [2024].

Kuncheva et al. [2003] studied majority voting for classifiers and derived its miscoverage rate. Solari and
Djordjilović [2022] used majority vote to derandomize and stabilize split conformal prediction [Vovk et al.,
2005]. Both their results can in turn be improved using the randomized and exchangeable extensions of
majority vote, which were proposed by Gasparin and Ramdas [2024b]. The latter paper also presents several
applications to derandomization of other statistical procedures based on sample splitting such as median of
means [Lugosi and Mendelson, 2019] and HulC [Kuchibhotla et al., 2024]. The weighted variants of majority
vote were exploited by Gasparin and Ramdas [2024a] in the development of an online conformal prediction
algorithm that aggregates the outputs of many models in an online manner, upweighting the good models
over time.
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Chapter 14

Further contrasts between e-values and
p-values

In this chapter, we present a few results strengthening the theoretical foundation of e-values. This includes a
duality between e-values and p-values, representations of e-variables and p-variables as conditional expectations
and probabilities, and equivalent conditions for the existence of powered exact p-values and e-values.

14.1 A duality between e-values and p-values

We present a duality between e-values and p-values, further clarifying their intimate connection.
We consider a simple setting where a real-valued test statistic X is available, and a larger value of X

represents evidence against the null hypothesis. Simple examples are (1.1) and (1.5) in Section 1.5, where the
test statistic X is the sample sum. In this context, an e-variable should be an increasing function of X, and a
p-variable should be a decreasing function of X. Denote by

S(x;P) = P(X ≥ x)

for x ∈ R, which is the left-continuous survival function of X under P.
The next proposition explains that under the monotonicity restriction, S(X;P) provides natural bounds

on both p-variables and e-variables.

Proposition 14.1

Suppose that E is an e-variable for P that is an increasing function of X, and P is a p-variable for P
that is a decreasing function of X. Then,

P ≥ S(X;P) and E ≤ 1/S(X;P) P-almost surely.

Proof.

For the statement on the p-variable P , first note that for any decreasing function T and an
iid copy X ′ of X, we have {T (X ′) ≤ T (X)} ⊇ {X ′ ≥ X}, which implies

P(T (X ′) ≤ T (X) | X) ≥ P(X ′ ≥ X | X) = S(X;P) P-almost surely.

Using this and the fact that the cdf FP of P under P is smaller than or equal to the identity on
[0, 1] (this is the defining property of a p-variable), we get P ≥ FP (P ) ≥ S(X;P).

The statement on the e-variable E follows directly by observing that 1/E is a p-variable,
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guaranteed by Proposition 2.3, and then applying the result in the first part.

In fact, in Proposition 14.1, S(X;P) is a p-variable for P, but 1/S(X;P) is not an e-variable for P.
Nevertheless, in the next result we will see that, 1/S(X;P) is the supremum of all e-variables under the
monotonicity condition.

Theorem 14.2: Duality between e-values and p-values

Suppose that probability measures in P are absolutely continuous with respect to a reference measure
L. Let EX be the set of all e-variables for P that are increasing functions of X, and UX be the set of
all p-variables for P that are decreasing functions of X. Then,

sup
E∈EX

E = inf
P∈P

1

S(X;P)
=

1

infP∈UX P
L-almost surely.

In particular, if P = {P}, then supE∈EX E = 1/S(X;P), P-almost surely.

Proof.

Proposition 14.1 and the fact that 1/E for an e-variable E is a p-variable guarantee

sup
E∈EX

E ≤ sup
P∈UX

1

P
≤ inf

P∈P

1

S(X;P)
L-almost surely. (14.1)

Below we will show the equalities. For s ∈ R, let

Es =
1

supP∈P S(s;P)
1{X≥s} where we set Es = 1 in case of 0/0,

which is increasing inX. Moreover, Es is an e-variable, because EP[Es] = S(s;P)/supP′∈P S(s;P′) ≤
1 for all P ∈ P . It is straightforward to see that the supremum over s ∈ R for Es is achieved at
s = X, that is,

sup
s∈R

Es =
1

supP∈P S(X;P)

and hence the equalities in (14.1) hold.

The quantity supP∈P S(X;P) in Theorem 14.2 is a p-variable for P, again the best one under the
monotonicity restriction, as it is equal to infP∈UX P . Theorem 14.2 suggests that the supremum of e-values
over a set E ⊆ EX can be seen as a conceptual middle ground between an e-value (E is a singleton) and the
reciprocal of a p-value (E = EX in Theorem 14.2, which is the maximal set).

The next corollary strengthens the Markov inequality for e-variables, which is immediate from Theo-
rem 14.2.

Corollary 14.3

For any set E of e-variables for P that are increasing functions of X, we have

sup
P∈P

P
(
sup
E∈E

E ≥ 1

α

)
≤ α for all α ∈ (0, 1).

If increasing monotonicity of E in X is replaced by decreasing monotonicity (and analogously for P ),
similar conclusions in this section hold true, with the left-continuous survival function of X replaced by its
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cdf. Indeed, what matters for the type-I error control in Corollary 14.3 is that e-variables are comonotonic,
meaning that they are increasing functions of the same random variable (in our context, it is X or −X, but
it can be anything). Section 15.2 has a more general treatment of this property.

14.2 Representations as conditional expectations and probabilities

In this section, we present two representation results on p-variables and e-variables, which helps to further
explain “e” in “e-values”.

In what follows, X represents a generic data sample, which takes values in Rn; formally X is a measurable
mapping from Ω to Rn. In fact, the space Rn does not matter in this section. We say that a p-variable or an
e-variable Y is built on X if it is a measurable function of X. In the language of measure theory, this means
that Y is measurable with respect to the σ-algebra of X.

Theorem 14.4: Representation theorem for e-variables

For a random variable E, the following are equivalent:

(i) E is an e-variable for P built on X;

(ii) For every P ∈ P, there exists Q ∈ M1 with Q ≪ P such that

E ≤ EP
[
dQ
dP

| X
]

P-almost surely. (14.2)

If all P ∈ P are equivalent to some measure L, then every e-variable built on X is dominated by
(meaning ≤)

inf
P∈P

EP
[
dQP

dP
| X
]
, which is an e-variable for P,

for some class (QP)P∈P in M1 absolutely continuous with respect to L.

For given P,Q ∈ M1, the conditional expectation in (14.2) often takes the form

EP
[
dQ
dP

| X
]
=
p(X)

q(X)
,

where p and q are the density functions of the data X under P and Q, when they exist, as in Chapter 5.

Proof.

The direction (ii)⇒(i) is straightforward, because for all P ∈ P, the tower property of
conditional expectation gives

EP[E] ≤ EP
[
EP
[
dQ
dP

| X
]]

= EP
[
dQ
dP

]
= 1.

Next we show (i)⇒(ii). For each P ∈ P, let Q be a probability measure defined by dQ/dP =
E/EP[E] if EP[E] > 0, and Q = P if EP[E] = 0. We have, for P with EP[E] > 0,

EP
[
dQ
dP

| X
]
= EP

[
E

EP[E]
| X
]
=

E

EP[E]
≥ E P-almost surely.

For P with EP[E] = 0, we have E = 0 P-almost surely, which trivially satisfies (14.2).
The last statement follows by taking an infimum over P for (14.2).
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Theorem 14.4 generalizes Proposition 2.10, which connects e-variables to likelihood ratios in a simple null
setting. Theorem 14.4 implies that all e-variables built from a dataset are indeed the conditional expectation
of some likelihood ratio. In this sense, e-values are not only defined by constraints on expectations, but
they are indeed conditional expectations on the data. Moreover, Proposition 3.19 gives the optimality of this
construction when testing a simple null P against Q, where Q in (14.2) is the alternative hypothesis.

The next result shows that p-variables are conditional probabilities on the data.

Theorem 14.5: Representation theorem for p-variables

For a random variable P , the following are equivalent:

(i) P is a p-variable for P built on X;

(ii) There exists a measurable function T : Rn → R such that for every P ∈ P,

P ≥ P (T (X ′) ≤ T (X) | X) P-almost surely, (14.3)

where X ′ is an iid copy of X under P.

If all P ∈ P are equivalent to some measure L, then every p-variable built on X is dominated by
(meaning ≥)

sup
P∈P

P (T (X ′
P) ≤ T (X) | X) which is a p-variable for P,

for some measurable function T : Rn → R, where X ′
P is an iid copy of X under P.

Proof.

We first show (ii)⇒(i). Fix any P ∈ P , and denote by FT the cdf of T (X) under P. Note that
P(T (X ′) ≤ T (X) | X) = FT (T (X)). Hence, P(P ≤ α) ≤ P(FT (T (X)) ≤ α) ≤ α, a well-known
fact in probability. This shows that P is an e-variable for P.

Next, we show (i)⇒(ii). Take T (X) = P , treating P as a function of X. Fix any P ∈ P,
and denote by FP the cdf of P under P. Since P is a p-variable, FP is by definition smaller
than or equal to the identity on [0, 1]. It follows that P ≥ FP (P ) = P(T (X ′) ≤ T (X) | X).

The last statement follows by taking a supremum over P for (14.3).

14.3 Existence of powered exact e-values and p-values

Similar to Section 3.4, we can derive another existence result in the case that we require the e-variable to
be exact (meaning that its expectation equals one under every P ∈ P), which turns out to need the same
geometric condition as requiring that the p-variable is exact (meaning it is uniformly distributed for every
P ∈ P). For a given P, a random variable X is pivotal if it has the same distribution under all P ∈ P.

Theorem 14.6

Consider testing P = {P1, . . . ,PL} against Q = {Q1, . . . ,QM}. If (U) holds, the following are equivalent:

(i) there exists an exact (hence pivotal) p-variable that is powered against Q;

(ii) there exists a pivotal, exact, bounded e-variable that has positive e-power against Q;

(iii) there exists an exact e-variable that is powered against Q;

(iv) it holds that Conv(Q1, . . . ,QM ) ∩ Span(P1, . . . ,PL) = ∅.
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Compared to the Theorem 3.8, the convex hull of the null has been replaced by the span, defined as

Span(P1, . . . ,PL) =

{
L∑
ℓ=1

λℓPℓ : λℓ ∈ R for each ℓ ∈ [L]

}
,

which is a set of signed measures on the sample space (the convex hull would only allow each λℓ ≥ 0 and∑L
ℓ=1 λℓ = 1).
Though we do not provide a full proof of the theorem, which requires modern tools from optimal transport,

the appearance of the span can be intuitively justified. If an exact e-variable E is powered against Q, then
for every Q ∈ Conv(Q), EQ[E] > 1. But if such a Q can be written as a linear combination

∑L
ℓ=1 λℓPℓ of

elements of P (which implies
∑L
ℓ=1 λℓ = 1 because Q is a probability), we get a contradiction, because we

know that EP[E] = 1 for every P ∈ P. This proves the direction (iii)⇒(iv) above.

Bibliographical note

The duality in Section 14.1 is developed based on some results in Blier-Wong and Wang [2024]. The
observations in Section 14.2 were made in Wang [2021]. Section 14.3 summarizes results from Zhang et al.
[2024].
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Chapter 15

Improved e-value thresholds under
additional conditions

Fix an atomless probability measure P for which all e-variables in this chapter are defined. Similarly to the
case of Chapters 8 and 11, it suffices to consider the null {P}, and all results can be easily translated into the
case of general composite nulls.

The Markov inequality in Proposition 2.1 gives P(E ≥ 1/α) ≤ α for any E in the set E of all e-variables,
and it cannot be improved without further assumptions. Nevertheless, the probability P(E > 1/α) can be
improved if the e-variable E is constrained in a subset E ⊆ E of e-variables, which is we will study in this
section. The set E will be chosen to satisfy some distributional conditions to be specified later.

The application context of results in this section is when the tester does not know the distribution of the
e-value (e.g., due to its complicated or black-box design), but have some shape information about the e-value.

We consider a simple hypothesis in this section, but if a composite null hypothesis is considered, then it
suffices to assume the corresponding shape information for all distributions in the null hypothesis.

15.1 Conditional e-to-p calibrators on a subset of e-values

We are interested in the quantity Rγ(E) for γ > 0, defined by

Rγ(E) = sup
E∈E

P(E ≥ 1/γ),

that is, the largest probability that P(E ≥ 1/γ) can attain for E ∈ E . Hence, for any set E of e-variables, it
holds that Rγ(E) ≤ Rγ(E) = γ for γ ∈ (0, 1].

We are interested only in the case γ ∈ (0, 1]. For γ > 1, it is usually the case that Rγ(E) = 1 because for
most classes E that we consider, either 1 ∈ E or 1 is the limit of elements of E .

To build a level-α test using the e-variable E, one needs to find a threshold t > 0, better to be smaller,
such that P(E ≥ t) ≤ α. For this, we intuitively should use the smallest t such that R1/t(E) ≤ α, which
satisfies R1/t(E) = α in case γ 7→ Rγ(E) is continuous. Because of the usual interpretation of an e-variable E
that E ≤ 1 carries no evidence against the null hypothesis, we consider t ≥ 1.

The following result computes the smallest threshold t for the e-test. Denote by qβ(X) the left (1− β)-
quantile function of X (as in Section 6.7.6), that is,

qβ(X) = inf{x ∈ R : P(X ≤ x) ≥ 1− β} for β ∈ (0, 1).

Conditions on the quantile function can be translated into those on the cdf. A summary of these
translations is provided in Lemma A.7 in Appendix A.2.
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Lemma 15.1

For α ∈ (0, 1), the quantity Tα(E) := inf{t ≥ 1 : R1/t(E) ≤ α} satisfies

Tα(E) =
(
sup
E∈E

qα(E)

)
∨ 1.

If γ 7→ Rγ(E) is continuous, then Tα(E) is the smallest real number t ≥ 1 such that P(E ≥ t) ≤ α for
all E ∈ E .

Proof.

Since Rγ(E) ≤ γ for γ ∈ (0, 1], we have that {t ≥ 1 : R1/t(E) ≤ α} is not empty. By using
Lemma A.7, we have

Tα(E) ≥ inf{t ≥ 1 : P(E > t) ≤ α for all E ∈ E}

= inf{t ≥ 1 : qα(E) ≤ t for all E ∈ E} =

(
sup
E∈E

qα(E)

)
∨ 1.

Take any ε ∈ (0, 1). We have

Tα(E)− ε = inf{t ≥ 1− ε : R1/(t+ε)(E) ≤ α}

= inf

{
t ≥ 1− ε : sup

E∈E
P(E ≥ t+ ε) ≤ α

}
= inf{t ≥ 1− ε : P(E ≥ t+ ε) ≤ α for all E ∈ E}
≤ inf{t ≥ 1− ε : P(E > t) ≤ α for all E ∈ E}

=

(
sup
E∈E

qα(E)

)
∨ (1− ε) ≤

(
sup
E∈E

qα(E)

)
∨ 1 ≤ Tα(E).

Since ε ∈ (0, 1) is arbitrary, we have Tα(E) = (supE∈E qα(E)) ∨ 1, showing the first statement.
If γ 7→ Rγ(E) is continuous, then

Tα(E) = min{t ≥ 1 : R1/t(E) ≤ α} = min{t ≥ 1 : P(E ≥ t) ≤ α for all E ∈ E},

showing the second statement.

In Section 2.3 we have seen e-to-p calibrators, which are mappings that convert any e-value into a p-value.
The function γ 7→ R1/γ(E) serves to refine this concept. For a subset E of e-variables, we say that a function
f : [0,∞] → [0,∞) is an conditional e-to-p calibrator on E if f is decreasing, and f(E) is a p-variable for all
E ∈ E . Different from Proposition 2.3, which gives that x 7→ (1/x) ∧ 1 is the only useful e-to-p calibrator on
E, we can find better conditional e-to-p calibrators based on R1/γ(E) than x 7→ (1/x) ∧ 1 for various subsets
E of E. Moreover, the following result implies that any class E admits a smallest conditional e-to-p calibrator.
This is in sharp contrast to the set of calibrators from p-values to e-values, which does not admit a smallest
element.

Proposition 15.2

The function x 7→ R1/x (E) on [0,∞] is a conditional e-to-p calibrator on E , and it is the smallest such
calibrator.
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Proof.

We first show that the function g : x 7→ R1/x (E) is a conditional e-to-p calibrator. This
means P(g(E) ≤ α) ≤ α for all α ∈ (0, 1) and E ∈ E . By definition, for x ∈ [0,∞] and E ∈ E ,

g(x) ≥ P(E ≥ x) = P(−E ≤ −x) = F−E(−x),

where FX is the cdf of a random variable X. Since FX(X) is a p-variable for any random variable
X, we have P(F−E(−E) ≤ α) ≤ α for all E ∈ E . Therefore, P(g(E) ≤ P(F−E(−E) ≤ α) ≤ α
for all α ∈ (0, 1).

We now prove that g is the smallest calibrator on E . Suppose that f is another conditional
e-to-p calibrator on E such that f(x) < g(x) for at least one x ∈ [1,∞]. By definition, there
exists E ∈ E such that f(x) < P(E ≥ x). This implies P(f(E) ≤ f(x)) ≥ P(E ≥ x) > f(x),
which violates the definition of f(E) as a p-variable.

Proposition 15.2 implies that by computing Rγ(E) or an upper bound on it, we can find conditional e-to-p
calibrators to convert e-values realized by elements of E into p-values, which work better than the e-to-p
calibrator x 7→ (1/x) ∧ 1 on E. This can be useful in procedures that take p-values as input, such as the
Benjamini-Hochberg procedure.

15.2 Comonotonic e-variables

In this section, we discuss Rγ(E) for a set E of comonotonic e-values. Our results here can be seen as a
generalized version of Proposition 14.1.

Consider the simple example in Section 1.6, that is, to test N(0, 1) against N(µ, 1) with µ > 0 for iid
observations X1, . . . , Xn. A natural e-variable Eµ is the likelihood ratio

Eµ = exp(µSn − nµ2/2), (15.1)

where Sn =
∑n
i=1Xi. An interesting observation is that Eµ, µ > 0 are comonotonic random variables.

Definition 15.3: Comonotonicity

A set XC of random variables is comonotonic if there exists a common random variable Z such that each
X ∈ XC is an increasing function of Z. We also say that the random variables in XC are comonotonic.

The following lemma allows us to analyze Rγ for a set of comonotonic e-variables.

Lemma 15.4

Let x ∈ R and γ ∈ [0, 1]. Suppose that XC is a collection of comonotonic random variables satisfying
P(X ≥ x) ≤ γ for each X ∈ XC . Then P(supX∈XC

X ≥ x) ≤ γ.

Proof.

Suppose that all elements of XC are increasing functions of Z. Note that the sets {X ≥ x}
for X ∈ X are nested since XC is a set of comonotonic random variables, i.e., each of the set is
of the form {Z ≥ z} or {Z > z} for different z and a common Z. Therefore, we can move the
supremum outside the probability and get P(supX∈XC

X ≥ x) = supX∈XC
P(X ≥ x) ≤ γ.

The next result follows immediately.
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Proposition 15.5

For any collection E ⊆ E of comonotonic e-variables for P, we have P(supE∈E E ≥ Tα(E)) ≤ α.

In particular, Proposition 15.5 implies P(supE∈E E ≥ 1/α) ≤ α for any comonotonic set E , which we have
seen in Corollary 14.3 with the help of a statistic X. As a consequence, (supE∈E E)−1 is a p-variable.

In the setting where e-variables are computed from likelihood ratios, we discussed using the mixture
of likelihood ratios in Section 3.7. Proposition 15.5 suggests that, under comonotonicity, we can use the
supremum of e-variables instead of their mixture, and the supremum has a higher power.

Example 15.6: Testing normal mean

In the example of testing N(0, 1) against {N(µ, 1) : µ > 0} with n data points, instead of using Eµ in
(15.1) for a fixed µ > 0 in or its mixture, we can use

E = sup
µ>0

Eµ = sup
µ>0

exp(µSn − nµ2/2) = exp

(
(Sn)

2
+

2n

)
,

which, although not being an e-variable, gives P(E ≥ 1/α) ≤ α under the null. If we are testing
{N(µ, 1) : µ ≤ 0} against {N(µ, 1) : µ > 0}, the same type-I error guarantee holds true, following from
Corollary 14.3.

The above observation on the normal distributions can be generalized to other families. Suppose that we
test P = Qθ0 against {Qθ : θ ∈ Θ} with a class of likelihood ratio e-variables

Eθ =

n∏
i=1

qθ(Xi)

p(Xi)
.

As long the e-variables are increasing or decreasing functions of the same test statistic, we can take the
supremum over these e-variables, and particular this yields E = Eθ̂, where θ̂ is the maximum likelihood
estimator. Although E is not an e-variable, the test using 1{E≥1/α} has level α. Note that here the maximum
likelihood estimator θ̂ appears in the numerator, instead of the denominator as in the universal inference in
Chapter 5 (which yield e-variables).

In addition to the normal distributions, testing several other members of the exponential family yields
a class of likelihood ratio functions that are monotonic in a common test statistic, and we omit a detailed
discussion here.

15.3 Density conditions

We next study some common conditions on the density function of the e-variables in E to compute Rγ(E) or
an upper bound on it.

Three conditions, motivated by different applications, are modelled by the following sets of e-variables:

ED = {E ∈ E : E has a decreasing density on its support},
ED>1 = {E ∈ E : E has a decreasing density over [1,∞)},

EU = {E ∈ E : E has a unimodal density on [0,∞)}.

A random variable on [0,∞) is said to have a unimodal density, or a unimodal distribution, if it has a density
function that is increasing on [0, x] and decreasing on [x,∞) for some constant x ∈ [0,∞), and it can possibly
have a point mass at x. Such x is called a mode of the random variable.

The assumption of decreasing densities in ED is satisfied by, for instance, exponential and Pareto
distributions. Note that here assumptions are made on the densities of the e-variables themselves, not on
those in the hypotheses of the underlying testing problem.
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Figure 15.1: Proof sketch in part (i) of Theorem 15.7. Here, f and g0 have the same area (probability)
exceeding z, with g0 having a smaller mean and a point mass at 0; g1 has mean 1 and larger probability of
exceeding z than g0.

Whenever we consider a density, we include its limit case; that is, we allow E ∈ ED to have a point mass at
the left end-point of its support. This convention does not change any results but simplifies many arguments
in the proofs. The assumption of decreasing density over [1,∞) but arbitrary elsewhere in ED>1 is useful
and can be observed from some e-variables obtained from universal inference discussed in Chapter 5. The
assumption of unimodal density in EU is satisfied by, for instance, log-normal and gamma distributions. The
set of all modes of E ∈ EU may be a singleton or an interval. Note that ED ⊆ EU, and hence Rγ(EU) ≥ Rγ(ED)
for all γ ∈ (0, 1].

Theorem 15.7: Decreasing and unimodal densities

For γ ∈ (0, 1],

(i) Rγ(ED) = γ/2 if γ ̸= 1 and R1(ED) = 1;

(ii) Rγ(ED>1) = γ/(1 +
√

1− γ2);

(iii) Rγ(EU) = (γ/2) ∨ (2γ − 1).

Proof.

We only present the proof of part (i) here, which is the simplest, but it illustrates the
basic techniques of proving more complicated statements. The proof of parts (ii) and (iii) are
omitted. We first show P(E ≥ 1/γ) ≤ γ/2 for each E ∈ ED and γ ∈ (0, 1). Let f be the
density function of E and let a be the left end-point of the support of E. For a fixed z > 1,
set b := z + P(E ≥ z)/f(z). We construct an e-variable E0 with density g0 such that (a)
g0(x) = f(z) for a < x < b; (b) E0 has a point mass at a with probability 1−

∫∞
a
g0(x)dx.

We illustrate in Figure 15.1 how to construct g0 from f . Since f has a decreasing density
over [a,∞), we will have f(x) ≥ g0(x) for x ∈ [a, z) and f(x) ≤ g0(x) for x > z. We can
construct g0 by shifting the area between f(x) and f(z), for x ∈ (a, z) to a point mass at a and
shifting the area between f(x) and 0, for x > b to the area between f(x) and f(z), for x ∈ (z, b).
Note that b is chosen so that P(E0 ∈ [z, b)) = P(E ≥ z), so P(E0 ≥ z) = P(E ≥ z). Further,
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since we construct g0 by shifting the density of f to the left, we have EP[E0] ≤ EP[E].
Therefore, for any E ∈ ED with left end-point of support a, there exists an e-variable E′ ∈ ED

such that E′ has a point mass at a and a uniform density on [a, b] for some constant b, and
P(E′ ≥ z) = P(E ≥ z). To show P(E ≥ z) ≤ 1/(2z), it suffices to look at the collection of
e-variables that have a point mass at a and a uniform density on [a, b] for any b > 1. Moreover,
it suffices to consider the case EP[E′] = 1.

Note that EP[E′] = (1− w)a+ w(a+ b)/2 for some w ∈ [0, 1] and b ≥ 1. The requirement
EP[E′] = 1 implies that w = 2(1− a)/(b− a). Now, we seek b that maximizes P(E′ ≥ z). We
have P(E′ ≥ z) = w(b− z)/(b−a) = 2(1−a)(b− z)/(b−a)2. Taking the derivative with respect
to b and setting the result equal to zero, we find that b∗ := 2z − a for z > 1. Substituting this
value of b∗ back into P(E′ ≥ z), we find that P(E′ ≥ z) = (1− a)/(2(z − a)). We illustrate the
density of E′ that maximizes P(E′ ≥ z), denoted by g1, in Figure 15.1. Since z > a, the latter
probability is a decreasing function of a, hence its supremum occurs for a = 0 and we have
P(E ≥ z) ≤ 1/(2z).

It remains to show P(E ≥ 1/γ) = γ/2 for some E ∈ ED. Take E following a mixture
distribution of a uniform distribution on [0, 2/γ] with weight γ and a point mass at 0. It is easy
to see that P(E ≥ 1/γ) = γ/2 and EP[E] = 1, showing the desired result. The last statement of
part (i) is trivial by checking with E = 1.

The main message from Theorem 15.7 is that when an e-variable has a decreasing density, its threshold can
be boosted by a factor of 2. That is, Tα(ED) = 1/(2α). Further, Tα(ED>1) = 1/(2α) + α/2 = Tα(ED) + α/2.
Therefore, for small values of α, we can boost the threshold by a factor slightly less than 2 when E ∈ ED>1.
This validates our message that, for small α, the distribution of uninformative e-values (between 0 and 1) has
little impact on the rejection region; the shape of the distribution of large e-values has the most influence on
the rejection threshold.

In part (iii) of Theorem 15.7, Rγ(EU) = γ/2, for γ ∈ (0, 2/3] and Rγ(EU) = 2γ − 1 for γ ∈ (2/3, 1]. Since
γ ≤ 2/3 is the most practical situation (meaning a type-I error control of 1/3), the main message from part
(iii) is similar to that from part (i): when an e-variable has a unimodal density, its threshold can be boosted
by a factor of 2 in practice. We provide in Figure 15.2 a comparison of different worst-case type-I errors and
improved thresholds for E0, ED, ED>1 and EU.

15.4 Conditions on log-transformed e-variables

In many applications of e-values, the final e-variable E is the product of many e-variables, especially in
the context of e-processes in Chapter 7. In such a setting, assuming logE has some simple distributional
properties may be reasonable, due to effects of central limit theorems. We say that a random variable X has
a symmetric distribution if there exists c ∈ R such that X and c−X are identically distributed. We consider
six different sets in this section:

ELS = {E ∈ E : logE has a symmetric distribution},
ELU = {E ∈ E : logE has a unimodal density},

ELD>0 = {E ∈ E : logE has a decreasing density over [0,∞)},
ELD = {E ∈ E : logE has a decreasing density},
ELUS = {E ∈ E : logE has a unimodal and symmetric distribution},
ELN = {E ∈ E : E has a log-normal distribution}.

In all sets above, we require P(E = 0) = 0, so that logE is a real-valued random variable. Note that
ELN ⊆ ELUS ⊆ ELS and ELD ⊆ ELD>0. The point mass distributions x ∈ (0, 1] are included in all sets above,
which are degenerate cases of log-normal distributions. Note that E ∈ E has a log-normal distribution if and
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Figure 15.2: Comparison of worst-case type-I errors and improved thresholds for decreasing and unimodal
densities. In the left panel, the diagonal line is Rγ(E), corresponding to the Markov inequality, and all other
curves have a slope of approximately 1/2 for small γ.

only if logE d∼ N(µ, σ2) with µ+ σ2/2 ≤ 0.

Theorem 15.8

For γ ∈ (0, 1],

(i) Rγ(ELS) = γ ∧ (1/2) if γ ̸= 1 and R1(ELS) = 1;

(ii) Rγ(ELU) = γ;

(iii) ELD>0 ⊆ ED>1 and
γ

e− γ
≤ Rγ(ELD>0) = e−aγ ≤ γ

1 +
√

1− γ2
,

where aγ is the unique solution of ea(1− a− log γ) = 1 for a ∈ (− log γ,∞);

(iv) Rγ(ELD) = Rγ(ELUS) and

γ

e
≤ Rγ(ELD) = Rγ(ELUS) ≤

γ

e(1− γ2)
∧

(
γ

1 +
√

1− γ2

)
;

(v) if γ ̸= 1 then
Rγ(ELN) = Φ

(
−
√
−2 log γ

)
≤ γ

2
√
−π log γ

,

where Φ is the standard normal cdf, and R1(ELN) = 1.

We omit the proof of Theorem 15.8. To summarize the results, for log-transformed symmetric distributions
and log-transformed unimodal distributions, the standard Markov’s bound cannot be improved for γ ≤ 1/2.
An improvement of roughly the order of 1/e for small γ is possible for log-transformed decreasing densities on
the positive real line, log-transformed decreasing densities and log-transformed unimodal-symmetric densities.

We plot the bounds on worst-case type-I errors and improved thresholds from Theorem 15.8 in Figure 15.3.
Table 15.1 summarizes some numerical values for results in Theorems 15.7 and 15.8.
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Figure 15.3: Comparison of worst-case type-I errors and improved thresholds for log-transformed e-variables.
In the left panel, the diagonal line is Rγ(E), corresponding two the Markov inequality, and the curves for
LUS, LD and LD>0 have a slope of approximately e−1 for small γ. The curve for LN is the smallest. Results
for LUS are conservative bounds since we only find an upper bound for Rγ(ELUS) and Tα(ELUS).

Table 15.1: Improved thresholds Tα(E) for different distributional hypothesis.
α

0.001 0.01 0.02 0.05 0.1 0.2

E0, ELS 1000 100 50 20 10 5
ED, EU 500 50 25 10 5 2.5
ED>1 500 50.01 25.01 10.03 5.05 2.60

ELUS, ELD 367.88 36.82 18.45 7.49 3.93 2.25
ELD>0 368.25 37.16 18.77 7.73 4.07 2.25

ELN 118 14.97 8.24 3.87 2.27 1.42

Bibliographical note

The content of this paper is largely based on Blier-Wong and Wang [2024], where proofs of all results can
be found, as well as some improved thresholds for combined e-values and the e-BH procedure. Computing
probability bounds with distributional information is a well-studied topic in operations research and risk
management; some general references on related techniques are Shaked and Shantikumar [2007] and Rüschen-
dorf et al. [2024]. Comonotonicity in Section 15.2 is a central concept in dependence modeling. It is also
central to decision theory under ambiguity via its connection to Choquet integrals, studied by Schmeidler
[1989]. A good reference on comonotonicity is Denneberg [1994].
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Chapter 16

E-values and risk measures

This chapter studies the connection between e-values and risk measures. By risk measures, we mean general
mappings from random variables or distributions to real numbers, which include the usual statistical functions
such as the mean, the variance, and the quantiles.

16.1 Risk measures and statistical functions

Risk measures are quantitative tools used to quantify the riskiness level associated with financial positions,
such as asset returns and losses, both at the individual level and at the portfolio level, in a fixed time period.
Recall that X is the set of all random variables on a given measurable space (Ω,F), and M1(R) is the set of
all distributions on R. There are two common formulations of risk measures (just like the expected value,
which can be seen as either a mapping from random variables or one from distributions, to the extended real
line).

(a) A risk measure can be formulated as a mapping from a subset of X to (−∞,∞]. We will use R for
such mappings. In this setting, R(X) represents the evaluation of the riskiness of a random variable X,
representing a financial loss or gain.

(b) A risk measure can be formulated as a mapping from a subset of M1(R) to (−∞,∞]. We will use ρ, ϕ
for such mappings. In this setting, ρ(F ) represents the evaluation of the riskiness of the distribution F
of some financial loss or gain.

Mappings in both (a) and (b) will be called risk measures. When a reference probability measure P0 is
fixed, the two formulations above can be connected via R(X) = ρ(F ) where F ∈ M1(R) and X d∼ F (under
P0). This correspondence is one-to-one if R satisfies law invariance: R(X) = R(Y ) if X d

= Y . In this case, a
risk measure R or ρ is also called a statistical function.

Certainly, common statistical functions, such as the mean, the variance, or the median, can also be
naturally defined for distributions on Rd for d ∈ N, and in this chapter we focus on the case of distributions
on R. We keep our discussions on risk measures minimal and omit the generalizations such as set-valued,
vector-valued, systemic, and dynamic risk measures, and many other variants.

A main interpretation of a risk measure in finance is that its value R(X) for X ∈ X or ρ(F ) for F ∈ M1

represents the regulatory capital requirement of the random loss X or distribution F . When X is treated as
a random asset price instead of loss, R(X) can be interpreted as the price to purchase X (the “ask price”) in
an incomplete financial market. The price R would have been linear if the financial market is complete, and
the nonlinearity is due to market frictions such as hedging limitations, bid-ask spreads, and transaction fees.

With the capital requirement interpretation, the most commonly used risk measures in the banking and
insurance industries are the Value-at-Risk (VaR) and the Expected Shortfall (ES), defined as the following
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two classes of risk measures. Since they are law invariant, we will use the same notation for their version in
both (a) and (b). We identify all distributions in M1(R) with their cdf in this chapter.

At level β ∈ (0, 1), the VaR is defined as the lower β-quantile:

VaRβ(F ) = inf{x ∈ R : F (x) ≥ β}, F ∈ M1(R),

and the ES is defined as

ESβ(F ) =
1

1− β

∫ 1

β

VaRγ(F )dγ, F ∈ M1(R).

ES is also called Conditional VaR (CVaR) and Tail VaR (TVaR) in different parts of the literature. Here,
ESβ(F ) may take the value ∞ if F does not have a finite mean. We also write VaRβ(X) and ESβ(X) for
X ∈ X to convert between versions in (a) and (b). Note that VaRβ(X) = q1−β(X) for the quantile function
defined in Chapters 6 and 15. A well-known connection between ES and VaR is

VaRβ(X) ∈ argmin
z∈R

{
z +

1

1− β
EP0 [(X − z)+]

}
, (16.1)

ESβ(X) = min
z∈R

{
z +

1

1− β
EP0 [(X − z)+]

}
. (16.2)

As of 2024, ES at level β = 0.975 is the standard measure for market risk in the current global banking
regulation. VaR at various levels is the standard measure in insurance regulation and operational risk, and it
is closely connected to the probability of default criterion used to measure credit risk.

The most important class of risk measures is that of coherent risk measures. Let XR ⊆ X be a convex
cone in X containing all constant random variables (identified with constants in R). A coherent risk measure
R is a mapping from XR to (−∞,∞] satisfying four economic axioms:

(i) Monotonicity: R(X) ≤ R(Y ) for all X,Y ∈ XR with X ≤ Y ;

(ii) Cash invariance: R(X + c) = R(X) + c for all X ∈ XR and c ∈ R;

(iii) Subadditivity: R(X + Y ) ≤ R(X) +R(Y ) for all X,Y ∈ XR;

(iv) Positive homogeneity: R(λX) = λR(X) for all X ∈ XR and λ > 0.

The four axioms have clear financial meanings. For instance, monotonicity means that a larger loss has bigger
risk; subadditivity means that a portfolio is not riskier than the individual risks summed due to possible
diversification effects. We omit the discussions here.

For β ∈ (0, 1), ESβ : X → (−∞,∞] satisfies all of the above, and VaRβ : X → R satisfies all but
subadditivity. Hence, ESβ is coherent, but VaRβ is not.

Finally, a risk measure R : XR → (−∞,∞] is said to be continuous from above (↓-continuous) if

R(Xn) → R(X) for any sequence (Xn)n∈N of bounded random variables with (Xn)n∈N ↓ X point-wise.

In the next section, we will consider the set X+ of all nonnegative random variables, and connect (↓-continuous)
coherent risk measures on X+ to e-values. We summarize the domains of R that we will encounter in Table 16.1.

X the set of all random variables
XB the set of bounded random variables
X0 the set of bounded nonnegative random variables
X+ the set of nonnegative random variables
XR a generic domain of R, assumed to be a convex cone containing R

Table 16.1: Domains of risk measures R.
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16.2 Connecting e-values to coherent risk measures

Let us first notice that, for any null hypothesis P, the requirement of a random variable E ≥ 0 to be an
e-variable is simply a risk measure constraint R(E) ≤ 1. This risk measure R is defined as

R(X) = sup
P∈P

EP[X] (16.3)

for X in a set such that the above expectations are well-defined (such as the set of nonnegative random
variables).

The mapping R in (16.3), sometimes called a super-expectation, has a long history as an important
objects in different fields (and with different names), such as robust statistics, decision theory, optimization,
finance, imprecise probability, and game-theoretic probability. As we see next, R is coherent risk measure,
and it has essentially the only form of coherent risk measures.

Theorem 16.1

Let X0 be the set of all bounded nonnegative random variables. A mapping R : X0 → R is a ↓-continuous
coherent risk measure if and only if

R(X) = sup
P∈P

EP[X], X ∈ X0 (16.4)

for some set P ⊆ M1.

Proof.

It is straightforward to verify the “if” statement. For the “only if” statement, let XB be
the set of all bounded random variables. By Theorem 4.22 of Föllmer and Schied [2016], any
R′ : XB → R is a ↓-continuous coherent risk measure if and only if it has a representation in
(16.4) on XB . For R on XR, it suffices to extend it to XB by letting R(X) = R(X − t) + t for
X ∈ XB \ XR where t is the infimum value of X. One can easily check that with this extension,
R is a coherent risk measure on XB , and hence the aforementioned result guarantees (16.4) on
XR.

The set X0 of bounded and nonnegative random variables in Theorem 16.1 can be replaced by larger sets,
but usually characterization results such as Theorem 16.1 are formulated with small domains for the greatest
strength. A useful remark is that if R : XB → R is law invariant, then the representation (16.4) holds without
requiring ↓-continuity. Moreover, on any convex cone of random variables, (16.4) always defines a coherent
risk measure, possibly taking the value ∞. This in particular holds on X+, leading to the next observation.

Corollary 16.2

For any P, there exists a coherent risk measure R : X+ → [0,∞] such that all e-variables for P are
precisely those E ≥ 0 that satisfy R(E) ≤ 1.

For any P ⊆ M1, the log-optimal e-variable for Q can be reformulated as the solution to the following
problem

to maximize EQ[logX]

subject to R(X) ≤ 1; X ≥ 0,
(16.5)

where R is a coherent risk measure with representation (16.3) on X+. The problem (16.5) has a clear financial
interpretation: We aim to maximize our expected utility of the wealth X under Q with a log utility function,
and the constraint is that our wealth X cannot be negative, and its price R(X) is bounded by our initial
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budget 1. Recall that when X represents a random financial wealth, the risk measure value R(X) can be
interpreted as the price of X in an incomplete financial market. This interpretation is consistent with testing
by betting treated in Chapter 7.

We have seen one example of (16.5) in Section 6.7.6. The dual representation of ESβ in (16.4) is given by

ESβ(X) = sup

{
EP[X] : P ∈ M1,

dP
dP0

≤ 1

1− β

}
, X ∈ X . (16.6)

In other words, the constraint of ESβ formulates all e-variables for the null hypothesis P that the true data
generating distribution is close to P0 in terms of likelihood ratio being bounded by 1/(1− β). Similarly, many
other families of coherent risk measures correspond to other testing problems.

Finally, when the alternative hypothesis Q is composite, one has a few options to pick. The first is to
consider the problem of maximizing the mixture e-power for some probability measure ν over Q:

to maximize
∫
Q
EQ[logX]dν

subject to R(X) ≤ 1; X ≥ 0,

(16.7)

where and R is again the coherent risk measure in (16.3). The second is to maximize the worst-case e-power

to maximize inf
Q∈Q

EQ[logX]

subject to R(X) ≤ 1; X ≥ 0.
(16.8)

The third is to maximize the relative e-power compared with an oracle e-variable,

to maximize inf
Q∈Q

(
EQ[logX]− EQ[logE∗

Q]
)

subject to R(X) ≤ 1; X ≥ 0,
(16.9)

where E∗
Q is the numeraire for P against Q (from Chapter 6).

When there are multiple observations available for the testing problem, the solution to the third problem
(16.9) is able to learn the true data-generating distribution with data as discussed in Section 3.7, whereas the
solutions to the first two problems do not.

We end this section by noting that the problems (16.7), (16.8), and (16.9) all have concave objectives to
maximize, subject to (possibly infinitely many) linear constraints, and therefore it is a convex program and
can be solved efficiently in many cases, in particular when the state space, Q and P are all finite.

16.3 E-values for testing risk measures

In this section, we discuss how to design e-values to test the value of a given law-invariant risk measure. We
will mainly use the formulation ρ that maps a subset of M1(R) to R.

16.3.1 E-statistics

The general goal is to test the value of ρ(Xt) through a sequence (Xt)t∈T+ of data points, which are not
assumed to be iid. Here, the index set T+ may be finite or infinite. For instance, the null hypothesis may be

H0 : Xt has a distribution Ft with ρ(Ft) ≤ rt for each t ∈ T+. (16.10)

Here, the values rt can be interpreted as the risk forecast for Xt evaluated with ρ.
Our general testing procedure is to follow the idea of testing by betting described in Chapter 7, in the

following two steps.

1. Compute an e-variable Et from each data point Xt, such that E1, E2, . . . are sequential e-variables.
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2. Build an e-process via testing by betting, such as the empirically adaptive e-process in Section 7.8.

To follow the above procedure, we need to build an e-variable from each data point. Below, let X be a
random variable representing one data point. We will first study how we can build an e-variable from this
data point. Let M∗ ⊆ Mρ represent the set of distributions of interest (it may be smaller than the domain
of ρ). The simplest problems are to test

H0 : X follows any F ∈ M∗ with ρ(F ) = r, (16.11)

and to test
H0 : X follows any F ∈ M∗ with ρ(F ) ≤ r. (16.12)

In finance. we are mainly interested in the one-sided hypothesis in (16.12) and its sequential version (16.10),
as they have a clear interpretation: We are testing whether the value r is sufficiently conservative for the risk
measure ρ of financial risks. In banking, r usually represents regulatory capital charge for a risky investment,
and r ≥ ρ(F ) means that the capital reserve is safe and passing the regulatory requirement. Two-sided tests
for (16.11) can be easily constructed by combining one e-variable for testing ρ(F ) ≤ r and one e-variable for
testing ρ(F ) ≥ r via taking an average.

We also consider the situation in which we have another statistical function ϕ, for which we have
information such as ϕ(F ) = z, but we are not interested in testing it. We assume the domain of ϕ contains
Mρ. An example of (ρ, ϕ) is (var,mean), where we are only interested in testing variance, but the information
on the mean is available. The corresponding hypotheses are

H0 : X follows any F ∈ M∗ with ρ(F ) = r and ϕ(F ) = z, (16.13)

and
H0 : X follows any F ∈ M∗ with ρ(F ) ≤ r and ϕ(F ) = z. (16.14)

We can easily allow ϕ to take values in Rd instead of R, and we omit such a generalization.
To test the above hypotheses, we are interested in finding a function e : (x, r, z) 7→ R such that e(X, r, z)

is an e-variable for the hypotheses in (16.11)–(16.14). Below, ρ(M∗) is the set of values taken by ρ(F ) for
F ∈ M∗.

Definition 16.3: E-statistics for ρ

Fix M∗ ⊆ Mρ and ρ : Mρ → R, and let e : R2 → [0,∞] be a measurable function.

(i) The function e is a point e-statistic for ρ if e(X, r) is an e-variable for H0 in (16.11), and it is a
one-sided e-statistic for ρ if e(X, r) is an e-variable for H0 in (16.12).

(ii) A one-sided e-statistic e for ρ is a backtest e-statistic for ρ if
∫
R e(x, r)dF (x) > 1 for all r ∈ ρ(M∗)

and F ∈ M∗ with ρ(F ) > r.

(iii) A backtest e-statistic e is monotone if r 7→ e(x, r) is decreasing for each x.

Note that M∗ is implicit in the above definition. Among the above concepts, it is clear that

backtest e-statistic =⇒ one-sided e-statistic =⇒ point e-statistic.

For example, if ψ is the mean and M∗ is the set of distributions on (0,∞), then e : (x, r) 7→ x/r is a monotone
backtest e-statistic, satisfying all requirements in Definition 16.3 (see Example 16.5 below). The property
of having a mean larger than 1 under the alternative is crucial for the e-statistic. By Theorem 3.11, if e is
a backtest e-statistic and ρ(F ) > r, then there exists λ ∈ (0, 1) such that (1 − λ) + λe(X, r) has positive
e-power. In the context of an infinite sequence of observations, this condition is sufficient for establishing
consistency of the empirically adaptive e-process by Theorem 7.14.

We analogously define e-statistics for (ρ, ϕ), which has one more variable.
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Definition 16.4: E-statistics for (ρ, ϕ)

Fix M∗ ⊆ Mρ and (ρ, ψ) : Mρ → R2, and let e : R3 → [0,∞] be a measurable function.

(i) The function e is an point e-statistic for (ρ, ψ) if e(X, r) is an e-variable for H0 in (16.13), and it
is a one-sided e-statistic for (ρ, ψ) if e(X, r) is an e-variable for H0 in (16.14).

(ii) A one-sided e-statistic e for (ρ, ϕ) is a backtest e-statistic for (ρ, ϕ) if
∫
R e(x, r, z)dF (x) > 1 for all

(r, z) ∈ (ρ, ϕ)(M∗) and F ∈ M∗ with ρ(F ) > r.

(iii) A backtest e-statistic e is monotone if r 7→ e(x, r, z) is decreasing for each (x, z).

The crucial interpretation of a backtest e-statistic for (ρ, ϕ) is that, if the risk measure ρ is underestimated,
then a backtest e-statistic has power against the null hypothesis, regardless of whether the prediction of the
auxiliary risk measure ϕ is truthful.

To explain the motivation behind monotone backtest e-statistics, we consider a financial context. In
banking regulation, the risk measure ρ is used to compute regulatory capital, and ϕ has no direct financial
consequence. Therefore, a firm may have incentive to forecast ϕ arbitrarily (correctly or incorrectly), but
forecasting a large ρ would result in financial cost. This motivation explains the term “backtest”, which is a
testing procedure in finance for risk models. If a backtest e-statistic is monotone, then an overestimation of
the risk is rewarded: A firm being scrutinized by the regulator can deliberately report a higher risk value
(which means a higher capital reserve) to pass to the regulatory test, thus rewarding prudence. We omit a
detailed discussion on the financial interpretation here. In a non-financial context, a statistician may be only
interested in point or one-sided e-statistics.

As mentioned above, after choosing a suitable e-statistic e, we can test H0 in (16.10), as well as other
similar hypotheses, by letting Et = e(Xt, rt) for t ∈ T+ where rt is the forecast for the risk of Xt, and build
an e-process from the e-variables E1, E2, . . . . These e-variables are sequential as long as rt is the conditional
forecast of ρ(Xt) given the information up to t− 1, which is the typical situation in financial risk management
(e.g., firms provide forecast for the next-day risk of their portfolio). Therefore, even if X1, X2, . . . are not
iid and possibly dependent, we can still use an e-process, e.g., via the empirically adaptive e-process in
Section 7.8, to test the null hypothesis. In what follows, we will focus on e-statistics for some commonly used
statistical functions.

16.3.2 Mean, variance, quantiles, and expected losses

We derive backtest e-statistics for some common statistical functions. In this chapter, we use the convention
that 0/0 = 1 and 1/0 = ∞. Let Mk ⊆ M1(R) be the set of all distributions with finite k-th-moment for
k > 0. All expectations below only concern the distribution of X, and we omit the probability P in E[·].

Example 16.5: Backtest e-statistic for the mean

Let M∗ be the set of distributions on R+ in M1. Define the function e(x, r) = x/r for x, r ≥ 0. In
this case, we have E[e(X, r)] ≤ 1 for all random variables X with distribution in M∗ and r ≥ E[X].
Moreover, for any such X, E[X] > r ≥ 0 implies E[e(X, r)] > 1. Therefore, e is a monotone M∗-backtest
e-statistic for the mean.
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Example 16.6: Backtest e-statistic for (var,mean)

Consider (var,mean) : M2 → R2, which is the pair of the variance and the mean. The function
e(x, r, z) = (x− z)2/r for x, z ∈ R and r ≥ 0 is a monotone backtest e-statistic for (var,mean). To see
this, for all random variables X with distribution in M2, we have

E[e(X, r,E[X])] =
E[(X − E[X])2]

r
≤ 1

for r ≥ var(X). Moreover, since z = E[X] minimizes E[(X−z)2] over z ∈ R and var(X) = E[(X−E[X])2],
var(X) > r ≥ 0 implies

E[e(X, r, z)] =
E[(X − z)2]

r
≥ var(X)

r
> 1.

Example 16.7: Backtest e-statistic for a quantile

Take β ∈ (0, 1). Define the function

eqβ(x, r) =
1

1− β
1{x>r}, x, r ∈ R.

We have E[eqβ(X, r)] ≤ 1 for any random variable X with distribution F and r ≥ VaRβ(F ). Moreover,
VaRβ(F ) > r implies P(X > r) > 1 − β, and hence E[eqβ(X, r)] > 1. Therefore, eqβ is a monotone
backtest e-statistic for the β-quantile.

Example 16.8: Backtest e-statistic for an expected loss

For some a ∈ R, let ℓ : R → [a,∞) be a function that is interpreted as a loss. Define the function
e(x, r) = (ℓ(x)−a)/(r − a) for x ∈ R and r ≥ a. Analogously to Example 16.5, e is a monotone backtest
e-statistic for the expected loss F 7→

∫
ℓdF on its natural domain.

For fixed ρ or (ρ, ϕ), the choice of a backtest e-statistic e is not unique. For instance, a linear combination
of e with 1 with the weight between 0 and 1 is also a backtest e-statistic for ψ. Depending on the specific
situation, either e-statistic may be useful in practice.

16.3.3 E-statistics for testing ES

The functional (ρ, ϕ) = (var,mean) in Example 16.6 is an example of a Bayes pair ; that is, there exists a
measurable function L : R2 → R such that

ϕ(F ) ∈ argmin
z∈R

∫
L(z, x)dF (x) and ρ(F ) = min

z∈R

∫
L(z, x)dF (x), F ∈ M∗, (16.15)

where
∫
L(z, x)dF (x) is assumed to be well-defined for each z ∈ R and F ∈ M∗. The function L is the square

loss (z − x)2 in the case of (var,mean). Bayes pairs often admit backtest e-statistics. A typical example
commonly used in risk management practice is (ESβ ,VaRβ) : M1 → R2 treated below. Note that we restrict
the domain to M1 so that ESβ takes real values.

For β ∈ (0, 1), define the function

eES
β (x, r, z) =

(x− z)+
(1− β)(r − z)

, x ∈ R, z ≤ r.

This defines a backtest e-statistic for (ESβ ,VaRβ). Recall the convention that 0/0 = 1 and 1/0 = ∞, and set
eES
β (x, r, z) = ∞ if r < z, which is a case of no relevance since ESβ(F ) ≥ VaRβ(F ) for any F ∈ M1.
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Theorem 16.9

For β ∈ (0, 1), the function eES
β is a monotone backtest e-statistic for (ESβ ,VaRβ).

Proof.

By (16.1) and (16.2), the pair (ESβ ,VaRβ) is a Bayes pair in (16.15) with L : (z, x) 7→ z +
(x−z)+/(1−β). Since L(z, x) ≥ z, for r ≥ z, we have that eES

β (x, r, z) = (L(z, x)−z)/(r−z) ≥ 0,
and it is decreasing in r. We have for r ≥ ESβ(X) that

E
[
L(VaRβ(X), X)−VaRβ(X)

r −VaRβ(X)

]
=

ESβ(X)−VaRβ(X)

r −VaRβ(X)
≤ 1.

Furthermore, for z < r ≤ ESβ(X),

E
[
L(z,X)− z

r − z

]
≥ ESβ(X)− z

r − z
≥ 1

with equality if and only if r = ESβ(X).

As a consequence of Theorem 16.9, eES
β (X, r, z) is an e-variable for the null hypothesis

H0 : ESβ(X) ≤ r and VaRβ(X) = z.

A generalization of this result is that eES
β (X, r, z) is also an e-variable for the larger null hypothesis

H0 : ESβ(X)−VaRβ(X) ≤ r − z and VaRβ(X) ≤ z.

Nevertheless, we note that eES
β (X, r, z) is not an e-variable for H0: ESβ(X) ≤ r and VaRβ(X) ≤ z.

While Examples 16.5-16.8 and Theorem 16.9 show that interesting backtest e-statistics exist, much more
can be said about their general structure, in particular, they are shown to be essentially the only choices, up
to some transforms.

Bibliographical note

Coherent risk measures were introduced by Artzner et al. [1999], and the representation in a form similar to
Theorem 16.1 was obtained by Delbaen [2002]. The representation under law invariance, without assuming
continuity, was obtained by Jouini et al. [2006]. Coherent risk measures were used as pricing formulas by
Wang [2000]. There are many more general classes of risk measures than the coherent risk measures; a
good reference is Föllmer and Schied [2016], which also discusses pricing in incomplete financial markets. A
comprehensive treatment of the use of risk measures in risk management and financial regulation is McNeil
et al. [2015]. In the finance literature, many authors formulate risk measures on random gains instead of
random losses, and their X is our −X in that case (for instance, monotonicity would be formulated in an
opposite direction). The formulas (16.1) and (16.2) were obtained by Rockafellar and Uryasev [2002, Theorem
10], where ES is called a CVaR, common in the optimization literature. For the dual representation of ES in
(16.6), see e.g., McNeil et al. [2015, Theorem 8.14].

Super-expectations have a very long history. For instance, they were axiomatized by Huber [1981, Chapter
10] in the context of robust statistics. In addition to statistics and finance, super-expectations are also
fundamentally important objects in the areas of decision theory under ambiguity (Schmeidler [1989], Gilboa
and Schmeidler [1989]), imprecise probabilities (Walley [1991]), non-linear expectations (Peng [2019]), and
game-theoretic probability (Shafer and Vovk [2001, 2019]).

The content of Section 16.3 is largely based on Wang et al. [2025], where they showed that most of the
backtest e-statistics in Sections 16.3.2 and 16.3.3 are essentially the only possible choices in a suitable sense.
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They also studied backtesting methods for risk measures based on e-statistics with financial data. The use of
e-values and e-processes for forecast comparison was first studied by Henzi and Ziegel [2022] on probability
forecasts. Sequential testing and estimation of quantiles were also studied in Howard and Ramdas [2022].
Bayes pairs were introduced by Embrechts et al. [2021]. The backtest e-statistic for the pair of ES and VaR
in Theorem 16.9 is closely connected to the joint elicitability of ES and VaR, studied by Fissler and Ziegel
[2016]. Building e-statistics for the mean and variance and testing them via e-processes was also studied by
Fan et al. [2024].
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Appendix

A.1 Atomless probability spaces

In several of our definitions, such as those of a calibrator or a merging function, we have a universal quantifier
over probability spaces. In this section, we justify our claim in the main text that, when studying concepts
like calibrators, e-merging function and p-merging functions, we can safely work with only one atomless
probability measure.

Formally, a probability space (Ω,F ,P) is atomless if it has no atoms, i.e., sets A ∈ F such that P(A) > 0
and P(B) ∈ {0,P(A)} for any B ∈ F such that B ⊆ A. For the same concept, we also say that the probability
measure P is atomless. We used an alternative definition (point (ii) below) of atomless probabilities in the
book, which is justified the following a well-known lemma.

Lemma A.1

The following three statements are equivalent for any probability space (Ω,F ,P):

(i) (Ω,F ,P) is atomless;

(ii) there is a random variable on (Ω,F ,P) that is uniformly distributed on [0, 1];

(iii) for any Polish space S and any probability measure R on S, there is a random element on (Ω,F ,P)
with values in S that is distributed as R.

Typical examples of a Polish space in item (iii) that are useful for us are RK and finite sets.

Proof.

The equivalence between (i) and (ii) is stated in Föllmer and Schied [2016, Proposition A.31].
It remains to prove that (ii) implies (iii). According to Kuratowski’s isomorphism theorem
[Kechris, 1995, Theorem 15.6], S is Borel isomorphic to R, N, or a finite set (the last two
equipped with the discrete topology). The only nontrivial case is where S is Borel isomorphic
to R, in which case we can assume S = R. It remains to apply Föllmer and Schied [2016,
Proposition A.31] again.

If (Ω,F) is a measurable space and P is a collection of probability measures on (Ω, ), we refer to (Ω,F ,P)
as a statistical model. We say that it is rich if there exists a random variable on (Ω,F) that is uniformly
distributed on [0, 1] under any P ∈ P.

Remark A.2. Intuitively, any statistical model (Ω,F ,P) can be made rich by complementing it with a random
number generator producing a uniform random value in [0, 1]: we replace Ω by Ω× [0, 1], F by F × B, and
each P ∈ P by P× U , where ([0, 1],B,L) is the standard measurable space [0, 1] equipped with the uniform
probability measure L. If P = {P} contains a single probability measure P, being rich is equivalent to being
atomless by Lemma A.1.
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For a statistical model (Ω,F ,P), an e-variable is a random variable E : Ω → [0,∞] satisfying

sup
P∈P

EP[E] ≤ 1,

as in Chapter 1. The set of e-variables is denoted by EP . The set EKP is the K-fold product set EP × · · ·×EP .
An e-merging function for (Ω,F ,P), is an increasing Borel function F : [0,∞)K → [0,∞) such that, for

all E1, . . . , EK ,
(E1, . . . , EK) ∈ EKP =⇒ F (E1, . . . , EK) ∈ EP .

This definition requires that K e-values for (Ω,F ,P) be transformed into an e-value for (Ω,F ,P).

Proposition A.3

Let F : [0,∞)K → [0,∞) be an increasing Borel function. The following statements are equivalent:

(i) F is an e-merging function for some rich statistical model;

(ii) F is an e-merging function for all statistical models (i.e., an e-merging function in Definition 8.1);

(iii) F is an e-merging function for all statistical models (Ω,F ,P) with a singleton P.

Proof.

Let us first check that, for any two rich statistical models (Ω,F ,P) and (Ω′,F ′,P ′), we
always have

sup
{
EP[F (E)] : P ∈ P, E ∈ EKP

}
= sup

{
EP′

[F (E′)] : P′ ∈ P ′, E′ ∈ EKP′

}
.

(16)

Suppose
sup

{
EP[F (E)] : P ∈ P, E ∈ EKP

}
> c

for some constant c. Then there exist E ∈ EKP and P ∈ P such that EP[F (E)] > c. Take a
random vector E′ = (E′

1, . . . , E
′
K) on (Ω′,F ′) such that E′ is distributed under each P′ ∈ P ′

identically to the distribution of E under P. This is possible as P ′ is rich by Lemma A.1 applied
to the probability space ([0, 1],B,L), where L is the uniform (Lebesgue) measure and B is the
Borel σ-algebra on [0, 1]. By construction, E′ ∈ EKP′ and EP′

[F (E′)] > c for all P′ ∈ P ′. This
shows that (16) holds with “=” replaced by “≤”, and we obtain the other direction by symmetry.

The implications (ii) ⇒ (iii) and (iii) ⇒ (i) are obvious. To check (i) ⇒ (ii), suppose that
F is an e-merging function for some rich statistical model. Consider any statistical model.
Its product with the uniform probability measure on [0, 1] will be a rich statistical model
(see Remark A.2). It follows from (16) that F will be an e-merging function for the product.
Therefore, it will be an e-merging function for the original statistical model.

Remark A.4. The assumption of being rich is essential in item (i) of Proposition A.3. For instance, if we take
P := {δω | ω ∈ Ω}, where δω is the point-mass at ω, then EP is the set of all random variables taking values
in [0, 1]. In this case, the maximum of e-variables is still an e-variable, but the maximum function is not a
valid e-merging function as seen from Theorem 8.4.

Proposition A.3 shows that in the definition of an e-merging function it suffices to require consider a fixed
atomless probability space (Ω,F ,P). Following the same idea, similar statements can be made for ie-merging
functions and se-merging functions in Chapter 8.

We can state a similar proposition for calibrators. A p-variable for a statistical model (Ω,F ,P) is a
random variable P : Ω → [0,∞) satisfying

P(P ≤ ε) ≤ ε for all ε ∈ (0, 1) and P ∈ P.
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The set of p-variables for (Ω,F ,P) is denoted by UP . A decreasing function f : [0, 1] → [0,∞] is a (p-to-e)
calibrator for (Ω,F ,P) if f(P ) ∈ EP for any p-variable P ∈ UP .

Proposition A.5

Let f : [0, 1] → [0,∞] be a decreasing Borel function. The following statements are equivalent:

(i) f is a calibrator for some rich statistical model;

(ii) f is a calibrator for all statistical models (i.e., a p-to-e calibrator in Definition 2.2);

(iii) f is a calibrator for all statistical models (Ω,F ,P) with a singleton P.

The proof is similar to that of Proposition A.3. There is an obvious analogue of Proposition A.5 for e-to-p
calibrators in Definition 2.2 and combiners in Chapter 11, which we omit. The content of this section is based
on the appendices of Vovk and Wang [2021].

The next lemma is useful for some proofs in Chapter 14, and it is a restatement of Wang and Zitikis [2021,
Lemma A.3].

Lemma A.6

Suppose that (Ω,F ,P) is an atomless probability space. For any random variable X and p ∈ (0, 1),
there exists an event A ∈ F with P(A) = p such that {X > x} ⊆ A ⊆ {X ≥ x} for some x ∈ R, which
can be chosen as x = inf{t ∈ R : P(X ≤ t) ≥ 1− p}.

Proof.

Note that the chosen x is the left (1 − p)-quantile of X, which satisfies P(X > x) ≤ p ≤
P(X ≥ x); see Lemma A.7. If either of the above inequalities is an equality, then we can
take A = {X > x} or A = {X ≥ x}. By Lemma A.1, there exists a random variable U
uniformly distributed on [0, 1]. For s ∈ [0, 1], let As = {X > x} ∪ ({X ≥ x} ∩ {U ≤ s}).
Clearly, P(A0) = P(X > x) ≤ p and P(A1) = P(X ≥ x) ≥ p. Moreover, for any s, t ∈ [0, 1]
with s ≤ t, we have P(At) − P(As) = P(At \ As) ≤ P(s ≤ U ≤ t) = t − s. Hence, s 7→ P(As)
is continuous. As a consequence, there exists s ∈ [0, 1] such that P(As) = p. The condition
{X > x} ⊆ As ⊆ {X ≥ x} holds by construction.

A.2 Quantile functions

In this section, we provide a few fundamental facts about quantile functions, which are helpful to understand
some results in the book using quantiles in Chapters 2, 6, 15 and 16.

Fix a probability measure P. We define two versions of the quantile function under P. For a random
variable X, its left quantile function is defined as

Q−
α (X) = inf{x ∈ R : P(X ≤ x) ≥ α} for α ∈ (0, 1]

and its right quantile function is defined as

Q+
α (X) = inf{x ∈ R : P(X ≤ x) > α} for α ∈ [0, 1).

Note that Q−
α (X) = q1−α(X) for α ∈ (0, 1) with q1−α(X) in Sections 6.7.6 and 15.1, but we slightly generalize

the definition by including the possibility of α = 1.
The first result is a list of translation rules between probability statements and quantile statements.
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Lemma A.7

For α ∈ [0, 1], t ∈ R and any random variable X, the following equivalence statements hold:

(i) Q−
α (X) > t ⇐⇒ P(X ≤ t) < α;

(ii) Q−
α (X) ≤ t ⇐⇒ P(X ≤ t) ≥ α;

(iii) Q−
α (X) ≥ t ⇐⇒ P(X ≤ s) < α for all s < t;

(iv) Q−
α (X) < t ⇐⇒ P(X ≤ s) ≥ α for some s < t;

(v) Q+
α (X) < t ⇐⇒ P(X < t) > α;

(vi) Q+
α (X) ≥ t ⇐⇒ P(X < t) ≤ α;

(vii) Q+
α (X) ≤ t ⇐⇒ P(X < s) > α for all s > t;

(viii) Q+
α (X) > t ⇐⇒ P(X < s) ≤ α for some s > t.

Proof.

To show (i), denote by Aα = {t ∈ R : P(X ≤ t) ≥ α} . Note that Aα is closed in R since
t 7→ P(X ≤ t) is upper semicontinuous. This gives Q−

α (X) = minAα. Hence, α > P(X ≤ t) ⇐⇒
t ̸∈ Aα ⇐⇒ Q−

α (X) > t. Part (ii) follows from (i) directly; (iii) follows from (i) and (iv) follows
from (ii).

To show (v), denote by Bα = {t ∈ R : P(X < t) ≤ α} which is closed in R since t 7→ P(X < t)
is lower semicontinuous. This gives Q+

α (X) = maxBα. It follows that α < P(X < t) ⇐⇒ t ̸∈
Bα ⇐⇒ Q+

α (X) < t. Part (vi) follows from (v) directly; (vii) follows from (v) and (viii) follows
from (vi).

The next lemma clarifies that the two quantile functions are almost everywhere equal.

Lemma A.8

For any random variable X, Q−
α (X) = Q+

α (X) for almost every α ∈ (0, 1).

Proof.

Note that, for any β < α, we have Q−
α (X) ≥ Q+

β (X) ≥ Q−
β (X). Hence, by sending α ↓ β,

we see that the two values Q+
β (X) and Q−

β (X) can only differ at discontinuous points of the
curve α 7→ Q−

α (X). Since α 7→ Q−
α (X) is increasing, its jump points are countable, and thus

the statement holds true.

The next lemma shows that if the quantile level α is replaced by a uniformly distributed random variable
U on [0, 1], then Q−

U (X) is identically distributed as X, where Q−
U (X) is understood as the random variable

given by ω 7→ QU(ω)(X). This is true also for Q+
U (X). Note that Q−

0 (X) an Q+
1 (X) are undefined, but this

does not matter since U takes the value 0 or 1 with zero probability.

Lemma A.9

For any random variable X and any uniformly distributed random variable U on [0, 1], the random
variables X, Q−

U (X) and Q+
U (X) are identically distributed.

VERSION SPRING BREAK, 2025
195



Proof.

By Lemma A.8, Q−
U (X) = Q+

U (X) almost surely. Therefore, it suffices to consider Q−
U (X).

By Lemma A.7, we have, for any α ∈ (0, 1) and t ∈ R,

P(X ≤ t) < α ⇐⇒ Q−
α (X) > t

=⇒ P(Q−
U (X) > t) ≥ 1− α ⇐⇒ P(Q−

U (X) ≤ t) ≤ α,
(17)

and
P(X ≤ t) ≥ α ⇐⇒ Q−

α (X) ≤ t =⇒ P(Q−
U (X) ≤ t) ≥ α. (18)

Note that (17) implies

P(X ≤ t) ≤ α ⇐⇒ P(X ≤ t) < β for all β > α

=⇒ P(Q−
U (X) ≤ t) ≤ β for all β > α

⇐⇒ P(Q−
U (X) ≤ t) ≤ α.

Putting this and (18) together we get X d
= Q−

U (X).

Lemma A.9 implies, in particular, the well known formula

EP[X] =

∫ 1

0

Q−
α (X)dα =

∫ 1

0

Q+
α (X)dα.

The next result is due to Ryff [1965, Theorem 1], although presented in a different form.

Lemma A.10

Suppose that (Ω,F ,P) is an atomless probability space. For any random variable X, there exists a
uniformly distributed random variable U on [0, 1] such that X = Q−

U (X) = Q+
U (X) almost surely.

We first explain the simplest and most intuitive case. Let F be the cdf of X. If X is continuously
distributed, then it suffices to choose U = F (X), which satisfies the conditions in Lemma A.10 by a standard
probabilistic exercise. The complicated case is when X is not continuously distributed and there does not
exist a U[0, 1] random variable independent of X.

Proof.

By Lemma A.8, Q−
U (X) = Q+

U (X) almost surely, so we will only show the first equality.
First, suppose that there exists a uniformly distributed random variable V independent of X.
Define

U = F (X)− V (F (X)− F (X−)), (19)

where F (x−) = limy↑x F (y) for any x ∈ R. It is a standard exercise in probability theory to
check that U is uniformly distributed on [0, 1] and X = Q−

U (X) almost surely.
Next, we consider the more difficult case that there does not exist any uniformly distributed

random variable independent of X. In this case, let B be the set of discontinuity points of F ,
which is a countable set. If B is empty then X is continuously distributed, and U can be chosen
as F (X). Next, suppose that B is not empty. Denote by Ab = {X = b} for b ∈ B. We have
P(Ab) > 0, because P(Ab) = F (b)−F (b−). Since the probability space (Ω,F ,P) is atomless and
P(Ab) > 0, the space (Ab,F|Ab

,P|Ab
) is also atomless. Hence, there exists a U[0, 1]-distributed

random variable Vb on this space. We extend Vb to (Ω,F ,P) by setting Vb = 0 ouside Ab.
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Finally, define
U∗ = F (X)− VX(F (X)− F (X−)),

where VX is understood as the random variable VX(ω) = Vb(ω) if X(ω) = b ∈ B, and otherwise
VX(ω) = 0. Note that VX is F-measurable since B is countable. Moreover, U∗ has the same
distribution as U in (19), because conditional on Ab for each b ∈ B, Vb and V are identically
distributed, and outside

⋃
b∈B Ab the random variables V and VX do not matter. Following the

same statement for U in (19), we obtain that U∗ satisfies the desired conditions in the lemma.
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