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Huber’s Robust SPRT



The Classical SPRT Isn’t Robust

Given a sequence of observations X, X,, ..., consider testing P, vs P, . The
test martingale is

L pl(Xi)
M = .
" EPO(XD

SPRT is NOT robust: a single factor p,(X;)/p(X;) equal or close to 0 or
0o may upset the entire test statistic M, .

One natural solution: (Truncated Probability Ratio Test)

Replace p,(X,))/py(X,) by 7(X;) = max{c’, min{c”, p;(X,)/py(X.)}}, for some
¢’ < c¢”and

S, = ﬁﬂ'(Xi).
i=1
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Huber’s Robust SPRT

e Huber (1965) showed that for a specific choice of (¢’, ¢”),
the Truncated Probability Ratio Test:

accept null if §, < a and reject null if S, > b (sequential)
is optimal in some well defined minimax sense.

* To account for the possibility of small deviations from
the idealized models P;,j = 0,1; Huber (1965)

expanded them into the following composite
hypotheses:

Hf= oed:Q=0-¢P +eH,He U]
But we will consider a more general total-variation model:

H =10 € M : d1y(P;, Q) < €}
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Huber’s Robust SPRT (cont.)

Huber (1965) defined the distributions Q; . € #’;, by their densities

qo.(x) = (1 =€) py(x) for p,(x)/py(x) < c”
= (1/¢") (1 =€) py(x) for p,;(x)/py(x) = c”

q1.x) = (1 =€) pi(x) for p,(x)/py(x) > ¢’

= ¢'(1 = €) po() for p,(V)/py(x) < ¢

0 < ¢’ < ¢” £ oo are determined such that g, ., g; . are probability densities-

(1—¢) {Po [Pl/Po < C”] +(c")7' Py [P1/P0 > c” } =1

(1 —¢) {Pl [pl/po > c’] + c'P, [pl/po < c’] } =1
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Drawbacks of Huber’s Robust SPRT

Despite its elegance, it has two important limitations that we address:

® Huber did not provide a way to get an anytime valid, level o power-

one test. Our approach yields level & power-one test, which is valid
at arbitrary stopping times.

® Huber’s test was a robust version of point nulls and alternatives.
We extend Huber’s robust test for dealing with general composite
nulls and alternatives.



[ SPRT is not robust J
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Huber proposed a robust version of SPRT
and proved some minimax optimality
for e-contamination model
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We extend it in two ways:
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level c. power 1 tesﬂ
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We normalize Hu-
ber’s test stat suitably
to form a test
supermartingale,
threshold at 1/a to

derive level o test
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We use predictable
plug-in idea
and reverse information
projection




(Super)Martingales and Anytime Valid Tests

M}, is called a test (super)martingale for H,, if it is a (super)
martingale for every P € H,, and if it is non-negative with M, = 1.

Ville's inequality applied to test (super)martingale implies
P(AneN: M > 1/a) < a,VP € H, which is equivalent to

Reject null at 7, = inf{n >1: M, > 1/a} to obtain a level o test.

Ville's inequality ensures that the above test is valid at arbitrary
data-dependent stopping times, accommodating optional stopping

or continuation.



Our Modification to Huber’s
Robust SPRT



Our Adaptive Contamination Model

Supermartingale tools allow us to deal with time-varying adaptive
- potentially adversarial - deviations from the null, where

X, | X, X, ~0, E H,

Set of all possible joint distributions of the sequence X, X,, ---
under the adaptive contamination model as Hg"’".
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Our Test Supermartingale

t (X,
Define, Rf = H (%) t=12,,Ry=1.
P Ep 7 (X) + (c"—c)e

Total variation distance is an integral probability metric: for any ¢; < ¢,,

1
dTV(P, Q) = up | Expf(X) = By f(X) |

€2 = €1 ¢<f<c,

X, | X"~ Q, e dry(0,, Py < € which implies

7.(X,) nl}
X <1
Ep, [7(X)]| + (¢” = ¢)e

Ex xr1~g |7X,) | X' < Ep |7(X)| + (¢" = e = Ex xming, [

So, R; is a test supermartingale for H; .




Growth Rate of the test

The “growth rate” of a test supermartingale R, is defined as

log R
inf lim ". A positive growth rate implies consistency of
PeH, t—c0 1

the test.

Theorem I:
Suppose that € > O and X, X,, -+ ~ Q € Hj areiiid. Then,as f = 0,

(logR/)/t — ré almost surely, for some constant ré

and the growth rate,

¢ ngfl ro 2 dkL(Q) e Qo) — 2(log ¢” —log ¢)e — log(1 + 2(c" — ¢')e)
1
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Asymptotic Optimality of Growth Rate

Note that likelihood ratio test (SPRT) is the log-optimal test
for testing P, vs P; and hence the optimal growth rate is

'PI[IOgP1(X)/Po(X)] = dk | (P;, Py).

Theorem 3:
The growth rate of our test r° — di (P, Py), as € — 0.
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Robust Predictable Plug-in for
Composite Alternatives



Simple Null () vs Composite
Alternative (&)

Robust Predictable Plug-in: Obtain a robust estimate p,
based on past observations X, ---, X, ;. (e.g., for testing Gaussian
mean, we can use sample median as an estimate of the parameter)

S

]%n,(-j(x) — maX{Cr,p mln{cnvpn(x)/p()(x)} }
/A 1 A VaN
(1 —¢) {Po Pulpy < il + =P, |Pulpy = )] } =1,
C

n

(=& { B, [pulpo> ;] +ciPo [pulpo < ] | = 1.
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Simple Null () vs Composite
Alternative (&)

Test Supermartingale: R,'ileug'in — gPlug-in E, (X)),

n—1.e

ﬁ”’E(X”) . / 7
. - —, ifc, <cy,
E, (X,) := 3 ExpotopyBne®n) | X7 + (7 = c))e
1, otherwise.

[EanX”—lern [ﬁ-n,e(Xn) | Xn_l] Ic,;<c,’l’ <1
Expxrip, |20 | X1 + (¢ — cp)e

Ex xor-1og [EneX) | X7 =1

/ 1
C,=C,

Reject null at 7, = inf{n > 1: Rl|/l3,|€ug-|n > 1/(1} to obtain a level a sequential

test for Hg’°°.

- We can show results on the growth rate and consistency assuming p, to be

a consistent estimator for p;.
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Simulations (Under the null)
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Data is drawn from (1 — %) x N(0,1) + € x Cauchy(—1,10) and ¢* = ¢ = 0.01,
Py = N(0,1), the simple and the composite alternative to be P; = N(1,1) and

P, = {N(,l) : u # 0} respectively. Our robust tests are safe, but the non-robust

tests exhibit unstable and unreliable behaviour.
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Simulations

£2=52= 10:12 _____ - -+ Non-robust
150004 | — €A=€R=10_3 = — Robust
e=e=10 : 15000 1
|
¢ L Nopugps | AR
§ 10000 | NN
s 10000 -
- |
E 50001 l
e // 5000 1
0-,
0-,
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
t t
Data is drawn from (1 — e”) x N(1,1) + € x Cauchy(-1,10),

e = e =0.1,0.01,0.001. The growth rate of our robust tests increases as €

decreases. As anticipated, The growth rates for our robust tests based on

simple and composite alternatives almost overlap.
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Combining Robust Predictable
Plug-in and Numeraire for
Composite Nulls and Alternatives



Reverse Information Projection (RIPr)

RIPr of O onto & :“closest” element of & to Q.

For any null & and simple alternative Q, there always exists a unique and strictly

positive e-variable B* called the numeraire, such that for any e-variable B for &,
[EQ[B/B*] <1.

dP* 1 ,
B*

P* is called the Reverse Information Projection (RIPr) of Q onto &.

Define a measure P* by defining its likelihood ratio

<7)00

H(Q| P¥) P
O
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Composite Null (&) vs Composite
Alternative (<))

TV neighborhoods: 75 = | | {Q : dp(P.Q) < €}.i = 0.1,
PeP.

Let p, , be some robust estimate of the density based on past
observations, which belongs to the alternative. Let Po , be the reverse
information projection (RIPr) of Pl » on the null &,

Ty e(x) — maX{C mln{cn?ﬁl,n(x)/ﬁ(),n(x)}-

Test Supermartingale: R}l}!Pl’,plug-in — gRIPrplug-in X B X)),

n—1,e

ﬁne(X”) . / 1/
- - —, if ¢, < ¢y,
Bn,e(x) .= SUPpeg,, Eyixn-1-p [”ne(Xn) | X" ] + (¢, — ¢, )€

1, otherwise.
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Simulations (Under the null)
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Data is drawn from (1 — €”) x N(0,1) + €% x Cauchy(—1,10) and
e’ = e® =0.01.The null is , = {N(u,1) : —0/5 < ;. < 0/5}. Our robust

tests are safe, but the non-robust tests exhibit unstable and unreliable behavior.
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Data is drawn from (1 — ¢®) x N(1,1) + €® x Cauchy(—1,10),
et = e =0.1,0.01,0.001. 2, = {N(u,1) : —0/5 < u < 0/5}. The growth
rate of our robust tests increases as edecreases. The growth rates for our

robust tests based on simple and composite alternatives almost overlap.
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Simulations
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Data is drawn from N(0,1) (WITH NO CONTAMINATION) and
Py=N(1,1), P, = NQO,1). %y = {N(u,1) : = 0/5 < u <0/5}.Here, the
growth rate of our robust tests approaches that of the non-robust test, as

¢ decreases. The growth rates for our robust tests based on simple

alternatives and composite alternatives almost overlap.
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Summary

+ By integrating the plug-in and RIPr techniques, we propose a
robust method for testing composite nulls vs composite
alternatives.

+ Growth rate of our tests approaches the optimal growth rates
of the non-robust tests as € — 0.

+ Our tests are inherently sequential, being valid at arbitrary
data-dependent stopping times, but they are new even for fixed

sample sizes, giving type-l error control without any regularity
conditions.

+ Simulations validate the theory and demonstrate excellent
practical performance.
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