Robust likelihood ratio tests for composite nulls and alternatives

Aytijhya Saha

Indian Statistical Institute, Kolkata (MIT, from Fall 2025)

Aaditya Ramdas

Carnegie Mellon University, Pittsburgh

https://arxiv.org/abs/2408.14015

June 30, 2025

Outline

- Huber's robust SPRT
- 2. Our modification to Huber's robust SPRT
- Extensions to composite nulls and alternatives

Huber's Robust SPRT

The Classical SPRT Isn't Robust

Given a sequence of observations X_1, X_2, \ldots , consider testing P_0 vs P_1 . The test martingale is

$$M_n = \prod_{i=1}^n \frac{p_1(X_i)}{p_0(X_i)}.$$

SPRT is **NOT robust**: a single factor $p_1(X_j)/p_0(X_j)$ equal or close to 0 or ∞ may upset the entire test statistic M_n .

One natural solution: (Truncated Probability Ratio Test)

Replace $p_1(X_i)/p_0(X_i)$ by $\pi(X_i) = \max\{c', \min\{c'', p_1(X_i)/p_0(X_i)\}\}$, for some c' < c'' and

$$S_n = \prod_{i=1}^n \pi(X_i).$$

Huber's Robust SPRT

- Huber (1965) showed that for a specific choice of (c', c'), the Truncated Probability Ratio Test:
 - accept null if $S_n \le a$ and reject null if $S_n \ge b$ (sequential) is optimal in some well defined minimax sense.
- To account for the possibility of small deviations from the idealized models P_j , j=0,1; Huber (1965) expanded them into the following composite hypotheses:

$$H_i^{\epsilon} = \{ Q \in \mathcal{M} : Q = (1 - \epsilon)P_j + \epsilon H, H \in \mathcal{M} \}$$

But we will consider a more general total-variation model:

$$H_j^{\epsilon} = \{ Q \in \mathcal{M} : d_{\mathsf{TV}}(P_j, Q) \le \epsilon \}$$

Huber's Robust SPRT (cont.)

Huber (1965) defined the distributions $Q_{i,\epsilon} \in \mathcal{H}_i^{\epsilon}$, by their densities

$$q_{0,\epsilon}(x) = (1 - \epsilon) p_0(x) \text{ for } p_1(x)/p_0(x) < c''$$

$$= (1/c'') (1 - \epsilon) p_1(x) \text{ for } p_1(x)/p_0(x) \ge c''$$

$$\begin{aligned} q_{1,\epsilon}(x) &= (1-\epsilon) \, p_1(x) \, \text{for} \, p_1(x)/p_0(x) > c' \\ &= c'(1-\epsilon) \, p_0(x) \, \text{for} \, p_1(x)/p_0(x) \leq c' \, . \end{aligned} \\ &= \max\{c', \min\{c'', p_1(X_i)/p_0(X_i)\}\} \end{aligned}$$

$$\pi_{\epsilon}(x) := q_{1,\epsilon}(x)/q_{0,\epsilon}(x)$$

$$= \max\{c', \min\{c'', p_1(X_i)/p_0(X_i)\}\}$$

 $0 \leq c' < c'' \leq \infty$ are determined such that $q_{0,\epsilon}, q_{1,\epsilon}$ are probability densities-

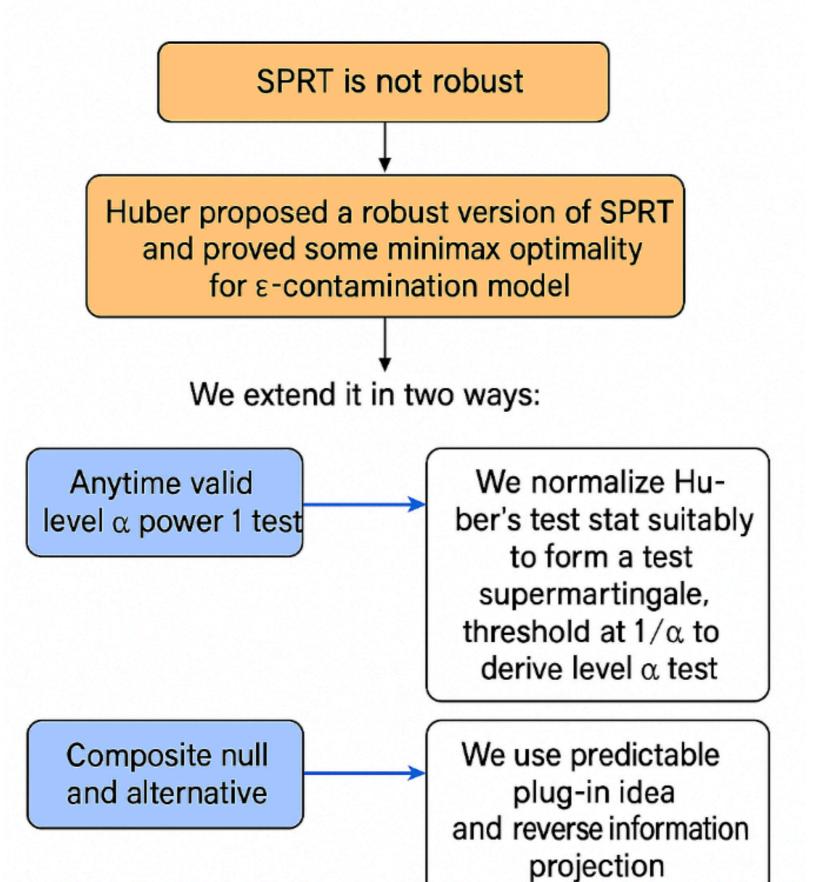
$$(1 - \epsilon) \left\{ P_0 \left[p_1 / p_0 < c'' \right] + (c'')^{-1} P_1 \left[p_1 / p_0 \ge c'' \right] \right\} = 1$$

$$(1 - \epsilon) \left\{ P_1 \left[p_1 / p_0 > c' \right] + c' P_0 \left[p_1 / p_0 \le c' \right] \right\} = 1$$

Drawbacks of Huber's Robust SPRT

Despite its elegance, it has two important limitations that we address:

- Huber did not provide a way to get an anytime valid, level α powerone test. Our approach yields level α powerone test, which is valid at arbitrary stopping times.
- Huber's test was a robust version of point nulls and alternatives.
 We extend Huber's robust test for dealing with general composite nulls and alternatives.



(Super) Martingales and Anytime Valid Tests

 $\{M_n\}_n$ is called a test (super)martingale for H_0 if it is a (super) martingale for every $\mathbb{P} \in H_0$, and if it is non-negative with $M_0 = 1$.

Ville's inequality applied to test (super)martingale implies $P(\exists n \in \mathbb{N} : M_n \ge 1/\alpha) \le \alpha, \forall P \in H_0$ which is equivalent to

 $P(M_{\tau} \ge 1/\alpha) \le \alpha$, for every stopping time $\tau, P \in H_0$

Reject null at $\tau_{\alpha} = \inf \{ n \ge 1 : M_n \ge 1/\alpha \}$ to obtain a level α test.

Ville's inequality ensures that the above test is valid at arbitrary data-dependent stopping times, accommodating optional stopping or continuation.

Our Modification to Huber's Robust SPRT

Our Adaptive Contamination Model

Supermartingale tools allow us to deal with time-varying adaptive - potentially adversarial - deviations from the null, where

$$X_n \mid X_1, \dots, X_{n-1} \sim Q_n \in H_0^{\epsilon}$$

Set of all possible joint distributions of the sequence X_1, X_2, \cdots under the adaptive contamination model as $H_0^{\epsilon,\infty}$.

Our Test Supermartingale

Define,
$$R_t^{\epsilon} = \prod_{i=1}^t \frac{\pi_{\epsilon}(X_i)}{\mathbb{E}_{P_0}\pi_{\epsilon}(X) + (c'' - c')\epsilon}$$
 $t = 1, 2, \dots, R_0 = 1$.

Total variation distance is an integral probability metric: for any $c_1 < c_2$,

$$d_{\mathsf{TV}}(P,Q) = \frac{1}{c_2 - c_1} \sup_{c_1 \le f \le c_2} \left| E_{X \sim P} f(X) - E_{X \sim Q} f(X) \right|.$$

 $X_n \mid X^{n-1} \sim Q_n \in \mathcal{H}_0^{\epsilon}, d_{\mathsf{TV}}(Q_n, P_0) < \epsilon$, which implies

$$\mathbb{E}_{X_n|X^{n-1}\sim Q_n}\left[\pi_{\epsilon}(X_n)\mid X^{n-1}\right]\leq \mathbb{E}_{P_0}\left[\pi_{\epsilon}(X_n)\right]+(c''-c')\epsilon \implies \mathbb{E}_{X_n|X^{n-1}\sim Q_n}\left[\frac{\pi_{\epsilon}(X_n)}{\mathbb{E}_{P_0}\left[\pi_{\epsilon}(X)\right]+(c''-c')\epsilon}\mid X^{n-1}\right]\leq 1$$

So, R_t^{ϵ} is a test supermartingale for $H_0^{\epsilon,\infty}$.

Reject null at $\tau_{\alpha} = \inf \{n \geq 1 : R_n^{\epsilon} \geq 1/\alpha \}$ to obtain a level α sequential test for $H_0^{\epsilon,\infty}$.

Growth Rate of the test

The "growth rate" of a test supermartingale R_t is defined as $\inf_{\mathbb{P}\in H_1}\lim_{t\to\infty}\frac{\log R_t}{t}.$ A positive growth rate implies consistency of the test.

Theorem I:

Suppose that $\epsilon>0$ and $X_1,X_2,\cdots\sim Q\in H_1^\epsilon$ are iid. Then, as $t\to\infty$, $(\log R_t^\epsilon)/t\to r_Q^\epsilon \text{ almost surely, for some constant } r_Q^\epsilon$ and the growth rate, $r^\epsilon=\inf_{Q\in H_1^\epsilon} r_Q^\epsilon\geq d_{\mathsf{KL}}(Q_{1,\epsilon},Q_{0,\epsilon})-2(\log c''-\log c')\epsilon-\log(1+2(c''-c')\epsilon)$

Asymptotic Optimality of Growth Rate

Note that likelihood ratio test (SPRT) is the log-optimal test for testing P_0 vs P_1 and hence the optimal growth rate is $\mathbb{E}_{P_1}[\log p_1(X)/p_0(X)] = d_{\mathsf{KL}}(P_1, P_0).$

Theorem 3:

The growth rate of our test $r^{\epsilon} \to d_{\mathsf{KL}}(P_1, P_0)$, as $\epsilon \to 0$.

Robust Predictable Plug-in for Composite Alternatives

Simple Null (P_0) vs Composite Alternative (\mathcal{P}_1)

Robust Predictable Plug-in: Obtain a robust estimate \hat{p}_n based on past observations X_1, \dots, X_{n-1} . (e.g., for testing Gaussian mean, we can use sample median as an estimate of the parameter)

$$\hat{\pi}_{n,\epsilon}(x) = \max\{c'_n, \min\{c''_n, \hat{p}_n(x)/p_0(x)\}\}.$$

$$(1 - \epsilon) \left\{ P_0 \left[\hat{p}_n / p_0 < c_n'' \right] + \frac{1}{c_n''} \hat{P}_n \left[\hat{p}_n / p_0 \ge c_n'' \right] \right\} = 1,$$

$$(1 - \epsilon) \left\{ \hat{P}_n \left[\hat{p}_n / p_0 > c'_n \right] + c'_n P_0 \left[\hat{p}_n / p_0 \le c'_n \right] \right\} = 1.$$

Simple Null (P_0) vs Composite Alternative (\mathcal{P}_1)

Test Supermartingale: $R_{n,\epsilon}^{\text{plug-in}} = R_{n-1,\epsilon}^{\text{plug-in}} \times \hat{E}_{n,\epsilon}(X_n)$,

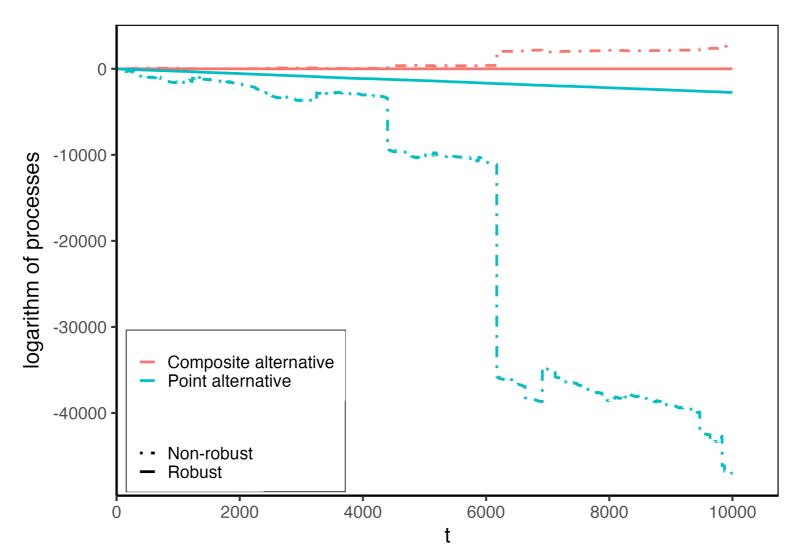
$$\hat{E}_{n,\epsilon}(X_n) := \begin{cases} \frac{\hat{\pi}_{n,\epsilon}(X_n)}{\mathbb{E}_{X_n|X^{n-1} \sim P_0}[\hat{\pi}_{n,\epsilon}(X_n) \mid X^{n-1}] + (c_n'' - c_n')\epsilon}, & \text{if } c_n' < c_n'', \\ 1, & \text{otherwise.} \end{cases}$$

$$\mathbb{E}_{X_{n}|X^{n-1}\sim Q_{n}}[\hat{E}_{n,\epsilon}(X_{n})\mid X^{n-1}] = I_{c_{n}'\geq c_{n}''} + \frac{\mathbb{E}_{X_{n}|X^{n-1}\sim Q_{n}}\left[\hat{\pi}_{n,\epsilon}(X_{n})\mid X^{n-1}\right]I_{c_{n}'< c_{n}''}}{\mathbb{E}_{X|X^{n-1}\sim P_{0}}\left[\hat{\pi}_{n,\epsilon}(X_{n})\mid X^{n-1}\right] + (c_{n}'' - c_{n}')\epsilon} \leq 1$$

Reject null at $\tau_{\alpha} = \inf \left\{ n \geq 1 : R_{n,\epsilon}^{\mathsf{plug-in}} \geq 1/\alpha \right\}$ to obtain a level α sequential test for $H_0^{\epsilon,\infty}$.

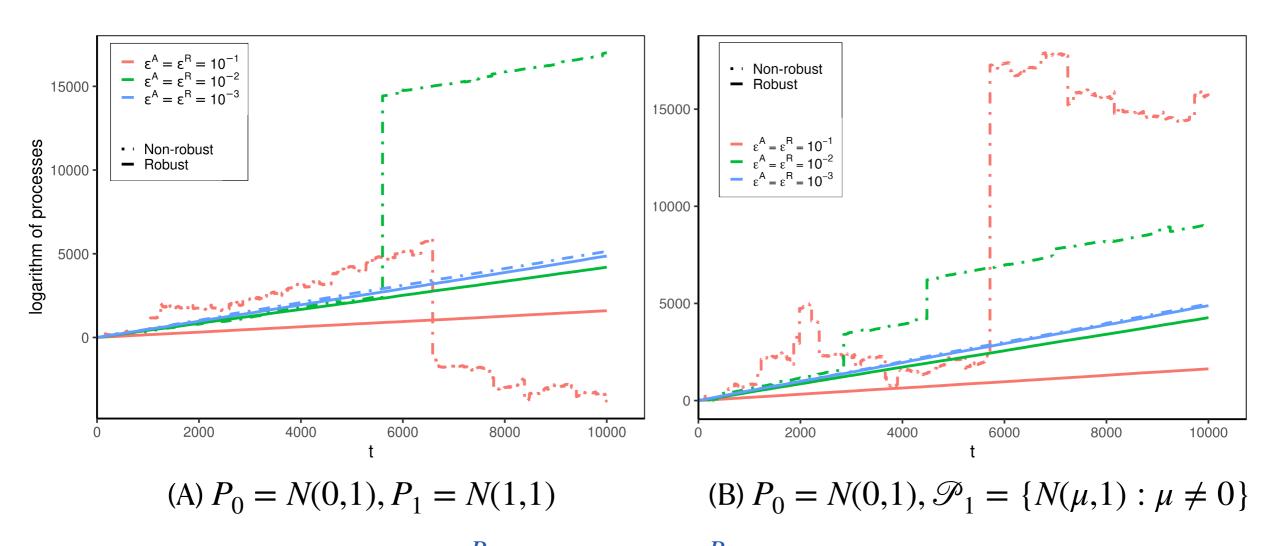
- We can show results on the growth rate and consistency assuming \hat{p}_n to be a consistent estimator for p_1 .

Simulations (Under the null)



Data is drawn from $(1 - e^R) \times N(0,1) + e^R \times \text{Cauchy}(-1,10)$ and $e^A = e^R = 0.01$, $P_0 = N(0,1)$, the simple and the composite alternative to be $P_1 = N(1,1)$ and $\mathscr{P}_1 = \{N(\mu,1) : \mu \neq 0\}$ respectively. Our robust tests are safe, but the non-robust tests exhibit unstable and unreliable behaviour.

Simulations



Data is drawn from $(1 - e^R) \times N(1,1) + e^R \times \text{Cauchy}(-1,10)$, $e^A = e^R = 0.1,0.01,0.001$. The growth rate of our robust tests increases as e^R decreases. As anticipated, The growth rates for our robust tests based on simple and composite alternatives almost overlap.

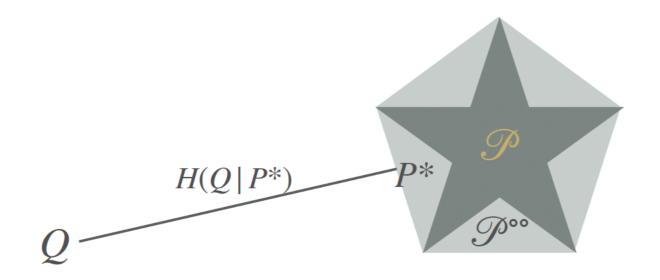
Combining Robust Predictable Plug-in and Numeraire for Composite Nulls and Alternatives

Reverse Information Projection (RIPr)

RIPr of Q onto \mathscr{P} : "closest" element of \mathscr{P} to Q.

For any null $\mathscr P$ and simple alternative Q, there always exists a unique and strictly positive e-variable B^* called the numeraire, such that for any e-variable B for $\mathscr P$, $\mathbb E_Q[B/B^*] \le 1$.

Define a measure P^* by defining its likelihood ratio $\frac{dP^*}{dQ} := \frac{1}{B^*}$. This P^* is called the Reverse Information Projection (RIPr) of Q onto \mathcal{P} .



Composite Null (\mathcal{P}_0) vs Composite Alternative (\mathcal{P}_1)

TV neighborhoods:
$$\mathcal{H}_i^{\epsilon} = \bigcup_{P \in \mathcal{P}_i} \{Q: d_{TV}(P,Q) \leq \epsilon\}, i=0,1.$$

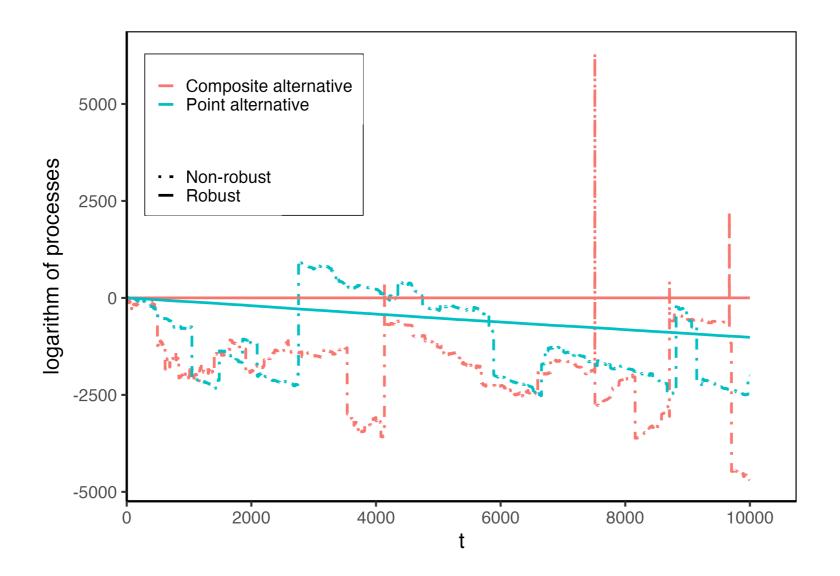
Let $\hat{p}_{1,n}$ be some robust estimate of the density based on past observations, which belongs to the alternative. Let $\hat{P}_{0,n}$ be the reverse information projection (RIPr) of $\hat{P}_{1,n}$ on the null \mathscr{P}_0 .

$$\hat{\pi}_{n,\epsilon}(x) = \max\{c'_n, \min\{c''_n, \hat{p}_{1,n}(x)/\hat{p}_{0,n}(x)\}.$$

Test Supermartingale: $R_{n,\epsilon}^{\text{RIPr,plug-in}} = R_{n-1,\epsilon}^{\text{RIPr,plug-in}} \times \hat{B}_{n,\epsilon}(X_n)$,

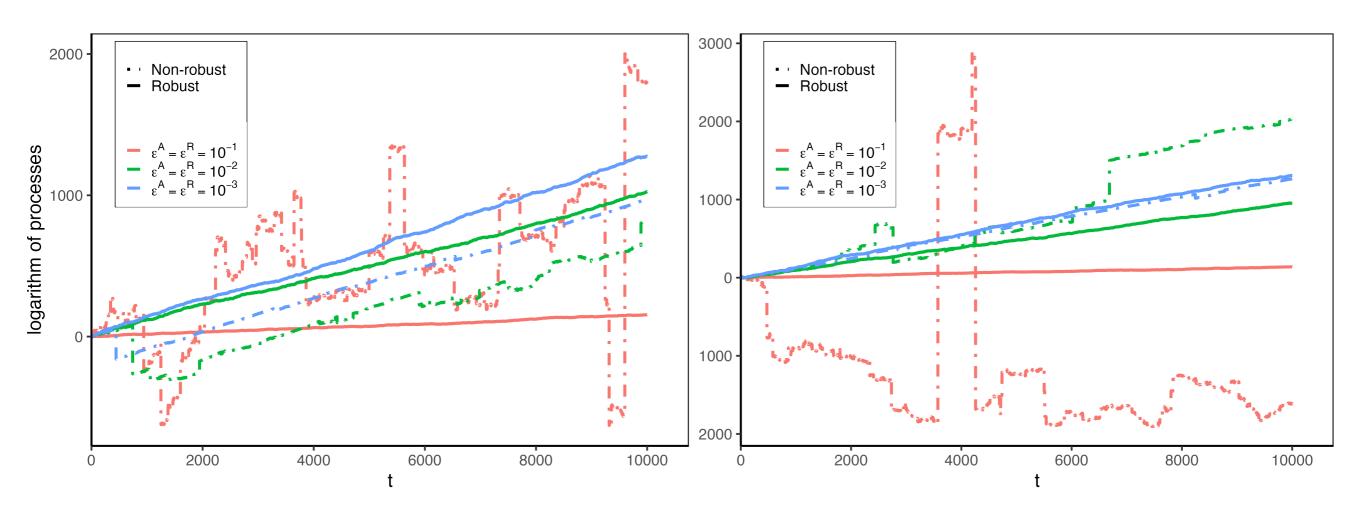
$$\hat{B}_{n,\epsilon}(x) := \begin{cases} \frac{\hat{\pi}_{n,\epsilon}(X_n)}{\sup_{P \in \mathcal{P}_0} \mathbb{E}_{X|X^{n-1} \sim P}[\hat{\pi}_{n,\epsilon}(X_n) \mid X^{n-1}] + (c_n'' - c_n')\epsilon}, & \text{if } c_n' < c_n'', \\ 1, & \text{otherwise.} \end{cases}$$

Simulations (Under the null)



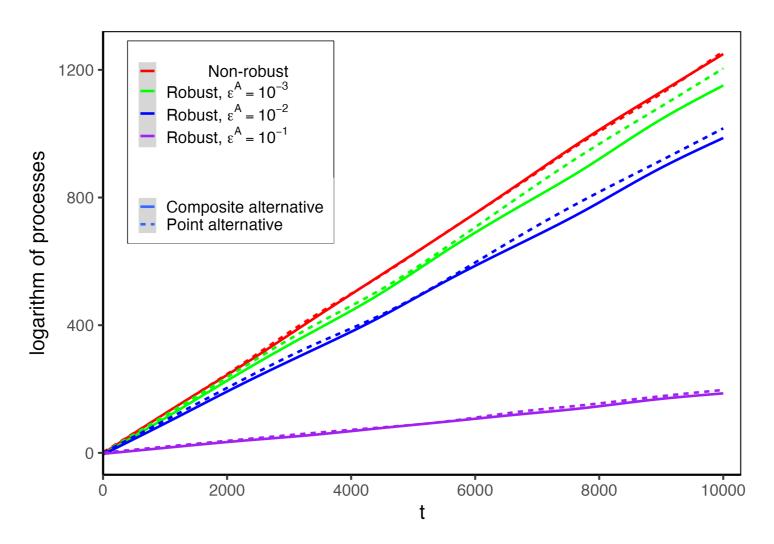
Data is drawn from $(1 - e^R) \times N(0,1) + e^R \times \text{Cauchy}(-1,10)$ and $e^A = e^R = 0.01$. The null is $\mathcal{P}_0 = \{N(\mu,1) : -0/5 \le \mu \le 0/5\}$. Our robust tests are safe, but the non-robust tests exhibit unstable and unreliable behavior.

Simulations



Data is drawn from $(1 - e^R) \times N(1,1) + e^R \times \text{Cauchy}(-1,10)$, $e^A = e^R = 0.1,0.01,0.001$. $\mathcal{P}_0 = \{N(\mu,1): -0/5 \le \mu \le 0/5\}$. The growth rate of our robust tests increases as ϵ decreases. The growth rates for our robust tests based on simple and composite alternatives almost overlap.

Simulations



Data is drawn from N(0,1) (WITH NO CONTAMINATION) and $P_0 = N(1,1), P_1 = N(0,1).$ $\mathcal{P}_0 = \{N(\mu,1): -0/5 \le \mu \le 0/5\}.$ Here, the growth rate of our robust tests approaches that of the non-robust test, as ϵ decreases. The growth rates for our robust tests based on simple alternatives and composite alternatives almost overlap.

Summary

- ♣ By integrating the plug-in and RIPr techniques, we propose a robust method for testing composite nulls vs composite alternatives.
- Growth rate of our tests approaches the optimal growth rates of the non-robust tests as $\epsilon \to 0$.
- * Our tests are inherently sequential, being valid at arbitrary data-dependent stopping times, but they are new even for fixed sample sizes, giving type-I error control without any regularity conditions.
- ◆ Simulations validate the theory and demonstrate excellent practical performance.

THANK YOU