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Huber’s Robust SPRT
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 The Classical SPRT Isn’t Robust
Given a sequence of observations , consider testing  vs The 
test martingale is 

.

SPRT is NOT robust:  a single factor  equal or close to 0 or 
 may upset the entire test statistic .

One natural solution: (Truncated Probability Ratio Test) 

Replace  by , for some  
 and

                                            .

X1, X2, … P0 P1 .

Mn =
n

∏
i=1

p1(Xi)
p0(Xi)

p1(Xj)/p0(Xj)
∞ Mn

p1(Xi)/p0(Xi) π(Xi) = max{c′￼, min{c′￼′￼, p1(Xi)/p0(Xi)}}
c′￼< c′￼′￼

Sn =
n

∏
i=1

π(Xi)
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Huber’s Robust SPRT

• Huber (1965) showed that for a specific choice of ( ), 
the Truncated Probability Ratio Test: 
 accept null if  and reject null if  (sequential) 
is optimal in some well defined minimax sense.

• To account for the possibility of small deviations from 
the idealized models ; Huber (1965) 
expanded them into the following composite 
hypotheses:  
                       
But we will consider a more general total-variation model:         
or              

c′￼, c′￼′￼

Sn ≤ a Sn ≥ b

Pj, j = 0,1

Hϵ
j = {Q ∈ ℳ : Q = (1 − ϵ)Pj + ϵH, H ∈ ℳ}

Hϵ
j = {Q ∈ ℳ : dTV(Pj, Q) ≤ ϵ}
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Huber’s Robust SPRT (cont.)
Huber (1965) defined the distributions  by their densities 

  

         

         

 are determined such that  are probability densities-

          

              

Qj,ϵ ∈ ℋϵ
j ,

q0,ϵ(x) = (1 − ϵ) p0(x) for p1(x)/p0(x) < c′￼′￼

= (1/c′￼′￼) (1 − ϵ) p1(x) for p1(x)/p0(x) ≥ c′￼′￼

q1,ϵ(x) = (1 − ϵ) p1(x) for p1(x)/p0(x) > c′￼

= c′￼(1 − ϵ) p0(x) for p1(x)/p0(x) ≤ c′￼.

0 ≤ c′￼< c′￼′￼≤ ∞ q0,ϵ, q1,ϵ

(1 − ϵ) {P0 [p1/p0 < c′￼′￼] + (c′￼′￼)−1 P1 [p1/p0 ≥ c′￼′￼]} = 1

(1 − ϵ) {P1 [p1/p0 > c′￼] + c′￼P0 [p1/p0 ≤ c′￼]} = 1

   πϵ(x) := q1,ϵ(x)/q0,ϵ(x)
= max{c′￼, min{c′￼′￼, p1(Xi)/p0(Xi)}}
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Drawbacks of Huber’s Robust SPRT

Despite its elegance, it has two important limitations that we address: 

• Huber did not provide a way to get an anytime valid, level  power-
one test. Our approach yields level  power-one test, which is valid 
at arbitrary stopping times. 

• Huber’s test was a robust version of point nulls and alternatives. 
We extend Huber’s robust test for dealing with general composite 
nulls and alternatives.

α
α
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(Super)Martingales and Anytime Valid Tests

 is called a test (super)martingale for  if it is a (super) 
martingale for every , and if it is non-negative with . 
 
Ville's inequality applied to test (super)martingale implies 

 which is equivalent to 
        
   

Reject null at  to obtain a level  test.

Ville's inequality ensures that the above test is valid at arbitrary 
data-dependent stopping times, accommodating optional stopping 
or continuation.

{Mn}n H0
ℙ ∈ H0 M0 = 1

P(∃n ∈ ℕ : Mn ≥ 1/α) ≤ α, ∀P ∈ H0

τα = inf {n ≥ 1 : Mn ≥ 1/α} α

P(Mτ ≥ 1/α) ≤ α, for every stopping time τ, P ∈ H0
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Our Modification to Huber’s 
Robust SPRT
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Our Adaptive Contamination Model

Supermartingale tools allow us to deal with time-varying adaptive 
- potentially adversarial - deviations from the null, where 

           

Set of all possible joint distributions of the sequence  
under the adaptive contamination model as .

Xn |X1, ⋯, Xn−1 ∼ Qn ∈ Hϵ
0

X1, X2, ⋯
Hϵ,∞

0
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Our Test Supermartingale
Define,  

Total variation distance is an integral probability metric: for any ,

                             

, which implies

                         

So,  is a test supermartingale for .

Rϵ
t =

t

∏
i=1

πϵ(Xi)
𝔼P0

πϵ(X) + (c′￼′￼− c′￼)ϵ
. t = 1,2,⋯, R0 = 1.

c1 < c2

dTV(P, Q) =
1

c2 − c1
sup

c1≤ f≤c2

EX∼P f(X) − EX∼Q f(X) .

Xn ∣ Xn−1 ∼ Qn ∈ ℋϵ
0, dTV(Qn, P0) < ϵ

𝔼Xn∣Xn−1∼Qn [πϵ(Xn) ∣ Xn−1] ≤ 𝔼P0 [πϵ(Xn)] + (c′￼′￼− c′￼)ϵ ⟹ 𝔼Xn∣Xn−1∼Qn [ πϵ(Xn)
𝔼P0 [πϵ(X)] + (c′￼′￼− c′￼)ϵ

∣ Xn−1] ≤ 1

Rϵ
t Hϵ,∞

0

Reject null at to obtain a level  sequential test for .τα = inf {n ≥ 1 : Rϵ
n ≥ 1/α} α Hϵ,∞

0
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Growth Rate of the test

Theorem 1: 
Suppose that  and  are iid.  Then, as ,

 and the growth rate,

ϵ > 0 X1, X2, ⋯ ∼ Q ∈ Hϵ
1 t → ∞

(log Rϵ
t )/t → rϵ

Q almost surely, for some constant rϵ
Q

rϵ = inf
Q∈Hϵ

1

rϵ
Q ≥ dKL(Q1,ϵ, Q0,ϵ) − 2(log c′￼′￼− log c′￼)ϵ − log(1 + 2(c′￼′￼− c′￼)ϵ)

The “growth rate” of a test supermartingale  is defined as 

.  A positive growth rate implies consistency of 

the test.

Rt

inf
ℙ∈H1

lim
t→∞

log Rt

t
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Asymptotic Optimality of Growth Rate

Theorem 3: 
The growth rate of our test .rϵ → dKL(P1, P0),  as ϵ → 0

Note that likelihood ratio test (SPRT) is the log-optimal test 
for testing  vs  and hence the optimal growth rate is  

.
P0 P1

𝔼P1
[log p1(X)/p0(X)] = dKL(P1, P0)
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Robust Predictable Plug-in for 
Composite Alternatives
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Simple Null ( ) vs Composite 
Alternative ( )

P0
𝒫1

Robust Predictable Plug-in: Obtain a robust estimate  
based on past observations . (e.g., for testing Gaussian 
mean, we can use sample median as an estimate of the parameter)

.

              
 

̂pn
X1, ⋯, Xn−1

̂πn,ϵ(x) = max{c′￼n, min{c′￼′￼n, ̂pn(x)/p0(x)}}

(1 − ϵ) {P0 [ ̂pn/p0 < c′￼′￼n] +
1
c′￼′￼n

̂Pn [ ̂pn/p0 ≥ c′￼′￼n]} = 1,

(1 − ϵ) { ̂Pn [ ̂pn/p0 > c′￼n] + c′￼nP0 [ ̂pn/p0 ≤ c′￼n]} = 1.
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Simple Null ( ) vs Composite 
Alternative ( )

P0
𝒫1

Test Supermartingale: 

- We can show results on the growth rate and consistency assuming  to be 
a consistent estimator for .

Rplug-in
n,ϵ = Rplug-in

n−1,ϵ × ̂En,ϵ(Xn),

̂En,ϵ(Xn) :=
̂πn,ϵ(Xn)

𝔼Xn∣Xn−1∼P0[ ̂πn,ϵ(Xn) ∣ Xn−1] + (c′￼′￼n − c′￼n)ϵ
, if c′￼n < c′￼′￼n,

1,  otherwise. 

𝔼Xn∣Xn−1∼Qn
[ ̂En,ϵ(Xn) ∣ Xn−1] = Ic′￼n≥c′￼′￼n

+
𝔼Xn∣Xn−1∼Qn [ ̂πn,ϵ(Xn) ∣ Xn−1] Ic′￼n<c′￼′￼n

𝔼X∣Xn−1∼P0 [ ̂πn,ϵ(Xn) ∣ Xn−1] + (c′￼′￼n − c′￼n)ϵ
≤ 1

̂pn
p1

Reject null at  to obtain a level  sequential 

test for .

τα = inf {n ≥ 1 : Rplug-in
n,ϵ ≥ 1/α} α

Hϵ,∞
0
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Simulations (Under the null)

Data is drawn from  and , 
the simple and the composite alternative to be  and 

 respectively. Our robust tests are safe, but the non-robust 
tests exhibit unstable and unreliable behaviour.

(1 − ϵR) × N(0,1) + ϵR × Cauchy(−1,10) ϵA = ϵR = 0.01
P0 = N(0,1), P1 = N(1,1)
𝒫1 = {N(μ,1) : μ ≠ 0}
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Simulations

Data is drawn from , 
 The growth rate of our robust tests increases as 

decreases.  As anticipated,  The growth rates for our robust tests based on 
simple and composite alternatives almost overlap.

(1 − ϵR) × N(1,1) + ϵR × Cauchy(−1,10)
ϵA = ϵR = 0.1,0.01,0.001. ϵ

(A) P0 = N(0,1), P1 = N(1,1) (B) P0 = N(0,1), 𝒫1 = {N(μ,1) : μ ≠ 0}
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Combining Robust Predictable 
Plug-in and Numeraire for 

Composite Nulls and Alternatives

20



Reverse Information Projection (RIPr)
RIPr of  onto  : “closest” element of  to .

For any null  and simple alternative , there always exists a unique and strictly 
positive e-variable  called the numeraire, such that for any e-variable  for , 

 . 

Define a measure  by defining its likelihood ratio .  This 

 is called the Reverse Information Projection (RIPr) of  onto . 
 

 

Q 𝒫 𝒫 Q

𝒫 Q
B* B 𝒫

𝔼Q[B/B*] ≤ 1

P*
dP*
dQ

:=
1

B*
P* Q 𝒫
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Composite Null ( ) vs Composite 
Alternative ( )

𝒫0
𝒫1

TV neighborhoods: 

Let  be some robust estimate of the density based on past 
observations, which belongs to the alternative. Let  be the reverse 
information projection (RIPr) of  on the null . 

                  .

Test Supermartingale:  

ℋϵ
i = ⋃

P∈𝒫i

{Q : dTV(P, Q) ≤ ϵ}, i = 0,1.

̂p1,n
̂P0,n

̂P1,n 𝒫0

̂πn,ϵ(x) = max{c′￼n, min{c′￼′￼n, ̂p1,n(x)/ ̂p0,n(x)}

RRIPr,plug-in
n,ϵ = RRIPr,plug-in

n−1,ϵ × B̂n,ϵ(Xn),

B̂n,ϵ(x) :=
̂πn,ϵ(Xn)

supP∈𝒫0 𝔼X∣Xn−1∼P[ ̂πn,ϵ(Xn) ∣ Xn−1] + (c′￼′￼n − c′￼n)ϵ
,  if c′￼n < c′￼′￼n,

1, otherwise. 
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Simulations (Under the null)

Data is drawn from  and 
. The null is . Our robust 

tests are safe, but the non-robust tests exhibit unstable and unreliable behavior.

(1 − ϵR) × N(0,1) + ϵR × Cauchy(−1,10)
ϵA = ϵR = 0.01 𝒫0 = {N(μ,1) : − 0/5 ≤ μ ≤ 0/5}
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Simulations

Data is drawn from , 
 .  The growth 

rate of our robust tests increases as decreases. The growth rates for our 
robust tests based on simple and composite alternatives almost overlap.

(1 − ϵR) × N(1,1) + ϵR × Cauchy(−1,10)
ϵA = ϵR = 0.1,0.01,0.001. 𝒫0 = {N(μ,1) : − 0/5 ≤ μ ≤ 0/5}

ϵ
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Simulations

Data is drawn from  (WITH NO CONTAMINATION) and 
. . Here, the 

growth rate of our robust tests approaches that of the non-robust test, as 
 decreases. The growth rates for our robust tests based on simple 

alternatives and composite alternatives almost overlap.

N(0,1)
P0 = N(1,1), P1 = N(0,1) 𝒫0 = {N(μ,1) : − 0/5 ≤ μ ≤ 0/5}

ϵ
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Summary
✦ By integrating the plug-in and RIPr techniques, we propose a    
robust method for testing composite nulls vs composite 
alternatives. 

✦ Growth rate of our tests approaches the optimal growth rates 
of the non-robust tests as .

✦ Our tests are inherently sequential, being valid at arbitrary 
data-dependent stopping times, but they are new even for fixed 
sample sizes, giving type-I error control without any regularity 
conditions.

✦ Simulations validate the theory and demonstrate excellent 
practical performance.

ϵ → 0
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THANK YOU
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