Detecting Distributional Differences in Labeled Sequences of Tropical Cyclone Satellite Imagery

Ann B. Lee Department of Statistics & Data Science Carnegie Mellon University (Joint work with Trey McNeely, Galen Vincent, Kim Wood, and Rafael Izbicki)

The Annals of Applied Statistics 2023, Vol. 17, No. 2, 1260–1284 https://doi.org/10.1214/22-AOAS1668 © Institute of Mathematical Statistics, 2023

DETECTING DISTRIBUTIONAL DIFFERENCES IN LABELED SEQUENCE DATA WITH APPLICATION TO TROPICAL CYCLONE SATELLITE **IMAGERY**

Trey McNeely (PhD 2022, CMU)

¹Department of Statistics and Data Science, Carnegie Mellon University, ^atreymcneely@gmail.com, ^bgalenbvincent@gmail.com, ^cannlee@andrew.cmu.edu ²Department of Geosciences, Mississippi State University, ^dkimberly.wood@msstate.edu ³Department of Statistics, Federal University of São Carlos, ^erafaelizbicki@gmail.com

BY TREY MCNEELY^{1,a}, GALEN VINCENT^{1,b}, KIMBERLY M. WOOD^{2,d}, RAFAEL IZBICKI^{3,e} AND ANN B. LEE^{1,c}

Both Methodology and Applied Relevance

- Motivating application:
 - To identify spatiotemporal patterns in tropical cyclone (TC) satellite imagery that lead up to an upcoming rapid intensity change event.
- Requires new methodology:
 - For detecting distributional differences between sequences of images

 $S_{t} = \{X_{t-T}, X_{t-T+1}, \dots, X_t\}$ preceding an event $(Y_t = 1)$ vs non-event $(Y_t = 0)$.

- The problem is difficult because the data are high-dimensional.
- The data $\{(S_{<t}, Y_t)\}_{t\geq 0}$ are also not ID because of strong temporal dependence.

Tropical Cyclones (TCs) are Rapidly Rotating Systems Develop over Warm Tropical Waters

satellite imagery (GOES) is critical to monitor these storms.

• Because TCs develop far from land-based observing networks, geostationary

HURRICANE STRUCTURE IN THE NORTHERN HEMISPHERE

Eye

Outflow cirrus shield

Warm rising air

Eye wall

Storm rotation COUNTERCLOCKWISE

Outflow Cold falling air Rain bands

Left: Edquard 2014 (95 kt; Category 2); Right: Nicole 2016 (47 kt; TS)

Spatio-Temporal Information in IR Imagery Underutilized Trajectory Forecasts vs. **TC Short-term Intensity Forecasts (24-hr)**

Hurricane DORIAN Model Intensity Guidance

Initialized at 18z Aug 29 2019

Levi Cowan - tropicaltidbits.com

Two Databases TC location & intensity

1. <u>HURDAT2</u>

- Hurricane best-track data
- 6-hr resolution (1979-2020)
- TC location, intensity

Two Databases TC location & intensity + GOES images

1. <u>HURDAT2</u>

- Hurricane best-track data
- 6-hr resolution (1979-2020)
- TC location, intensity
- MERGIR 2.
 - Geostationary satellite (GOES) imagery
 - 4-km, 30-min resolution
 - 2000-2020

Evolution of TC Convective Structure as "Structural Trajectories" S_{<t} of Interpretable Functions X_t

Evolution of TC Convective Structure as "Structural Trajectories" S_{<t} of Interpretable Functions X_t

of cont. functions (at 30 min time res). "Hovmöller diagram"

Main Questions as a Two-Sample Testing Problem

$$Y_t = \begin{cases} 1 & \text{if RI event at time } t, \\ 0 & \text{otherwise} \end{cases}$$
$$H_0: p(\mathbf{s}_{\leq t} | Y_t = 1) = p(\mathbf{s}_{\leq t} | Y_t = 0) \text{ for all } \mathbf{s}_{\leq t} \in \mathcal{S}, \text{ versus}$$
$$H_1: p(\mathbf{s}_{\leq t} | Y_t = 1) \neq p(\mathbf{s}_{\leq t} | Y_t = 0) \text{ for some } \mathbf{s}_{\leq t} \in \mathcal{S}.$$

Open the distribution of structural trajectories differ between the lead-up to a RI vs. non-RI event? (Statistical significance)

differ? (Scientific interpretability)

If there is a difference between the distributions, how do they

Main Questions as a Two-Sample Testing Problem

$$Y_t = \begin{cases} 1 & \text{if } \mathbf{F} \\ 0 & \text{oth} \end{cases}$$
$$H_0: p(\mathbf{s}_{< t} | Y_t = 1) = p(\mathbf{s}_{< t} \\ H_1: p(\mathbf{s}_{< t} | Y_t = 1) \neq p(\mathbf{s}_{< t} \end{pmatrix}$$

lead-up to a RI vs. non-RI event? (Statistical significance)

differ? (Scientific interpretability)

- RI event at time t, nerwise
- $_{t}|Y_{t} = 0$ for all $\mathbf{s}_{< t} \in \mathcal{S}$, versus $_{t}|Y_{t} = 0$ for some $\mathbf{s}_{< t} \in \mathcal{S}$.
- Opes the distribution of structural trajectories differ between the
- If there is a difference between the distributions, how do they

Why the Two-Sample Test is Challenging ...

$$H_0: p(\mathbf{s}_{
$$H_1: p(\mathbf{s}_{$$$$

- entire sequence $S_{<t}$ of functions
- - IID data \Rightarrow ``Dependent Identically Distributed'' (DID) sequence data 0

$Y_t = 0$ for all $\mathbf{s}_{< t} \in \mathcal{S}$, versus $Y_t = 0$ for some $\mathbf{s}_{< t} \in \mathcal{S}$.

The complexity of the data itself, with one observation representing an

$$\mathbf{S}_{< t} = \{\mathbf{X}_{t-T}, \mathbf{X}_{t-T+1}, \dots, \mathbf{X}_t\}$$

In the provided Bernstein Regions \mathbf{S}_{t} and sequences \mathbf{S}_{t} at nearby time points t

$$\{(\mathbf{S}_{< t}, Y_t)\}_{t \ge 0}$$

Two-Sample Test via Regression (HighDim IID data) [Freeman, Kim & Lee, MNRAS 2017; <u>Kim, Lee & Lei, EJS 2019</u>]

Suppose we have two samples:

$$\mathbf{S}_1^0,\ldots,\mathbf{S}_{n_0}^0\sim P_0$$

A two sample-test would ask wheth test the null hypothesis

$$H_0: p(\mathbf{s}|Y=0) = p(\mathbf{s}|Y=1)$$
 for all $\mathbf{s} \in \mathcal{S}$

and
$$\mathbf{S}_{1}^{1}, \dots, \mathbf{S}_{n_{1}}^{1} \sim P_{1}$$

A two sample-test would ask whether P_0 and P_1 are the same; i.e., it would

Two-Sample Test via Regression (HighDim IID data) [Freeman, Kim & Lee, MNRAS 2017; <u>Kim, Lee & Lei, EJS 2019</u>]

Suppose we have two samples:

$$\mathbf{S}_1^0,\ldots,\mathbf{S}_{n_0}^0\sim P_0$$

A two sample-test would ask whethetest the null hypothesis

$$H_0: p(\mathbf{s}|Y=0) = p(\mathbf{s}|Y=1)$$
 for all $\mathbf{s} \in \mathcal{S}$

By Bayes rule, this is equivalent to testing

$$H_0: \mathbb{P}(Y=1|\mathbf{S}=\mathbf{s}) = \mathbb{P}(Y=1))$$
 for all $\mathbf{s} \in \mathcal{S}$

and
$$\mathbf{S}_1^1, \dots, \mathbf{S}_{n_1}^1 \sim P_1$$

er P_0 and P_1 are the same; i.e., it would

Convert 2-sample testing to a regression problem

Our null and alternative hypotheses are

$$H_0: \mathbb{P}(Y=1|\mathbf{S}=\mathbf{s}) = \mathbb{P}(Y=1)$$
 for
 $H_1: \mathbb{P}(Y=1|\mathbf{S}=\mathbf{s}) \neq \mathbb{P}(Y=1)$ for

Define the regression function $m_{\text{post}}(\mathbf{s}) := \mathbb{P}(Y = 1 | \mathbf{S} = \mathbf{s}).$ Let $\widehat{m}(\mathbf{s})$ be an estimate of $m_{\text{post}}(\mathbf{s})$ based on train data $\mathcal{T} = \{(\mathbf{S}_i, Y_i)\}_{i=1}^n$. Let $\widehat{m}_{\text{prior}}(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i = 1)$ be an estimate of $m_{\text{prior}} := \mathbb{P}(Y = 1)$.

$$= \mathbb{P}(Y = 1) \text{ for all } \mathbf{s} \in \mathcal{S}$$

$$\neq \mathbb{P}(Y = 1) \text{ for some } \mathbf{s} \in \mathcal{S}$$

Convert 2-sample testing to a regression problem

Our null and alternative hypotheses are

 $H_0: \mathbb{P}(Y=1|\mathbf{S}=\mathbf{s})$ $H_1: \mathbb{P}(Y=1|\mathbf{S}=\mathbf{s})$

Define the regression function $m_{\text{post}}(\mathbf{s}) := \mathbb{P}(Y = 1 | \mathbf{S} = \mathbf{s}).$ Let $\widehat{m}(\mathbf{s})$ be an estimate of $m_{\text{post}}(\mathbf{s})$ based on train data $\mathcal{T} = \{(\mathbf{S}_i, Y_i)\}_{i=1}^n$. Let $\widehat{m}_{\text{prior}}(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^n I(Y_i = 1)$ be an estimate of $m_{\text{prior}} := \mathbb{P}(Y = 1).$

Define the "local posterior difference" (LPD) at evaluation points $\mathcal{V} \subset \mathcal{S}$:

 $\lambda(\mathbf{s}) :=$

Our global test statistic is

$$= \mathbb{P}(Y = 1) \text{ for all } \mathbf{s} \in \mathcal{S}$$

 $H_1: \mathbb{P}(Y=1|\mathbf{S}=\mathbf{s}) \neq \mathbb{P}(Y=1) \text{ for some } \mathbf{s} \in \mathcal{S}$

$$\widehat{m}_{\text{post}}(\mathbf{s}) - \widehat{m}_{\text{prior}}$$

$$= \frac{1}{|\mathcal{V}|} \sum_{\mathbf{s} \in \mathcal{V}} \lambda(\mathbf{s})^2$$

Can Detect Distributional Differences in Galaxy Images for HighSF and LowSF Samples [Freeman, Kim & Lee, MNRAS 2017]

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional diffusion map. Figure adapted from [49].

Can Detect Distributional Differences in Galaxy Images for HighSF and LowSF Samples [Freeman, Kim & Lee, MNRAS 2017]

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional diffusion map. Figure adapted from [49].

But these are I.I.D data and not dependent sequence data...

In Settings A and B: Labels Y are conditionally independent given S 0 \Rightarrow Labels Y are exchangeable under H₀. A permutation test would be valid [Kim et al 2019]

Dependence Settings for Labeled Sequence Data

(c) Setting C: Y_t conditionally dependent on Y_{t-1} given $S_{< t}$; $\mathbf{S}_{<t}$ and Y_t are each autocorrelated.

TC Data are Not Exchangeable.

(a) Setting A: $\{(\mathbf{S}_{< t}, Y_t)\}_{t>0}$ with no temporal dependence between pairs $(\mathbf{S}_{< t}, Y_t)$ for different t.

In TC data, we have auto-correlation in Y which is inherent or governed by unobserved quantities (Setting C) \Rightarrow Permutation tests are not valid.

(b) Setting B: Y_t conditionally independent of Y_{t-1} given $S_{< t}$; $S_{< t}$ is autocorrelated.

(c) Setting C: Y_t conditionally dependent on Y_{t-1} given $\mathbf{S}_{< t}$; $S_{<t}$ and Y_t are each autocorrelated.

Permutation Test

For permutation test:

- To estimate the null distribution of λ : - Permute original labels $\{Y_t\}_{t\in\mathcal{T}_1}$ – Recompute test statistic λ

• Estimate $m_{\text{post}}(\mathbf{s}) := \mathbb{P}(Y_t = 1 | \mathbf{S}_{< t} = \mathbf{s})$ using labeled train data $\{(\mathbf{S}_{< t}, Y_t)\}_{t \in \mathcal{T}_1}$ • Compute test statistic $\lambda = \sum_{\mathbf{s} \in \mathcal{V}} \lambda^2(\mathbf{s})$, where $\lambda(\mathbf{s}) = \widehat{m}_{\text{post}}(\mathbf{s}) - \widehat{m}_{\text{prior}}$

Permutation Test \Rightarrow Markov Chain (MC) Bootstrap Test

For permutation test:

- Estimate $m_{\text{post}}(\mathbf{s}) := \mathbb{P}(Y_t = 1 | \mathbf{S}_{< t} = \mathbf{s})$ using labeled train data $\{(\mathbf{S}_{< t}, Y_t)\}_{t \in \mathcal{T}_1}$ • Compute test statistic $\lambda = \sum_{\mathbf{s} \in \mathcal{V}} \lambda^2(\mathbf{s})$, where $\lambda(\mathbf{s}) = \hat{m}_{\text{post}}(\mathbf{s}) - \hat{m}_{\text{prior}}$ • To estimate the null distribution of λ :
- Permute original labels $\{Y_t\}_{t \in \mathcal{T}_1}$ – Recompute test statistic λ

Instead, use train data $\{Y_t\}_{t\in\mathcal{T}}$ $m_{\mathrm{seq}}(Y_{t-1},\ldots,Y_{t-t})$

Draw new labels

 $\widetilde{Y}_t \sim \operatorname{Binom}(\widehat{\mathbb{P}}(Y_t =$

$$T_2$$
 and regression method to estimate
 $K_k) := \mathbb{P}(Y_t = 1 | Y_{t-1}, \dots, Y_{t-k})$

$$=1|Y_{t-1},\ldots,Y_{t-k}))$$
 for $t\in\mathcal{T}_1$

TC train data: High-res GOES images back to 2000 (~400 TCs to fit regression of Y on S). However, intensity data goes back to 1979 (>1000 TCs to fit MC on labels)

Sample sizes: Data set summary for each category: (i) labeled sequences $(\mathbf{S}_{< t}, Y_t)$ used in training, (ii) unlabeled test sequences $S_{<t}$ and (iii) synoptic labels Y_t used when complete trajectories are not needed

NAL

(i)	Training Data	
	All Sequences	47,502
	RI Sequences	7015
	RW Sequences	5878
	Unique TCs	209
(ii)	Test Data	
	All Sequences	28,368
	RI Sequences	3965
	RW Sequences	3167
	Unique TCs	125
(iii)	Synoptic Labels	
	All Labels	14,683
	RI Labels	1850
	RW Labels	1643
	Unique TCs	532

TABLE 1

ENP	Total	Year Range	Years
31,549	79,051		
6742	13,757		
7298	13,176		
185	394	2000–2012	13
32,817	61,185		
6386	10,351		
7182	10,349		
152	277	2013-2020	8
15,274	29,957		
2462	4312		
2534	4177		
589	1121	1979–2012	34

Theorem: MC Bootstrap Test is Valid Asymptotically

Assume:

- 1. $\{(\mathbf{S}_{< t}, Y_t)\}_{t>0}$ is a stationary sequence
- 2. $\{(\mathbf{S}_{< t}, Y_t)\}_{t>0}$ satisfies the DAG of Setting C
- 3. $\widehat{m}_{\text{post}}$ is a continuous function of the train data $\mathcal{D} := \{(\mathbf{S}_{< t}, Y_t)\}_{t \in \mathcal{T}_1}$
- 4. the marginal distribution estimator is consistent; that is, the generator of $\{Y_t^0\}_{t\in\mathcal{T}_1}$ converges to the true generating process of $\{Y_t\}_{t\in\mathcal{T}_1}$ under H_0 ,

 $\mathrm{G}_{\widehat{\mathbf{p}}_{t:t}}$

$$\xrightarrow[t_2 \to \infty]{\text{Dist}} G^*$$

Theorem: MC Bootstrap Test is Valid Asymptotically

THEOREM 1. Assume 1, 2, 3 and 4. Under the null hypothesis, $\lambda(\mathcal{D}_0^{t_2})$

It follows from Theorem 1 that type I error is controlled asymptotically:

 $+\sum_{b=1}^{B} \mathbb{I}\left(\lambda(\mathcal{D}^{(b)}) > \lambda(\mathcal{D})\right)$ $\lim_{t_2 \to \infty} \lim_{B \to \infty} \mathbb{P}\left(\widehat{p}_B^{t_2}(\mathcal{D}) \le \alpha\right) = \alpha.$

$$\widehat{p}_B^{t_2}(\mathcal{D}) := \frac{1}{B+1} \left(1 \right)$$

COROLLARY 1 (Type I error control). Let be the Monte Carlo p-value for H_0 , where $\mathcal{D}^{(1)}, \ldots, \mathcal{D}^{(B)} \stackrel{\text{IID}}{\sim} \mathcal{D}_0^{t_2}$. Assume that Assumptions 1, 2, 3 and 4 hold. Then, under the null hypothesis, for any $0 < \alpha < 1$,

$$\xrightarrow{Dist}_{t_2 \longrightarrow \infty} \lambda(\mathcal{D})$$

Empirical Results for Synthetic Data Support Our Approach

(Right) MC bootstrap test still valid (Left) Permutation test breaks under Setting C.

Setting C Setting B

<u>TC Analysis by Basin</u>: Reject $H_0:p(s_{<t}|Y_t=1)=p(s_{<t}|Y_t=0)$. Now what?

How do the distributions of the structural trajectories s_{<t} differ?

<u>TC Analysis by Basin</u>: Reject $H_0:p(s_{t}|Y_t=1)=p(s_{t}|Y_t=0)$. Now what?

How do the distributions of the structural trajectories s_{<t} differ?

$$\lambda(\mathbf{s}) = \widehat{\mathbb{P}}(Y_t = 1 | \mathbf{S}_{< t} = \mathbf{s}) - \widehat{\mathbb{P}}(Y_t = 1)$$

Use contributions to test statistic as a local diagnostic. "Local posterior difference" (LPD):

Positive LPD identifies trajectories with "high chance of RI" **Negative LPD identifies trajectories with ``low chance of RI**"

$$\lambda(\mathbf{s}) = \widehat{\mathbb{P}}(Y_t = 1 | \mathbf{S}_{< t} = \mathbf{s}) - \widehat{\mathbb{P}}(Y_t = 1)$$

LPDs can also be used to track development of specific TCs Analysis by basin \Rightarrow <u>Case study</u> of Hurricane Jose (2017)

- We interpret high LPD as a TC which is "convectively primed" for RI.
- which our model does not account for.

Hurricane Jose was subject to high vertical wind shear (cause of RW) near Sept 9,

Summary: Detecting Distributional Differences

 $H_0: p(\mathbf{s}_{<t} | Y_t = 1) = p(\mathbf{s}_{<t} | Y_t = 0)$

- interpretable diagnostics. Two key ideas:
 - 0 regression method;
 - \odot guarantees asymptotic validity

 \oslash We have proposed a two-sample test for D.I.D sequence data $\{(\mathbf{S}_{< t}, Y_t)\}_{t \ge 0}$ with

a test statistic based on the posterior difference p(Y=1|s)-p(s), estimated via a suitable

a bootstrap test where we estimate the marginal distribution of $\{Y_t\}_{t\geq 0}$; consistency

Potential Extensions and Future Work

- Second Extend inputs S to include other functional features and data sources.
- 0 posterior differences P(Y=1|s,z)-P(Y=1|z).

Can extend to a conditional test H0: p(s|Y=1,z) = P(z|Y=0,z) by considering the

Acknowledgments

Galen Vincent (CMU, now Maxar) Or Kimberly M Wood (MSU, Geosciences) Or Rafael Izbicki (UFSCar)

This work is funded in part by NSF DMS-2053804 and NSF PHY-2020295.

- Trey McNeely (CMU, now Microsoft Research)

