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Both Methodology and Applied Relevance

* Motivating application:

* Jo identify spatiotemporal patterns in tropical cyclone (TC) satellite imagery
that lead up to an upcoming rapid intensity change event.

* Requires new methodology:
* For detecting distributional differences between sequences of images
S.t={Xi-1, Xt-T+1, ..., Xi} preceding an event (Yi=1) vs non-event (Yi=0).
* The problem is difficult because the data are high-dimensional.

* The data {(S«t,Y1)}i=0 are also not IID because of strong temporal dependence.
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Tropical Cyclones (TCs) are Rapidly Rotating Systems

Develop over Warm Tropical Waters

HURRICANE STRUCTU R

Eye wall

Storm rotation
COUNTERCLOCKWISE Ra'” bands

Warm rising air —_ |
q/ Cold falling air
n . . ".
.L—;‘ | \ /f
[

Sbityopycal
Ridge

——— —_—

drop scal
Depression
’."

. a
OQ

QDO “.' l

‘,:7'./\ g - ' .
23 A Tropical \
o e e SR Disturbance

‘“‘D :
,v

 Because TCs develop far from Iand based observmg networks, geostatlonary
satellite imagery (GOES) is critical to monitor these storms.
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Spatio-Temporal Information in IR Imagery Underutilized
Trajectory Forecasts vs. 1C Short-term Intensity Forecasts (24-hr)

Hurricane DORIAN Model Intensity Guidance
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Two Databases

TC location & intensity e

1. HURDAT?Z2 present Time

e Hurricane best-track data

e 6-hr resolution (1979-2020)

e TC location, intensity



Two Databases

Rapid Change?/-

TC location & intensity + GOES images EVASEA
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1. HURDAT?Z2 present Time

e Hurricane best-track data
e 6-hr resolution (1979-2020)
e TC location, intensity

2. MERGIR

e (Geostationary satellite (GOES) imagery

e 4-km, 30-min resolution

« 2000-2020



Evolution of TC Convective Structure

as “Structural Trajectories” S« of Interpretable Functions X
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Evolution of TC Convective Structure

as “Structural Trajectories” S« of Interpretable Functions X
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Main Questions as a Two-Sample Testing Problem

1 1if RI event at time ¢,

0 otherwise

Hy :p(s<|Y; =1) = p(s«|Y; = 0) for all s.; € S, versus
Hy:p(s<|Y; = 1) #£ p(s«|Y; = 0) for some s.; € S.

@ Does the distribution of structural trajectories differ between the
lead-up to a Rl vs. non-RI event? (Statistical signiticance)
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Main Questions as a Two-Sample Testing Problem

1 1if RI event at time ¢,

0 otherwise

Hy :p(s<|Y; =1) = p(s«|Y; = 0) for all s.; € S, versus
Hy:p(s<|Y; = 1) #£ p(s«|Y; = 0) for some s.; € S.

@ Does the distribution of structural trajectories differ between the
lead-up to a Rl vs. non-RI event? (Statistical signiticance)

@ It there is a difference between the distributions, how do they
differ? (Scientific interpretability)
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Why the Two-Sample Test is Challenging ...

Hy i p(s<t|Yy = 1) =p(s<|Y; =0) for all s.; € S, versus

Hy:p(s|Yy = 1) # p(s<¢|Y; = 0) for some s; € S.

@ The complexity of the data itselt, with one observation representing an
entire sequence S of functions

@ Dependence between labels Y; (and sequences S<) at nearby time points t

@ |ID data = "Dependent Identically Distributed” (DID) sequence data

{(S<t, Y1) h>0

13



Two-Sample Test via Regression (HighDim IID data)

[Freeman, Kim & Lee, MNRAS 2017; Kim, Lee & Lei, EJS 2019]

Suppose we have two samples:

S0,...,8" ~ P and S.....S. ~P

n

A two sample-test would ask whether Fy and P, are the same; i.e., it would
test the null hypothesis

Hy:p(s|lY =0)=p(s|]Y =1) fforallse S

14


https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full

Two-Sample Test via Regression (HighDim IID data)

[Freeman, Kim & Lee, MNRAS 2017; Kim, Lee & Lei, EJS 2019]

Suppose we have two samples:

S0,...,8" ~ P and S.....S. ~P

n

A two sample-test would ask whether Fy and P, are the same; i.e., it would
test the null hypothesis

Hy:p(s|lY =0)=p(s|]Y =1) fforallse S

1

By Bayes rule, this is equivalent to testing

Hy:P(Y =1S=s)=P(Y =1))forallse S
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https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full

Convert 2-sample testing to a regression problem

Our null and alternative hypotheses are

Hy: P(Y =1S=5s) = P(Y

= ) forallse S
Hy: P(Y=1|S=s) # PY

) for somes e S

1
1

Define the regression function myes(s) := P(Y = 1|S = s).
Let m(s) be an estimate of my.(s) based on train data T = {(S;,Y;) }l-,.
Let Mprior(s) = = > o I(Y; = 1) be an estimate of myi; := P(Y = 1).

S n

16



Convert 2-sample testing to a regression problem

Our null and alternative hypotheses are

Hy: P(Y =1|S=5s) = P(Y
Hy: P(Y=1S=s) # PY

) forallse S

) for somes e S

1
1

Define the regression function myes(s) := P(Y = 1|S = s).

S

Let m(s) be an estimate of my.(s) based on train data T = {(S;,Y;) }l-,.
Let Mprior(S) = % - I(Y; = 1) be an estimate of my,i, := P(Y = 1).

41=1

Define the “local posterior difference” (LPD) at evaluation points V C S:
)\(S) F = mpost (S) _ mprior

Our global test statistic is




Can Detect Distributional Ditterences in Galaxy Images
for HighSF and LowSF Samples [Freeman, Kim & Lee, MNRAS 2017]

JHighSFR > JLowSFR

Local significant differences

Decision

f(x)=g(x)
= f(x)>g(x)
= f(x)<g(x)

fHighSFR < fLowSFR

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the

blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from [49).

18



Can Detect Distributional Ditterences in Galaxy Images
for HighSF and LowSF Samples [Freeman, Kim & Lee, MNRAS 2017]

JHighSFR > JLowSFR

Local significant differences

ecision

fHighSFR < fLowSFR

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the

blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from [49).

But these are |.|.D data and net dependent sequence data...



Dependence Settings for Labeled Sequence Data

S<t — {Xt—T7 Xt—T—|—17 I 7Xt}

'\

|.1.D pairs Y’s conditionally independent

(a) Setting A: {(S<¢,Y:)}r>0 (b) Setting B: Y; conditionally | (c) Setting C: Y; conditionally
with no temporal dependence independent of Y;_1 given | dependenton Y;_ 1 given S_¢;
between pairs (S<¢,Y:) for S—¢; St is autocorrelated. S+ and Y; are each autocor-

different ¢. related.

@ In Settings A and B: Labels Y are conditionally independent given S

= Labels Y are exchangeable under Hp. A permutation test would be valid [Kim et al 2019]

20



TC Data are Not Exchangeable.

S<t — {Xt—T7 Xt—T—|—17 I 7Xt}

(a) Setting A: {(S<¢,Y:)}r>0 (b) Setting B: Y; conditionally | (c) Setting C: Y; conditionally
with no temporal dependence independent of Y;_1 given| dependenton Y;_ 1 given S_¢;
between pairs (S<¢,Y:) for S—¢; St is autocorrelated. S+ and Y; are each autocor-

different ¢. related.

@ In TC data, we have auto-correlation in Y which is innherent or governed by
unobserved quantities (Setting C) = Permutation tests are not valid.

2



Permutation Test

For permutation test:

o Estimate myqst(s) := P(Y; = 1|S.; = s) using labeled train data {(S<¢, Y3) }+er;

e Compute test statistic A = >y, A%(s), where A(8) = Mpost(S) — Mprior

e To estimate the null distribution of A:
— Permute original labels {Y; }ic7
— Recompute test statistic A

22



Permutation Test = Markov Chain (MC) Bootstrap Test

For permutation test:
o Estimate myqst(s) := P(Y; = 1|S.; = s) using labeled train data {(S<¢, Y3) }+er;
o Compute test statistic A =) __,, A\(s), where \(s) = Mpost (S) — Mprior

e To estimate the null distribution of A:
— Permute original labels {Y; }ic7
— Recompute test statistic A

Instead, use train data {Y;};c7; and regression method to estimate

mseq(Y;—la e 7}/75—16) = ]P)(Yt — 1|Yt—17 e 7)/1—5—16)

Draw new labels

Y, ~ Binom(P(Y; = 1|Y,_1,...,Y,_})) for t €T




TC train data: High-res GOES images back to 2000 (~400 TCs to fit regression of Y
on S). However, intensity data goes back to 1979 (>1000 TCs to fit MC on labels)

TABLE 1

Sample sizes: Data set summary for each category: (i) labeled sequences (S<¢, Yr)
used in training, (ii) unlabeled test sequences S <y and (iii) synoptic labels Y; used

when complete trajectories are not needed

Training Data
All Sequences
RI Sequences
RW Sequences
Unique TCs

Test Data
All Sequences
RI Sequences

RW Sequences
Unique TCs

Synoptic Labels
All Labels

RI Labels

RW Labels
Unique TCs

NAL

47,502
7015
5878

209

28,368
3965
3167

125

14,683
1850
1643

532

ENP

31,549
6742
7298

185

32,817
6386
7182

152

15,274
2462
2534

589

Total

79,051
13,757
13,1776

394

61,185
10,351
10,349

277

29,957
4312
4177

1121

Year Range

2000-2012

2013-2020

1979-2012

Years

13
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Theorem: MC Bootstrap Test is Valid Asymptotically

Assume:
1. {(S<, Y:) bi>0 is a stationary sequence
2. {(S<¢, V) }i>o satisfies the DAG of Setting C
3. Mpost 18 @ continuous function of the train data D := {(S<¢, Y}) hier;

4. the marginal distribution estimator is consistent; that is, the generator of
{Y},e7 converges to the true generating process of {Y;};c7 under Hy,
Dist o

Lo — 00

GﬁtQ
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Theorem: MC Bootstrap Test is Valid Asymptotically

THEOREM 1. Assume 1, 2, 3 and 4. Under the null hypothesis,
Dist

to—>00

A(Dy)

> A(D)

It follows from Theorem 1 that type 1 error 1s controlled asymptotically:

COROLLARY 1 (Type I error control). Let

B
P (D)= 1+ 1 (1 +3 1 (AD) > )\(D)))
b=1

be the Monte Carlo p-value for Hg, where DL .. DB 51 D62. Assume that Assumptions

1, 2, 3 and 4 hold. Then, under the null hypothesis, for any 0 < a < 1,
lim lim P(pg(D)<a)=a

to—o0 B— 00




Empirical Results for Synthetic Data Support Our Approach

SettingA ® SettingB @ Setting C

Permutation Test MC Bootstrap Test
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(Left) Permutation test breaks under Setting C.  (Right) MC bootstrap test still valid
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TC Analysis by Basin: Reject Ho:p(s<t|Yi=1)=p(s<|Yi=0). Now what?

How do the distributions of the structural trajectories s« differ?

28



TC Analysis by Basin: Reject Ho:p(s<i]Yi=1)=p(s<|Yi=0). Now what?

How do the distributions of the structural trajectories s« differ?

* Use contributions to test statistic as a local diagnostic. “Local posterior difference” (LPD):

AN A

A(s) = B(Y; = 1S, = 5) — B(Y; = 1)

(i)
Local Posterior Difference l “
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Positive LPD identifies trajectories with "high chance of RI”

Negative LPD identifies trajectories with low chance of RI”

AN S

A(s) = B(Y; = 1S, = ) — B(Y; = 1)

(1)

te Il cat1o | [ catas |

Local Posterior Difference l
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LPDs can also be used to track development of specific TCs
Analysis by basin = Case study of Hurricane Jose (2017)
(ii)

Temp.
(deg C)
30

Jose [2017]
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N
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-60
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-90

0 100 200 300 400 35 50 65 80 95 110 125 140 155
Radius (km) Intensity (kt)

* We interpret high LPD as a TC which is “convectively primed” for Rl.

 Hurricane Jose was subject to high vertical wind shear (cause of RW) near Sept 9,
which our model does not account for.
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Summary: Detecting Distributional Difterences

11O CIGIORNG; 350

@ We have proposed a two-sample test for D.I.D sequence data {(S<,Yi)}h=0 with
interpretable diagnostics. Two key ideas:

@ a test statistic based on the posterior difference p(Y=1ls)-p(s), estimated via a suitable
regression method,;

@ a bootstrap test where we estimate the marginal distribution of {Yi-0 ; consistency
guarantees asymptotic validity

32



Potential Extensions and Future Work

@ Extend inputs S to include other functional features and data sources.

@ Can extend to a conditional test HO: p(slY=1,z) = P(zIY=0,z) by considering the
posterior differences P(Y=1ls,z)-P(Y=1lz).
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