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Both Methodology and Applied Relevance

• Motivating application:


• To identify spatiotemporal patterns in tropical cyclone (TC) satellite imagery 
that lead up to an upcoming rapid intensity change event.


• Requires new methodology:


• For detecting distributional differences between sequences of images 


S<t={Xt-T, Xt-T+1, …, Xt} preceding an event (Yt=1) vs non-event (Yt=0).


• The problem is difficult because the data are high-dimensional. 


• The data {(S<t,Yt)}t≥0 are also not IID because of strong temporal dependence.
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Tropical Cyclones (TCs) are Rapidly Rotating Systems
Develop over Warm Tropical Waters

• Because TCs develop far from land-based observing networks, geostationary 
satellite imagery (GOES) is critical to monitor these storms.
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Left: Edouard 2014 (95 kt; Category 2); Right: Nicole 2016 (47 kt; TS)   
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Spatio-Temporal Information in IR Imagery Underutilized
Trajectory Forecasts vs. TC Short-term Intensity Forecasts (24-hr)
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“RI event” = increase in wind 
speed of ≥25 knots in 24 hrs 



Two Databases
TC location & intensity
1. HURDAT2


• Hurricane best-track data


• 6-hr resolution (1979-2020)


• TC location, intensity


2. MERGIR


• Geostationary satellite (GOES) imagery


• 4-km, 30-min resolution


• 2000-2020
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Two Databases
TC location & intensity + GOES images 
1. HURDAT2


• Hurricane best-track data


• 6-hr resolution (1979-2020)


• TC location, intensity


2. MERGIR


• Geostationary satellite (GOES) imagery


• 4-km, 30-min resolution


• 2000-2020
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Left: Edouard (95 kt; Category 2); Right: Nicole (47 kt; TS)   



Evolution of TC Convective Structure
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as “Structural Trajectories” S<t of Interpretable Functions Xt



Evolution of TC Convective Structure

• c
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Structural trajectory is a 24h sequence 
of cont. functions (at 30 min time res). 
“Hovmöller diagram”

as “Structural Trajectories” S<t of Interpretable Functions Xt



Main Questions as a Two-Sample Testing Problem

Does the distribution of structural trajectories differ between the 
lead-up to a RI vs. non-RI event? (Statistical significance) 

If there is a difference between the distributions, how do they 
differ? (Scientific interpretability)
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Main Questions as a Two-Sample Testing Problem

Does the distribution of structural trajectories differ between the 
lead-up to a RI vs. non-RI event? (Statistical significance) 

If there is a difference between the distributions, how do they 
differ? (Scientific interpretability)
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Why the Two-Sample Test is Challenging …

The complexity of the data itself, with one observation representing an 
entire sequence S<t of functions 

Dependence between labels Yt (and sequences S<t) at nearby time points t  

IID data ⇒ ``Dependent Identically Distributed’’ (DID) sequence data
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Two-Sample Test via Regression (HighDim IID data) 
[Freeman, Kim & Lee, MNRAS 2017; Kim, Lee & Lei, EJS 2019]
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https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full


Two-Sample Test via Regression (HighDim IID data) 
[Freeman, Kim & Lee, MNRAS 2017; Kim, Lee & Lei, EJS 2019]
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https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full


Convert 2-sample testing to a regression problem
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Convert 2-sample testing to a regression problem
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Can Detect Distributional Differences in Galaxy Images 
for HighSF and LowSF Samples [Freeman, Kim & Lee, MNRAS 2017]
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Can Detect Distributional Differences in Galaxy Images 
for HighSF and LowSF Samples [Freeman, Kim & Lee, MNRAS 2017]

19But these are I.I.D data and not dependent sequence data… 



Dependence Settings  for Labeled Sequence Data

In Settings A and B: Labels Y are conditionally independent given S 

⇒ Labels Y are exchangeable under H0. A permutation test would be valid [Kim et al 2019]
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I.I.D pairs Y’s conditionally independent



TC Data are Not Exchangeable. 

In TC data, we have auto-correlation in Y which is inherent or governed by 
unobserved quantities (Setting C) ⇒ Permutation tests are not valid.
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Permutation Test  ⇒ Markov Chain (MC) Bootstrap 
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Permutation Test  ⇒ Markov Chain (MC) Bootstrap Test
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TC train data: High-res GOES images back to 2000 (~400 TCs to fit regression of Y 
on S). However, intensity data goes back to 1979 (>1000 TCs to fit MC on labels)
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Theorem: MC Bootstrap Test is Valid Asymptotically
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Theorem: MC Bootstrap Test is Valid Asymptotically
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Empirical Results for Synthetic Data Support Our Approach
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(Left) Permutation test breaks under Setting C. (Right) MC bootstrap test still valid



TC Analysis by Basin: Reject H0:p(s<t|Yt=1)=p(s<t|Yt=0). Now what?
How do the distributions of the structural trajectories s<t differ?
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TC Analysis by Basin: Reject H0:p(s<t|Yt=1)=p(s<t|Yt=0). Now what?
How do the distributions of the structural trajectories s<t differ?
• Use contributions to test statistic as a local diagnostic. “Local posterior difference” (LPD):
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Positive LPD  identifies trajectories with ``high chance of RI’’
Negative LPD identifies trajectories with ``low chance of RI’’
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LPDs can also be used to track development of specific TCs
Analysis by basin ⇒  Case study of Hurricane Jose (2017)
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• We interpret high LPD as a TC which is “convectively primed” for RI. 


• Hurricane Jose was subject to high vertical wind shear (cause of RW) near Sept 9, 
which our model does not account for. 



We have proposed a two-sample test for D.I.D sequence data {(S<t,Yt)}t≥0 with 
interpretable diagnostics. Two key ideas: 

a test statistic based on the posterior difference p(Y=1|s)-p(s), estimated via a suitable 
regression method; 

a bootstrap test where we estimate the marginal distribution of {Yt}t≥0 ; consistency 
guarantees asymptotic validity

Summary: Detecting Distributional Differences
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Extend inputs S to include other functional features and data sources. 

Can extend to a conditional test H0: p(s|Y=1,z) = P(z|Y=0,z) by considering the 
posterior differences P(Y=1|s,z)-P(Y=1|z).

Potential Extensions and Future Work
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