Geometry of the space of phylogenetic trees and their limiting behaviors

Jisu KIM

Carnege Mellon University

Jan 25, 2017

Construction of the space of trees

Geometry of the space of trees

Limiting behaviors of Fréchet Means

Reference

A metric tree is a labeled tree with lengths on interior edges.

Lemma

([Billera et al., 2001])

- An m-tree is a tree(a connected graph with no circuits) with a root(distinguished vertex), and m leaves(vertices of degree 1), labeled from 1 to m.
- An edge is interior if it is not connected to a leaf.
- A metric m-tree is an m-tree with positive lengths on all interior edges.

We place an edge directly above the root with the corresponding leaf labeled with 0.

Figure 6: Three pictures of the same tree

The same tree can be embedded differently.

Figure 6: Three pictures of the same tree

Two trees sharing the same combinatorial structure but having leaves labeled differently can be different.

Figure 7: Different trees

Trees with the same combinatorics form an orthant.

- Consider a tree T, with interior edges e₁, ..., e_r of lengths l₁, ..., l_r respectively. The vector (l₁, ..., l_r) specifies a point in the positive open orthant (0, ∞)^r.
- Points on the boundary of the orthant (length vectors with at least one coordinate equal to zero) correspond to metric *n*-trees which are obtained from *T* by shrinking some interior edges of *T* to 0.

• Each point $\in [0,\infty)^r$ corresponds to a unique metric *n*-tree.

Trees with the same combinatorics form an orthant.

Figure 8: The 2-dimensional quadrant corresponding to a metric 4-tree

Trees with the same combinatorics form an orthant.

- ► A binary tree has the maximal possible number of interior edges(m - 2), and thus determines the largest possible dimensional orthant (m - 2)
- The orthant corresponding to non-binary tree appears as a boundary face of at least 3 orthants corresponding to binary trees
- The origin of each orthant corresponds to the tree with no interior edges

We construct the space T_m by taking one (m-2)-dimensional orthant for each possible binary trees, and gluing them together along their common faces.

Figure 9: T₃

We construct the space T_m by taking one (m-2)-dimensional orthant for each possible binary trees, and gluing them together along their common faces.

Figure 14: T₄

Construction of the space of trees

Geometry of the space of trees

Limiting behaviors of Fréchet Means

Reference

Geodesic is the shortest path.

Definition

A geodesic from $x \in X$ to $y \in X$ is a map $c : [0, I] \subset \mathbb{R} \to X$ such that c(0) = x, c(I) = y and $\forall t, t' \in [0, I]$, d(c(t), c(t')) = |t - t'|A geodesic segment from x to y is [x, y] = c([0, I]) CAT(0) is the generalization of non-positive curvature.

Definition

X is said to be CAT(0) if the following is true: $\forall a, b, c \in X$ with $d_1 = d(b, c)$, $d_2 = d(a, c)$ and $d_3 = d(a, b)$, form a "comparison triangle" in the Euclidean plane with vertices a', b' and c'with side length $d_1 = d(b', c')$, $d_2 = d(a', c')$ and $d_3 = d(a', b')$. If $x \in [a, b]$, find $x' \in [a', b']$ with d(a, x) = d(a', x'). Then $d(x, c) \leq d(x', c')$.

Figure 16: Comparison triangle

The space of trees has nonpositive curvature.

Lemma ([Billera et al., 2001] Lem 4.1) T_m is a CAT(0) space.

Nonpositive curvature space has unique geodesic.

• ([Bridson and Häfliger, 2011] Prop II .1.4) T_m being CAT(0) implies that there exists unique geodesic segment connecting any two points of T_m .

Construction of the space of trees

Geometry of the space of trees

Limiting behaviors of Fréchet Means

Reference

Fréchet mean is a generalization of average in metric spaces.

Definition

Given a probability measure μ on a tree space \mathcal{T}_m , its Fréchet mean \mathcal{T}^* is

$$\mathcal{T}^* = \operatorname*{arg\,min}_{t\in\mathcal{T}_m} \int_{\mathcal{T}_m} d(t,T)^2 d\mu(T).$$

Our goal is to characterize the limiting distribution of the sample Fréchet mean \hat{T} .

For a collection of trees $T_1, \ldots, T_n \in \mathcal{T}_m$, the sample Fréchet mean $\hat{\mathcal{T}}$ is the Fréchet mean on empirical measure, i.e.

$$\hat{T} = \operatorname*{arg\,min}_{t\in\mathcal{T}_m}\sum_{i=1}^n d(t,T_i)^2.$$

• We characterize the limiting distribution $\sqrt{n}(\hat{T} - T^*)$.

The log map is the generalisation of the inverse of the exponential map on a Riemannian manifold.

Definition

([Barden et al., 2014]) For a tree T^* in top dimensional orthant in \mathcal{T}_m , the log map $\log_{T^*} : \mathcal{T}_m \to \mathbb{R}^{m-2}$ at T^* takes the form

$$\log_{T^*}(T) = d(T^*, T)v_{T^*}(T),$$

where $v_{T^*}(T)$ is a unit vector at T^* along the geodesic from T^* to T.

► This is well-defined since T_m being CAT(0) implies that the geodesic is unique.

The modified log map adjusts the log map to originate from the base tree.

Definition

([Barden et al., 2014]) For a tree T^* in top dimensional orthant in \mathcal{T}_m , the modified log map $\Phi_{T^*} : \mathcal{T}_m \to \mathbb{R}^{m-2}$ at T^* takes the form

$$\Phi_{T^*}(T) = \log_{T^*}(T) + t^*,$$

for t^* the coordinates in \mathbb{R}^{m-2} of T^* 's edge lengths.

The Fréchet mean of tree space is the average on the log space.

Lemma

([Barden et al., 2014], Lemma 3) Assume that the Fréchet mean T^* of μ lies on a top dimensional orthant. Then T^* is characterized as

$$\int_{\mathcal{T}_m} \Phi_{\mathcal{T}^*}(\mathcal{T}) d\mu(\mathcal{T}) = \mathcal{T}^*$$

The limiting distribution of the sample Fréchet mean is Gaussian.

Theorem

([Barden et al., 2014], Theorem 2) Let μ be a probability measure on T_m with finite Fréchet function and with Fréchet mean T^* lying in a top-dimensional orthant. Assume that $\mu(\mathcal{D}) = 0$, where \mathcal{D} is the set of trees with at least one internal branch of length zero. Suppose $\{T_i\}_{i \in \mathbb{N}}$ is a sequence of iid random variables in \mathcal{T}_m with probability measure μ and denote by $\hat{\mathcal{T}}_n$ the sample Fréchet mean of T_1, \ldots, T_n . Then

$$\sqrt{n}(\hat{T}_n - T^*) \rightsquigarrow \mathcal{N}(0, A^\top V A),$$

where V is the covariance matrix of the random variable $\Phi_{T^*}(T_1)$, and

$$A = (I - \mathbb{E}[M_{T^*}(T_1)])^{-1},$$

where $M_{T^*}(T)$ is the derivative of $\Phi_{T^*}(T)$ at T^* , with respect to T^* .

The limiting distribution of the sample Fréchet mean is Gaussian.

Proof.

$$\begin{split} \sqrt{n}(\hat{T}_n - T^*) &= \frac{1}{\sqrt{n}} \sum_{i=1}^n (\Phi_{\hat{T}_n}(T_i) - T^*) \quad (\text{from Lemma}) \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^n (\Phi_{T^*}(T_i) - T^*) + \frac{1}{\sqrt{n}} \sum_{i=1}^n (\Phi_{\hat{T}_n}(T_i) - \Phi_{T^*}(T_i)) \\ &\approx \frac{1}{\sqrt{n}} \sum_{i=1}^n (\Phi_{T^*}(T_i) - T^*) + \sqrt{n} (\hat{T}_n - T^*) \frac{1}{n} \sum_{i=1}^n M_{T_*}(T_i), \end{split}$$

hence

$$\sqrt{n}(\hat{T}_n - T^*)\left(I - \frac{1}{n}\sum_{i=1}^n M_{T_*}(T_i)\right) \approx \frac{1}{\sqrt{n}}\sum_{i=1}^n (\Phi_{T^*}(T_i) - T^*).$$

And then apply delta method and slutsky theorem.

Construction of the space of trees

Geometry of the space of trees

Limiting behaviors of Fréchet Means

Reference

Reference

- D. Barden, H. Le, and M. Owen. Limiting Behaviour of Fr\'echet Means in the Space of Phylogenetic Trees. *ArXiv e-prints*, September 2014.
- Louis J. Billera, Susan P. Holmes, and Karen Vogtmann. Geometry of the space of phylogenetic trees. Advances in Applied Mathematics, 27 (4):733 - 767, 2001. ISSN 0196-8858. doi: http://dx.doi.org/10.1006/aama.2001.0759. URL //www. sciencedirect.com/science/article/pii/S0196885801907596.
- M.R. Bridson and A. Häfliger. Metric Spaces of Non-Positive Curvature. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2011. ISBN 9783540643241. URL https://books.google.com/books?id=3DjaqB08AwAC.

Thank you!