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I find the following paper (CCF) states a very useful result about nonparametric inference:

• Calonico, Sebastian, Matias D. Cattaneo, and Max H. Farrell. ”On the effect of
bias estimation on coverage accuracy in nonparametric inference.” arXiv preprint
arXiv:1508.02973 (2015).

They propose to use a debiased kernel in the kernel density estimator (KDE) such that the

resulting KDE has a higher order bias O(h3) and the usual variance O(
√

1
nhd

). Thus, we can

perform valid inference directly for p under the optimal smoothing bandwidth h ∼ n−
1

d+4 .

A good news is that they only propose a pointwise inference and they estimate the variance
using the sample variance. We can generalize all these ideas to a uniform sense and use
Chernozhukov’s work to perform a valid bootstrap inference. Here is a succint description
about their methods.

1 Debiased KDE

Let X1, · · · , Xn be IID from an unknown density function p with a compact support K ∈ R.
For simplicity, we consider d = 1 case. We define the naive KDE as

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K(x) is the kernel function and h > 0 is the smoothing bandwidth.

Now we define the Hessian estimator using another smoothing bandwidth b > 0 as

p̂
(2)
b (x) =

1

nb3

n∑
i=1

K(2)

(
x−Xi

b

)
,

where K(2)(x) = d2

dx2
K(x) is the second derivative of the kernel function K(x).
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Let τ = h
b
. The debiased KDE is

p̂τ (x) = p̂h(x)− cK · h2 · p̂(2)b (x)

=
1

nh

n∑
i=1

K

(
x−Xi

h

)
− cK · h2 ·

1

nb3

n∑
i=1

K(2)

(
x−Xi

b

)
=

1

nh

n∑
i=1

Mτ

(
x−Xi

h

)
,

(1)

where
Mτ (x) = K(x)− cK · τ 3 ·K(2)(τ · x), (2)

where cK =
∫
x2K(x)dx. The function Mτ (x) can be viewed as a new kernel function, which

we called it debiased kernel function. Note that the second quantity cK · h2 · p̂(2)b (x) is an
estimate for the asymptotic bias in the KDE so it is to reduce the bias in the naive KDE.

What is important here is that we allow τ ∈ (0,∞) and we still have a valid confidence set.

2 Analysis for the Bias

We first show that under usual assumption, the debiased KDE p̂τ (x) has a bias at the order
of O(h3). To see this, note that

E (p̂τ (x)) = E (p̂h(x))− cK · h2 · E
(
p̂
(2)
b (x)

)
= p(x) + cK · h2 · p(2)(x) +O(h3)− cK · h2 · p(2)(x)(1 +O(b2))

= p(x) +O(h3) +O(h2 · b2).

Thus, the debiased KDE has the bias at the order of O(h3).

3 Analysis for the Variance

The actual power of the debiased KDE is in its variance:

Var (p̂τ (x)) = Var (p̂h(x)) + Cov
(
p̂h(x), cK · h2 · p̂(2)b (x)

)
+ Var

(
cK · h2 · p̂(2)b (x)

)
= O

(
1

nh

)
+O

(
1√
nh
· h2√

nb3

)
+O

(
h2

nb3

)
= O

(
1

nh

)
+O

(
1

nh
· τ

3
2

)
+O

(
1

nh
· τ 3
)
.
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Thus, as long as τ <∞, we have the asymptotic variance

nhVar (p̂τ (x)) = O(1) +O
(
τ

3
2

)
+O

(
τ 3
)
.

Actually, if we derive the variance in details, we have

σ2
τ (x) = nhVar (p̂τ (x)) = σ2

1(x) + τ
3
2 · σ2

12(x) + τ 3σ2
2(x) + o(1),

where

σ2
1(x) =

1

h
Var

(
K

(
x−Xi

h

))
σ2
12(x) =

cK√
hb

Cov

(
K

(
x−Xi

h

)
, K(2)

(
x−Xi

b

))
σ2
2(x) =

1

b
Var

(
K(2)

(
x−Xi

b

))
.

Thus, when τ < ∞, the variance is at rate O( 1
nh

), which is the same as the naive KDE!
This implies that if we choose h ∼ b ∼ h−1/5, the debiased KDE has bias O(h3) = O(n−3/5)

and stochastic variation OP

(√
1
nh

)
= OP (n−2/5), so the stochastic part dominates the bias,

meaning that as long as we can estimate the variance well, we have a valid confidence interval.

So what happens here? An observation is that when b ∼ h−1/5, the Hessian estimator p̂
(2)
b (x)

is not consistent for p(2)(x) because the variance does not converges. However, the bias

does converge. Thus, asymptotically p̂
(2)
b (x) is centered around p(2)(x) with a non-vanishing

limiting distribution (Gaussian).

Now because we multiply the second derivative estimator (debiased part) by h2, the asymp-

totic distribution of p̂
(2)
b (x)− p(2)(x) converges at rate O(h2). Therefore, the debiased KDE

is still consistent even if we do not consistently estimate the second derivative. The non-
vanishing of the bias in the second derivative estimator contributes to the asymptotic variance
of the debiased KDE.

4 Inference using the Debiased KDE

In the CCF paper, the propose to use a sample variance estimate σ̂2
τ (x) for the asymptotic

variance σ2
τ (x), which has the property

σ̂2
τ (x)

σ2
τ (x)

P→ 1

and further leads to a pointwise confidence set.
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We can improve their result using the bootstrap and L∞ metric. Recall from (1),

p̂τ (x) =
1

nh

n∑
i=1

Mτ

(
x−Xi

h

)
=

1

h

∫
Mτ

(
x− y
h

)
dP̂n(y).

The bias analysis implies

E (p̂τ (x)) =
1

h

∫
Mτ

(
x− y
h

)
dP(y) = p(x) +O(h3).

Using the notation of empirical process and define fx(y) = 1√
h
Mτ

(
x−y
h

)
,

p̂τ (x)− p(x) =
1√
h

(
P̂n(fx)− P(fx)

)
+O(h3).

Thus, √
nh (p̂τ (x)− p(x)) = Gn(fx) +O(

√
nh7) = Gn(fx) + o(1).

Now define the function class
Fτ = {fx(y) : x ∈ K}.

Note that as long as we assume VC-type class for the kernel function K and its second
derivative K(2), Fτ will also be a VC-type class. Thus, by Chernozhukov’s approach, the
L∞-norm sup

x∈K ·
√
nh ‖p̂τ (x)− p(x)‖ converges to the supremum of a Gaussian process.

Namely, there exists a Gaussian process B such that

sup
t∈R

∣∣∣∣P(√nh ‖p̂τ − p‖∞ ≤ t
)
− P

(
sup
f∈FM

‖B(f)‖ ≤ t

)∣∣∣∣ = O

((
log7 n

nh

)1/6
)
.

Moreover, we can use the bootstrap to derive the uniform confidence set for p(x).

Note that although I derived all the above results using d = 1, it is easy to generalize it to
multivariate case. The only difference is that the function Mτ (x) will be

Mτ (x) = K(x)− cK · h2 · ∇2K(τ · x).

Based on the debiased KDE, most of our methods, including inferences for level sets, ridges,
cluster trees, persistent diagrams,...etc can all be improved. We no longer have to focus on
a smoothed surrogate or use undersmoothing to handle the bias.
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