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I find the following paper (CCF) states a very useful result about nonparametric inference:

e Calonico, Sebastian, Matias D. Cattaneo, and Max H. Farrell. ”On the effect of
bias estimation on coverage accuracy in nonparametric inference.” arXiv preprint

arXiv:1508.02973 (2015).

They propose to use a debiased kernel in the kernel density estimator (KDE) such that the
resulting KDE has a higher order bias O(h?) and the usual variance O(y/—). Thus, we can

perform valid inference directly for p under the optimal smoothing bandwidth h ~ n @

A good news is that they only propose a pointwise inference and they estimate the variance
using the sample variance. We can generalize all these ideas to a uniform sense and use
Chernozhukov’s work to perform a valid bootstrap inference. Here is a succint description
about their methods.

1 Debiased KDE

Let X1,---, X, be IID from an unknown density function p with a compact support K € R.
For simplicity, we consider d = 1 case. We define the naive KDE as
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where K (z) is the kernel function and h > 0 is the smoothing bandwidth.

Now we define the Hessian estimator using another smoothing bandwidth b > 0 as
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where K®)(z) = %K (x) is the second derivative of the kernel function K (z).



Let 7 = % The debiased KDFE is

where
M (z) = K(z) —cg -7 - K@ (1 - 2), (2)

where cx = [ 2? K (x)dz. The function M, (z) can be viewed as a new kernel function, which

we called it debiased kernel function. Note that the second quantity cg - h? - f)f)(:zr) is an
estimate for the asymptotic bias in the KDE so it is to reduce the bias in the naive KDE.

What is important here is that we allow 7 € (0, 00) and we still have a valid confidence set.

2 Analysis for the Bias

We first show that under usual assumption, the debiased KDE p.(z) has a bias at the order
of O(h?). To see this, note that

E (5-(2)) = E (pi(x)) — exc - b - E (3 (2) )

= p(z) +cx - h? 'p(2)(l’) + O(h?) — ¢ - b? -p(Z)(x)(l + O(b?))
= p(x) + O(h*) + O(R* - b?).

Thus, the debiased KDE has the bias at the order of O(h?).

3 Analysis for the Variance

The actual power of the debiased KDE is in its variance:

Var (, (x)) = Var (pi()) + Cov (m( )sexc BB (@) + Var (e b2 57 (2))
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= (Lh)+0( )+O<%'T3>.
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Thus, as long as 7 < oo, we have the asymptotic variance
nhVar (5,(x)) = O(1) + 0 (73) + 0 (7*).
Actually, if we derive the variance in details, we have
02 (x) = nhVar (r(x)) = oi(x) + 7% - ohy(x) + 703 (x) + o(1),

where

Thus, when 7 < oo, the variance is at rate O(#), which is the same as the naive KDE!
This implies that if we choose h ~ b ~ h™'/% the debiased KDE has bias O(h®) = O(n=%/°)

and stochastic variation Op <1 /L > = Op(n~%/%), so the stochastic part dominates the bias,

nh

meaning that as long as we can estimate the variance well, we have a valid confidence interval.

So what happens here? An observation is that when b ~ h~/®, the Hessian estimator ]322)@)
is not consistent for p®(x) because the variance does not converges. However, the bias
does converge. Thus, asymptotically ]’941)2) (z) is centered around p®(z) with a non-vanishing
limiting distribution (Gaussian).

Now because we multiply the second derivative estimator (debiased part) by h?, the asymp-
totic distribution of pi”) (z) — p@(z) converges at rate O(h2). Therefore, the debiased KDE
is still consistent even if we do not consistently estimate the second derivative. The non-

vanishing of the bias in the second derivative estimator contributes to the asymptotic variance
of the debiased KDE.

4 Inference using the Debiased KDE

In the CCF paper, the propose to use a sample variance estimate o2(x) for the asymptotic
variance o2(x), which has the property
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and further leads to a pointwise confidence set.
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We can improve their result using the bootstrap and L., metric. Recall from (1),

Prla) = = S M, (%)

_ %/MT (x;y) P, (y).

The bias analysis implies

BGn(a) = [ 20 (12) dB() = plo) + 00

Using the notation of empirical process and define f,(y) = \/LEMT (ﬂ),

_ 1 (5 ;
r(a) = pla) = = (Bulfe) = B(f2)) + O(HY)
Thus,
Vnh (B (x) = p(x)) = Gn(fa) + O(Vnh") = G (f2) + o(1).

Now define the function class
Fr={fs(y) :z € K}.

Note that as long as we assume VC-type class for the kernel function K and its second
derivative K®, F, will also be a VC-type class. Thus, by Chernozhukov’s approach, the
Loo-norm sup, g -V nh ||[pr(z) — p(z)| converges to the supremum of a Gaussian process.
Namely, there exists a Gaussian process B such that

B (Vi ol <) =B (sup [B07)] <1)| =0 ((1§h”)/) .
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Moreover, we can use the bootstrap to derive the uniform confidence set for p(x).

Note that although I derived all the above results using d = 1, it is easy to generalize it to
multivariate case. The only difference is that the function M, (x) will be

M. (x) = K(x) —cx - h* - V?K(7 - 2).
Based on the debiased KDE, most of our methods, including inferences for level sets, ridges,

cluster trees, persistent diagrams,...etc can all be improved. We no longer have to focus on
a smoothed surrogate or use undersmoothing to handle the bias.
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