Stability of Multidimensional Persistent Homology

September 16, 2016

Reference

Interactive Visualization of 2-D Persistence Modules, [\[pdf\]](http://arxiv.org/pdf/1512.00180v1.pdf)

The rank invariant stability via interleavings [\[pdf\]](http://arxiv.org/pdf/1412.3374v1.pdf)

Seminar: Matthew Wright, Visualizing 2-Dimensional Persistent Homology [\[video\]](https://meetings.webex.com/collabs/url/fdplT8hCHvaXIF35FvEcDx1pQDWjbZVWfFhvfHJz8y800000)

Notation

Let **Simp** denote the category of simplicial complexes and simplicial maps.

Define a partial order on \mathbb{R}^n by taking $(a_1, \dots, a_n) \leq (b_1, \dots, b_n)$ if and only if $a_i \leq b_i$ for all *i*.

Finite Multidimensional Filtrations

Definition. Let *n*-D filtration to be a functor $\mathcal{F} : \mathbb{R}^n \to \mathbf{Simp}$ such that for $a \leq b$, $\mathcal{F}(a) \subset \mathcal{F}(b)$.

Definition. *n*-D filtration stabilizes if there exists $a_0 \in \mathbb{R}^n$ such that $\mathcal{F}(a)$ = $\mathcal{F}(a_0)$ whenever $a \ge a_0$. We write $\mathcal{F}_{\text{max}} = \mathcal{F}(a_0)$.

We say that a simplex s in \mathcal{F}_{max} appears a finite number of times if there is a finite set $A \subset \mathbb{R}^n$ such that for each $a \in A$, $s \in \mathcal{F}(a)$, and for each $b \in \mathbb{R}^n$ with $s \in \mathcal{F}(b)$, there is some $a \in A$ with $a \leq b$.

Definition. We say an *n*-D filtration $\mathcal F$ is finite if

- 1. F stabilizes,
- 2. \mathcal{F}_{max} is finite,
- 3. each simplex $s \in \mathcal{F}_{\text{max}}$ appears a finite number of times

Multidimensional Persistence Modules

Definition. For each *n*-D filtration $\mathcal F$ and for each $i \in \mathbb{N}_0$, we let associated *n*-D persistence module be $H_i \mathcal{F} : \mathbb{R}^n \to \textbf{Vect}$ by $H_i \mathcal{F}(a) = H_i(\mathcal{F}(a))$.

If F is a finite n-D filtration, then $H_i \mathcal{F}$ is pointwise finite dimensional, i.e. $\dim(H_i \mathcal{F}(a)) < \infty$ for all $a \in \mathbb{R}^n$.

Barcodes of Multi-D Persistence Modules?

The set of isomorphism classes of indecomposable multi-D persistence modules is, in contrast to the 1-D case, extremely complicated.

Three Simple Invariants of a Multidimensional Persistence Module

1. The dimension function of $H_i \mathcal{F}$, i.e. the function which maps $a \in \mathbb{R}^2$ to dim $H_i \mathcal{F}(a)$.

2. The fibered barcode of M , i.e. the collection of barcodes of 1-D affine slices of $H_i \mathcal{F}$.

3. The (multigraded) Betti numbers of $H_i\mathcal{F}$.

The Fibered Barcode

Let $\bar{\mathcal{L}}$ denote the collection of all lines in \mathbb{R}^2 with non-negative (possibly infinite) slope.

Definition. For $L \in \overline{\mathcal{L}}$ and For a finite *n*-D filtration \mathcal{F} , we define $H_i\mathcal{F}^L:L \to$ Vect by $H_i \mathcal{F}^L(a) = H_i \mathcal{F}(a)$.

Define an interval I in L to be a non-empty subset of L such that $a <$ $b < c \in L$ and $a, c \in I$, we also have $b \in I$. As L is isomorphic to R, the structure theorem for pointwise finite dimensional 1-D persistent modules yields a definition of the barcode $\mathcal{B}(H_i\mathcal{F}^L)$ as a collection of intervals in L.

Definition. We define $\mathcal{B}(H_i \mathcal{F})$, the fibered barcode of $H_i \mathcal{F}$, to be the map which sends each line $L \in \overline{\mathcal{L}}$ to the barcode $\mathcal{B}(H_i \mathcal{F}^L)$.

Stability of the Fibered Barcode

Let d_B be the bottleneck distance on the barcode.

Definition. We say two *n*-D filtration $\mathcal F$ and $\mathcal G$ are ϵ -interleaved if we let $\vec{\epsilon}$ = $(\epsilon, \dots, \epsilon) \in \mathbb{R}^n$, $\mathcal{F}(a) \subset \mathcal{G}(a+\vec{\epsilon}) \subset \mathcal{F}(a+2\vec{\epsilon})$ and $\mathcal{G}(a) \subset \mathcal{F}(a+\vec{\epsilon}) \subset \mathcal{G}(a+2\vec{\epsilon})$. We define interleaving distance d_I as $d_I(\mathcal{F}, \mathcal{G}) = \inf \{ \epsilon \in [0, +\infty) : \mathcal{F} \text{ and } \mathcal{G} \text{ are } \epsilon \text{-interleaved} \}.$

We consider that a line L in \mathbb{R}^n is parametrized by $u = s\vec{m} + b$ with $m^* =$ $\min_i m_i > 0.$

Lemma. If F and G are ϵ -interleaved, then \mathcal{F}^L and \mathcal{G}^L are $\frac{\epsilon}{m'}$ -interleaved.

Definition. We define $d_{match}(H_i \mathcal{F}, H_i \mathcal{G}) = \sup_{L:u=s \vec{m}+b} m^* \cdot d_B(\mathcal{B}(H_i \mathcal{F}^L), \mathcal{B}(H_i \mathcal{G}^L)).$

Theorem. For any pointwise finite dimensional $H_i \mathcal{F}$ and $H_i \mathcal{G}$,

$$
d_{match}(H_i \mathcal{F}, H_i \mathcal{G}) \leq d_I(\mathcal{F}, \mathcal{G}).
$$