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Assumptions
[1, Section 2.1]

Let X = {x1, . . . , xN} be finitely many points. Every probability measure on X is given by a vector r in

PX =

{
r = (rx)x∈X ∈ RX>0 :

∑
x∈X

rx = 1

}

by Pr({x}) = rx. Let r, s ∈ PX and r̂n, ŝm generated by i.i.d. samples X1, . . . , Xn ∼ r and Y1, . . . , Ym ∼ s,
respectively, as r̂n = (r̂n,x)x∈X where r̂n,x = 1

n#{k : Xk = x}. We define the multinomial covariance matrix

Σ(r) =


rx1

(1− rx1
) −rx1

rx2
· · · −rx1

rxN

−rx2
rx1

rx2
(1− rx2

) · · · −rx2
rxN

...
...

. . .
...

−rxN
rx1

−rxN
rx2

· · · rxN
(1− rxN

)


and independent Gaussian random variablesG ∼ N (0,Σ(r)) andH ∼ N (0,Σ(s)). Suppose n andm are approaching
infinity such that n ∧m→∞ and m/(n+m)→ λ ∈ (0, 1).

Hadamard Directional Derivatives
[1, Section 2.2]

Definition. A map Φ defined on a subset DΦ ⊂ Rd with values in R is called Hadamard directionally differentiable
at u ∈ Rd if there exists a map φ′u : Rd → R such that

lim
n→∞

φ(u+ tnhn)− Φ(u)

tn
= φ′u(h)

for any h ∈ Rd and for arbitrary sequences tn converging to zero from above and hn → h such that u+ tnhn ∈ Df

for all n ∈ N.

In contrast to usual notion of Hadamard differentiability, the derivative h 7→ φ′u(h) need not be linear.

Example. The absolut value Φ : R → R, t 7→ |t| is not in the usual sense Hadamard differentiable at t = 0 but
directionally differentiable with the non-linear derivative t 7→ |t|.

Theorem. ([1, Theorem 2]) Let Φ be a function defined on a subset F of Rd with values in R, such that

1. Φ is Hadamard directionally differentiable at u ∈ F with derivative φ′u : F → R and

2. there is a sequence of Rd-valued random variables Xn and a sequence of non-negative numbers ρn →∞ such
that ρn(Xn − u)⇒ X for some random variable X taking values in F .

Then, ρn(Φ(Xn)− Φ(u))⇒ φ′u(X).
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Bootstrap
[1, Appendix A]

We denote by r̂∗n and ŝ∗m some bootstrap versions of r̂n and ŝm. More precisely, let r̂∗n a measurable function
of X1, . . . , Xn and random weights W1, . . . ,Wn, independent of the data and analogously for ŝ∗m. The bootstrap is
consistent if the limiting distribution of

ρn,m {(r̂n, ŝm)− (r, s)} ⇒ (
√
λG,
√

1− λH)

is consistently estimated by the law of
ρn,m{(r̂∗n, ŝ∗m)− (r̂n, ŝm)}.

To make this precise, we define for A ⊂ Rd, the set of bounded Lipschitz-1 functions

BL1(A) =

{
f : A→ R : sup

x∈A
|f(x)| ≤ 1, |f(x1)− f(x2)| ≤ ‖x1 − x2‖

}
,

where ‖ · ‖ is the Euclidean norm. We say that the bootstrap versions (r̂∗n, ŝ
∗
m) are onsistent if

sup
f∈BL1(RX×RX )

∣∣∣E [f(ρn,m{(r̂∗n, ŝ∗m)− (r̂n, ŝm)}|X1, . . . , Xn, Y1, . . . , Ym]− E
[
f((
√
λG,
√

1− λH))
]∣∣∣

converges to zero in probability.

Bootstrap for Directionally Differentiable Functions
[1, Appendix A]

Let Φ : F ⊂ RN × RN → R be the function that we want to bootstrap, with its directional derivative φp :
RN × RN → R. In this paper, Φ(r, s) = W p

p (r, s) and φp(h1, h2) = max
u∈Φp

〈u, h2 − h1〉.

The most straightforward way to bootstrap Φ(r̂n, ŝm) is to simply plug-in r̂∗n and ŝ∗m, that is, approximate
ρn,m{Φ(r̂n, ŝm)− Φ(r, s)} by the law of

ρn,m{Φ(r̂∗n, ŝ
∗
n)− Φ(r̂n, ŝm)}

conditional on the data. If Φ were Hadamard differentiable, this approach yields a consistent bootstrap, but this is
not in general true for if Φ were only directionally Hadamard differentiable.

There are two approaches: First is to re-sample fewer than n or m, as in part 2 in the following Theorem.
Second is to plug in ρn,m{(r̂∗n, ŝ∗n)− (r̂n, ŝm)} into the derivative of the function φp.

Theorem. ([1, Theorem 5]) Let r̂∗n and ŝ∗m be consistent bootstrap versions of r̂n and ŝn. Then,

1. The plug-in bootstrap ρn,m{Φ(r̂∗n, ŝ
∗
n)− Φ(r̂n, ŝm)} is not consistent when Φ = W p

p , that is,

sup
f∈BL1(R)

E [f(ρn,m{Φ(r̂∗n, ŝ
∗
m)− Φ(r̂n, ŝm)})|X1, . . . , Xn, Y1, . . . , Ym]− E [f(ρn,m{Φ(r̂n, ŝm)− Φ(r, s)})]

does not converges to zero in probability.

2. Under the null hypothesis r = s, the derivative plug-in

φp(ρn,m{(r̂∗n, ŝ∗m)− (r̂n, ŝm)})

is consistent, that is

sup
f∈BL1(R)

E [f(φp(ρn,m{(r̂∗n, ŝ∗m)− (r̂n, ŝm)}))|X1, . . . , Xn, Y1, . . . , Ym]− E [f(ρn,m{Φ(r̂n, ŝm)− Φ(r, s)})]

does not converges to zero in probability.

3. Let r̂∗∗n and ŝ∗∗m be consistent bootstrap versions of r̂n and ŝm that are obtained via re-sampling k observations
with k/n→ 0 and k/m→ 0. That is, if

sup
f∈BL1(R)

E
[
f(
√
k{(r̂∗∗n , ŝ∗∗m )− (r̂n, ŝm)})|X1, . . . , Xn, Y1, . . . , Ym

]
− E

[
f((
√
λG,
√

1− λH))
]

converges to zero in probability, then the plug-in bootstrap with r̂∗∗n and ŝ∗∗m is consistent, that is

sup
f∈BL1(R)

E
[
f(φp(

√
k{(r̂∗∗n , ŝ∗∗m )− (r̂n, ŝm)}))|X1, . . . , Xn, Y1, . . . , Ym

]
− E [f(ρn,m{Φ(r̂n, ŝm)− Φ(r, s)})]

converges to zero in probability.
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Wasserstein Distance on Finite Spaces
[1, Section 1]

The Wasserstein distance of order p between two probability measures r, s ∈ PX then becomes

Wp(r, s) =

 min
w∈Π(r,s)

∑
x,x′∈X

dp(x, x′)wx,x′


1/p

,

where Π(r, s) is the set of all probability measures on X × X with marginal distributions r and s.

Main Result
[1, Section 2.1]

We define the convex sets

Φ∗p =
{
u ∈ RX : ux − ux′ ≤ dp(x, x′), x, x′ ∈ X

}
.

Φ∗p is the convex set of dual solutions to the Wasserstein problem depending on the metric d only.

Theorem. ([1, Theorem 1], 3) Let ρn,m =
√

nm
n+m . If r = s and n and m are approaching infinity such that

n ∧m→∞ and m/(n+m)→ λ ∈ (0, 1) we have

ρ1/p
n,mWp(r̂n, ŝm)⇒

{
max
u∈Φ∗p

〈G, u〉
} 1

p

.

Directional Derivative of the Wasserstein Distance
[1, Section 2.2]

We define

Φ∗p(r, s) =
{

(u, v) ∈ RX × RX : 〈u, r〉+ 〈v, s〉 = W p
p (r, s), ux + vx′ ≤ dp(x, x′), x, x′ ∈ X

}
Theorem. ([1, Theorem 3]) THe functional (r, s) 7→W p

p (r, s) is directionally Hadamard differentiable at all (r, s) ∈
PX × PX with derivative

(h1, h2) 7→ max
(u,v)∈Φ∗p(r,s)

− (〈u, h1〉+ 〈v, h2〉) .
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