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Assumptions
[1 Section 2.1]
Let X = {x1,...,2n} be finitely many points. Every probability measure on X is given by a vector r in
Pr = {r = (rz)zecx € R/;O : Z Ty = 1}
reX

by P.({z}) = r,. Let r,s € Py and #,, §, generated by ii.d. samples X;,...,X,, ~ r and Y1,...,Y,, ~ s,
respectively, as 7, = (fp,2)wex Where 7y, 4, = %#{kz : X = x}. We define the multinomial covariance matrix

Tay (1 - Tfﬂl) TxyTay T “Tay Ty
E(T‘) _ “TzoTay Ty (1 - rl“z) T Tz Try
“TanTay “TanTa, o Ty (1 - T.QTN)

and independent Gaussian random variables G ~ N'(0,3(r)) and H ~ N (0, X(s)). Suppose n and m are approaching
infinity such that n A m — oo and m/(n +m) — X € (0,1).

Hadamard Directional Derivatives
[1, Section 2.2]

Definition. A map ® defined on a subset Dg C R? with values in R is called Hadamard directionally differentiable
at u € R? if there exists a map ¢/, : R? — R such that

lim d(u+ thhy) — P(u) — 6 (h)

n—o00 tn

for any h € R? and for arbitrary sequences t,, converging to zero from above and h,, — h such that u +t,h, € Dy
for all n € N.

In contrast to usual notion of Hadamard differentiability, the derivative h + ¢/, (h) need not be linear.

Example. The absolut value ® : R — R, ¢ + [t| is not in the usual sense Hadamard differentiable at ¢ = 0 but
directionally differentiable with the non-linear derivative ¢ — [t].

Theorem. ([i, Theorem 2/) Let ® be a function defined on a subset F' of R% with values in R, such that
1. ® is Hadamard directionally differentiable at u € F with derivative ¢), : F — R and

2. there is a sequence of RY-valued random variables X, and a sequence of non-negative numbers p, — 0o such
that pn(Xn —u) = X for some random variable X taking values in F'.

Then, po(®(X,)) — (u)) = ¢,,(X).


https://arxiv.org/abs/1610.03287

Bootstrap

[1, Appendix A]

We denote by 7 and 8}, some bootstrap versions of #,, and 3,,. More precisely, let 7} a measurable function
of X1,...,X, and random weights W7, ..., W, independent of the data and analogously for 5%,. The bootstrap is
consistent if the limiting distribution of

P {(Fny 8m) — (1, 8)} = (VAG, V1 — XH)

is consistently estimated by the law of

pnim{(f;kl7 Sm) - (fn7 §m)}
To make this precise, we define for A C R?, the set of bounded Lipschitz-1 functions

BLy(4) = {f A RS suplJ@)] < 1, 1f(e0) — flaz)| < o I2||}7

where || - || is the Euclidean norm. We say that the bootstrap versions (7 are onsistent if

717 ’H’L)

S (B[ (o (75 52) = (s 5o} X,y X Vi, Y] = E [H(VAG VT = AH)]|

fEBL; (RX xR¥)

converges to zero in probability.

Bootstrap for Directionally Differentiable Functions

|1, Appendix A]
Let ® : F ¢ RY x RV — R be the function that we want to bootstrap, with its directional derivative Op
RY x RN — R. In this paper, ®(r, s) = WZ(r,s) and ¢p(h1, ha) = ilé%); (u, hg — hq).

The most straightforward way to bootstrap ®(#,,5,,) is to simply plug-in 7} and §F,, that is, approximate
Prm{® (P, 8m) — (1, )} by the law of

Pn, m{q)( 'Tm A;kz) - (I)(fna §7n)}

conditional on the data. If ® were Hadamard differentiable, this approach yields a consistent bootstrap, but this is
not in general true for if ® were only directionally Hadamard differentiable.

There are two approaches: First is to re-sample fewer than n or m, as in part 2 in the following Theorem.
Second is to plug in py, {(7},8%) — (¥, 5m)} into the derivative of the function ¢,.

Theorem. ([1, Theorem 5/) Let 7 and 3}, be consistent bootstrap versions of 7y, and 3,. Then,

1. The plug-in bootstrap pn m{®(7},,5;,) — ®(7n,3,)} is not consistent when ® = WP, that is,
sup E[f [ (pn m{q)(:w A;Kn) - (I)('Fm §m>}’)| Xy, X, Y, Ym] -E [f(pn,m{q)(fm ‘§m) - (I)(ra S)})]

feBL1(R)

does not converges to zero in probability.

2. Under the null hypothesis r = s, the derivative plug-in
‘f’p(ﬂn,m{(f:a 55) = (P, 8m)})

is consistent, that is

sup B [f(dp(pnm{(5,85,) — (s 8m) I X1, oo, X, Y1, Vi) = B [f(pnm{ @ (P 8m) — (1, 5)})]
fEBL;(R)

does mot converges to zero in probability.

3. Let 7} and 87 be consistent bootstrap versions of v, and $,, that are obtained via re-sampling k observations
with k/n — 0 and k/m — 0. That is, if

sup E{ FOVRLG™, 557) — (fn,ém)})|X17...,Xn,Yl,...,Ym} —E{f((fm,\/l—w))}
feBL1(R)

Sk Kk

converges to zero in probability, then the plug-in bootstrap with

sup E [ £(0, (VR 537) - <fn,stm>}>>|xl,...7Xn,Y1,...,Ym}—E[f(pn,m{<1><mém>—<1><ns>}>}
fEBL1(R)

and 577 is consistent, that is

converges to zero in probability.



Wasserstein Distance on Finite Spaces

[1, Section 1]
The Wasserstein distance of order p between two probability measures r, s € Py then becomes

1/p
w00 = ) i X e
p(r, S) wer{-l[l(lj"ljs) @ J:IEX (:I:’ :I; )wz7m/ 7

where II(r, s) is the set of all probability measures on X x X with marginal distributions r and s.

Main Result

[1 Section 2.1]
We define the convex sets

@;: {uERX: Uy — Uyt < dP(m,2"), z, 2 EX}.

P}, is the convex set of dual solutions to the Wasserstein problem depending on the metric d only.

Theorem. ([I, Theorem 1], 3) Let pnm = /2. Ifr = s and n and m are approaching infinity such that

n+m”

nAm— oo and m/(n+m) — A€ (0,1) we have

p}l{'ﬁlwp(,ﬁnaém) = {maX <G,U>}p .

u€<1>;
Directional Derivative of the Wasserstein Distance
[1, Section 2.2]
We define

Q,(r,s) = {(u,v) eRY xRY : (u,r) + (v,s) = Wh(r,s), uz + var < d?(z,2'),x, 2" € X}
Theorem. ([1, Theorem 3/) THe functional (r,s) — W} (r, s) is directionally Hadamard differentiable at all (r,s) €
Px X Py with derivative

hy,ha) — ((w, hy) + (0, hy)) .
(h1,h2) (u’v)fgg?(r,s) ((u, h1) + (v, ha))

References

[1] M. Sommerfeld and A. Munk. Inference for Empirical Wasserstein Distances on Finite Spaces. ArXiv e-prints,
October 2016.



