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In this paper, we study the α-cluster tree (α-tree) under both
singular and nonsingular measures. The α tree is to use probability
contents within a level set to construct a cluster tree so that it is
well-defined for singular measures. We first derive the rate of con-
vergence for a density level set around critical points, which leads
to the convergence rate of estimating an α-tree under nonsingular
measures. For singular measures, we study how the kernel density
estimator (KDE) behaves and prove that KDE is not uniformly con-
sistent but pointwisely consistent after rescaling. We further prove
that the estimated α-tree fails to converge in the L∞ metric but is
still consistent under the integrated distance. We also observe a new
type of critical points–the dimensional critical points (DCPs)–of a
singular measure. These DCPs occur only at singular measures and
similar to the usual critical points, DCPs contribute to the topology
of a cluster tree as well. Building upon the analysis for the KDE and
the DCPs, we prove a topological consistency of the estimated α-tree.

1. Introduction. Given a function f defined on a smooth manifoldM, the cluster tree of f is a tree
structure representing the creation and merging of connected components of the level set {x : f(x) ≥ κ}
when we move down the level κ (Chen et al., 2016b). Because a cluster tree keeps track of the connected
components of the level sets, the shape of a cluster tree contains topological information about the
underlying function f . And a cluster tree can be displayed on a two-dimensional plane regardless of the
dimension of M; this makes it an attractive method for visualizing the function f under multivariate
case. In this paper, we focus on the case where f ≡ fP . Namely, f is some functional of the underlying
distribution P . In this context, the cluster tree of f reveals information about the distribution P .

In most of the cluster tree literatures, the cluster trees being studied are the λ-tree of a distribution
(Balakrishnan et al., 2012; Chaudhuri and Dasgupta, 2010; Chaudhuri et al., 2014; Chen et al., 2016b;
Kpotufe and Luxburg, 2011; Stuetzle, 2003). The λ-tree of a distribution is to choose f to be p, the
underlying density function. In this case, the tree structure contains the topological information of the
underlying density function and we can use the λ-tree to visualize a multivariate density function; when
we use the λ-tree for visualization purposes, the λ-tree is also called a density tree (Klemelä, 2004, 2006,
2009).

In Kent (2013), the author proposed a new type of cluster tree of a distribution–the α-tree. The α-tree
is to use the function α(x) = P ({y : p(y) ≤ p(x)}) to construct a cluster tree. When the distribution
is nonsingular, the α-tree and the λ-tree are topologically equivalent (Lemma 1) so they both provide
similar topological information of the underlying distribution. To estimate the α-tree, we use the cluster
tree of the function estimator α̂n(x) = P̂n({y : p̂n(y) ≤ p̂n(x)}) where P̂n is the empirical measure and
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Fig 1. An example of the estimated λ-tree and α-tree of a singular distribution. This is a random sample from a singular
distribution that with probability 0.3 we obtain a point mass at x = 2 and with probability 0.7 we sample from a standard
normal. The top panel shows the density estimated by the kernel density estimator (KDE) and the red tree structure corre-
sponds to the estimated λ-tree. The bottom panel displays the estimated α-tree. From left to right, we increase the sample size
from 5 × 103, 5 × 105, to 5 × 107. Because the distribution is singular, there is no population λ-tree so when the smoothing
bandwidth decreases (when the sample size increases), the estimate λ-tree is getting degenerated. On the other hand, the
estimated α-trees remain stable regardless of the smoothing bandwidth.

p̂n is the kernel density estimator (KDE). Namely, we first use the KDE to estimate the density of each
data points and then count the number of data points whose density is below the given point.

When the distribution is singular, the λ-tree is ill-defined due to the lack of density but the α-tree
is still well-defined under a mild modification. As an illustrating example, consider Figure 1. These are
random samples from a distribution that mixed with a point mass at x = 2 with probability 0.3 and a
standard normal distribution with probability 0.7. Thus, these samples are from a singular distribution.
We generate n = 5× 103 (left), 5× 105 (middle) and 5× 107 (right) data points and estimate the density
using the KDE. The estimated density along with the estimated λ-trees (red trees) are displayed in the
top row. It can be seen easily that when the sample size increases, the λ-trees become degenerated. This
is because there is no population λ-tree for this distribution. However, the α-trees are stable in all three
panels (see the bottom row of Figure 1); this shows the power of α-trees.

Main Results. The main results of this paper are summarized as follows:

• When the distribution is nonsingular,

1. we derived the rate of convergence for the estimated level set when the level equals to the
density value of a critical point (Theorem 3).

2. we derived the rate of convergence of α̂n (Theorem 4).
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• When the distribution is singular,

3. we propose a framework that generalizes α(x) to define the α-tree (Section 4);

4. we show that after rescaling, the KDE is pointwisely consistent but not uniformly consistent
(Theorem 8);

5. we prove that α̂n is inconsistent under the L∞ metric (Corollary 7) but is consistent under the
integrated distance and probability-weighted integrated distance (Theorem 10);

6. we identify a new type of critical points, the dimensional critical points (DCPs), that also
contributes to the change of cluster tree topology and analyze their properties (Lemma 11, 13,
and 14);

7. we demonstrate that the the estimated α-tree Tα̂n is topological equivalent to the population
α-tree with probability exponentially converging to 1 (Theorem 15).

Related Work. There are a vast literatures about theoretical aspects of the λ-tree; notions of consistency
are analyzed in Hartigan (1981); Chaudhuri and Dasgupta (2010); Chaudhuri et al. (2014); Eldridge et al.
(2015); the rate of convergence and the minimax theory are studied in Chaudhuri and Dasgupta (2010);
Balakrishnan et al. (2012); Chaudhuri et al. (2014); in Chen et al. (2016b), the authors study how to
perform statistical inference for a λ-tree. The cluster tree is also related to the topological data analysis
(Carlsson, 2009; Edelsbrunner and Morozov, 2012); in particular, a cluster tree contains the information
about the zeroth order homology groups (Cohen-Steiner et al., 2007; Fasy et al., 2014; Bobrowski et al.,
2014; Bubenik, 2015). The theory of estimating a cluster tree is closely related to the theory of estimating
a level set; an incomplete list of literatures is as follows: Polonik (1995); Tsybakov (1997); Walther (1997);
Mason and Polonik (2009); Singh et al. (2009); Rinaldo and Wasserman (2010); Steinwart (2011).

Outline. We begin with an introduction about cluster trees and geometric concepts used in this paper
in Section 2. We derive the convergence rate for the α-tree estimator under nonsingular measures in
Section 3. We study the behavior of the kernel density estimator and the stability of the estimated α-tree
under singular measures in Section 4. In Section 5, we investigate critical points of singular measures
and derive topological consistency of the estimated α-tree. We summarize this paper and discuss possible
future directions in Section 6.

2. Backgrounds.

2.1. Cluster Trees. Here we recalled the definition of cluster tree in Chen et al. (2016b). Let K ⊂ Rd
and f : K 7→ [0,∞) be a function with support K. The cluster tree of f is defined as follows.

Definition 1 (Definition 1 in Chen et al. (2016b)). For any f : K 7→ [0,∞) the cluster tree of f is a
function Tf : R 7→ 2K, where 2K denotes the set of all subsets of K, and Tf (λ) is the set of the connected
components of the upper-level set {x ∈ K : f(x) ≥ λ}. We define the collection of connected components
{Tf}, as {Tf} =

⋃
λ

Tf (λ). Thus, {Tf} is a collection of subsets of K indexed by λ.

It is easy to see that the cluster tree Tf has a tree structure, because for every pair C1, C2 ∈ Tf , either
C1 ⊂ C2, C2 ⊂ C1, or C1 ∩ C2 = φ holds.

To get some geometric understanding of the cluster tree in Definition 1, we identify edges that constitute
the cluster tree. Intuitively, edges correspond to either leaves or internal branches. An edge is roughly
defined as a set of clusters whose inclusion relationship with respect to clusters outside an edge are
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Fig 2. Connected components, edges, and edge set of a cluster tree. Left: we display connected components of level sets under
five different levels (indicated by the colors: magenta, orange, seagreen, skyblue, and gray). The color of boundaries of each
connected component denotes the edge they corresponds to. Right: the cluster tree; we color the three edges (vertical lines) by
red, blue, and black. The edge set E(Tf ) = {Cred,Cblue,Cblack} and we have the ordering Cred ≤ Cblack amd Cblue ≤ Cblack. Note
that the solid black horizontal line is not an edge set; it is just a visual representation to connect the blue and red edges to the
black edge. The horizontal dashed lines indicates the five levels corresponds to the the left panel. In the left panel, the three
connected components with red boundaries are elements of the edge Cred.

equivalent, so that when the collection of connected components is divided into edges, we observe the same
inclusion relationship between representative clusters whenever any cluster is selected as representative
for each edge.

To formally define edges, we define an interval in the cluster tree, and the equivalence relation in the
cluster tree. For any two clusters A,B ∈ {Tf}, the interval [A,B] ⊂ {Tf} is defined as a set clusters that
contain A and are contained in B, i.e.

[A,B] := {C ∈ {Tf} : A ⊂ C ⊂ B} ,

The equivalence relation ∼ is defined as A ∼ B if and only if their inclusion relationship with respect to
clusters outside [A,B] and [B,A]. Namely, A ∼ B if and only if

∀C ∈ {Tf} such that C /∈ [A,B] ∪ [B,A],

C ⊂ A⇔ C ⊂ B, A ⊂ C ⇔ B ⊂ C.

It is easy to see that the relation ∼ is reflexive(A ∼ A), symmetric(A ∼ B implies B ∼ A), and transitive
(A ∼ B and B ∼ C implies A ∼ C). Hence the relation ∼ is indeed an equivalence relation, and we can
consider the set of equivalence classes {Tf}/∼. We define the edge set (the collection of edges) E(Tf ) as
E(Tf ) := {Tf}/∼. Each element in the edge set C ∈ E(Tf ) is called an edge and and edge contains many
nested connected components of the cluster tree {Tf} (i.e. if C1, C2 ∈ C, then either C1 ⊂ C2 or C2 ⊂ C1).
Note that every element in an edge corresponds to a connected component of an upper level set of f .

To associate the edge set E(Tf ) to a tree structure, we define a partial order on the edge set as follows:
let C1,C2 ∈ E(Tf ) be two edges, we write C1 ≤ C2 if and only if for all A ∈ C1 and B ∈ C2, A ⊂ B. Then
the shape of the cluster tree (topology of the cluster tree) is completely determined by the edge set E(Tf )
and the partial order among them. Figure 2 provides an example about the connected components, the
edges, and the edge set of a cluster tree along with a tree representation.

Based on the above definitions, we define the topological equivalence between two cluster trees.

Definition 2. For two functions f : K 7→ [0,∞) and g : K 7→ [0,∞), we say Tf and Tg are topological

equivalent, denoted as Tf
T
≈ Tg, if there exists a bijective mapping S : E(Tf ) 7→ E(Tg) such that for any
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C1,C2 ∈ E(Tf ),
C1 ≤ C2 ⇐⇒ S(C1) ≤ S(C2).

For each C ∈ E(Tf ), we define

U(C) = sup{λ : ∃C ∈ Tf (λ), C ∈ C}

to be the maximal level of an edge C. We define the critical tree-levels of f as

(1) Af = {U(C) : C ∈ E(Tf )}.

It is easy to see Af is collection levels of f where a creation of new connected component occurs or a
merging of two connected components occurs.

In most of the cluster tree literatures (Balakrishnan et al., 2012; Chaudhuri and Dasgupta, 2010;
Chaudhuri et al., 2014; Chen et al., 2016b; Eldridge et al., 2015), the cluster tree is referred to the λ-tree,
which is to use the probability density function p to build a cluster tree. Namely, the λ-tree is Tp.

In this paper, we focus on the α-tree (Kent, 2013), which is to use the function

(2) α(x) = P ({y : p(y) ≤ p(x)})1− P ({y : p(y) > p(x)}) = 1− P (Lp(x))

to build the cluster tree Tα. The set Lλ = {x : p(x) ≥ λ} is the upper level set of p (note that P ({y :
p(y) > p(x)}) = P ({y : p(y) ≥ p(x)}) when the density function p is bounded). The cluster tree Tα is
called the α-tree. A feature for α-tree is that the function α(x) depends only on the ‘ordering’ of points
within K. Namely, any function that assigns the same ordering to points within K as the density function
p can be used to construct the function α(x). To be more specific, let ` be an ordering such that for any
x1, x2 ∈ K,

`(x1) > `(x2)⇔ p(x1) > p(x2),

`(x1) < `(x2)⇔ p(x1) < p(x2),

`(x1) = `(x2)⇔ p(x1) = p(x2).

Then

(3) α(x) = 1− P ({y : p(y) ≥ p(x)}) = 1− P ({y : `(y) ≥ `(x)}).

For instance, `(x) = 2p(x), or `(x) = log p(x) both yield the same α(x). Later we will use this feature to
generalize equation (2) to singular measures.

A feature for the α-tree is that it is topological equivalent to the λ-tree.

Lemma 1. Assume the distribution P has density p. Then the λ-tree and α-tree are topological equiv-
alent. Namely,

Tp
T
≈ Tα.
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The proof is simple so we ignore it; the main idea is that by equation (2), α(x) is just a monotonic
transformation of the density p the topology are preserved.

When we use the α-tree, the induced upper level set

Aa = {x : α(x) ≥ a}

is called an α-level set.

Remark 1 (κ-tree). In Kent (2013), the author also proposed another cluster tree–the κ-tree–which
is to use the probability content within each edge set defined by an α-tree (or a λ-tree) to compute the
function κ(x). Because it is just a rescaling from the α-tree, the theory of α-tree also works for κ-tree.
For simplicity, we only study the theory of α-tree in this paper.

2.2. Singular Measure. When the probability measure is singular, the λ-tree is no longer well-defined
since there is no density function. However, the α-tree can still be defined.

A key feature for constructing the α-tree is the ordering function `(x). Here we will use a generalized
density function, the Hausdorff density (Preiss, 1987; Mattila, 1999), to define the α-tree under singular
measures. Given a probability measure P , the s-density (s dimensional Hausdorff density) is

Hs(x) = lim
r→0

P (B(x, r))

Cs · rs
,

where Cs is the volume of an unit s-dimensional sphere and B(x, r) = {y : ‖y − x‖ ≤ r}.
For a given point x, we define the notion of a generalized density using two quantities τ(x) and ρ(x):

τ(x) = argmaxs≤dHs(x) <∞
ρ(x) = Hτ(x)(x).

Namely, τ(x) is the ‘dimension’ of the probability measure at x and ρ(x) is the corresponding Hausdorff
density at that dimension. Note that the function ρ(x) is well-defined for every x. For any two points
x1, x2 ∈ K, we define an ordering ` by `(x1) > `(x2) if

τ(x1) < τ(x2), or τ(x1) = τ(x2), ρ(x1) > ρ(x2).

That is, for any pair of points, we first compare the their ‘dimensions’ τ(x). The point with lower dimen-
sional value τ will be ranked higher than the other point. If two points have the same dimensions, then
we compare their corresponding Hausdorff density. When the distribution is non-singular, τ(x) = d for
every x ∈ K and ρ(x) = p(x) is the usual density function. So the ordering `(x) can be chosen simply as
the density function p(x).

To define the α-tree, we use equation (3):

(4) α(x) = P ({y : `(y) ≥ `(x)}) .

Namely, α(x) is the probability content of regions where the ordering function ` is lower than or equal to
`(x). As is shown in equation (3), when P is non-singular, equation (4) is the same as equation (2). Note
that by equation (4), the α-level set Aa = {x : α(x) ≥ a} is well-defined in singular measure.
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2.3. Geometric Concepts. Based on the definition of τ(x), we decompose the support K into

(5) K = Kd

⋃
Kd−1

⋃
· · ·
⋃

K0,

where Ks = {x : τ(x) = s}. Thus, {K0, · · · ,Kd} forms a partition of the entire support K. We call each
Ks an s-dimensional support (structure). When we analyze the support Ks, any Ks′ with s′ > s is called
a higher dimensional support (with respect to Ks) and s′ < s will be called a lower dimensional support.

To regularize the behavior of ρ(x) on each support Ks, we assume that the closure of the support Ks

is an s-dimensional smooth manifold (properties about a smooth manifold can be found in Lee 2012; Tu
2010). For a s-dimensional smooth manifoldM, the tangent space on each point ofM changes smoothly
(Tu, 2010; Lee, 2012). Namely, for x ∈ M, we can find an orthonormal basis {v1(x), · · · , vs(x) : v`(x) ∈
Rd, ` = 1, · · · , s} such that the tangent space of M at x is spanned by {v1(x), · · · , vs(x)} and each v`(x)
is a smooth (multivalued) function on Ms. For simplicity, for x ∈ Ks, we denote Ts(x) as the tangent
space of Ks at x and Ns(x) as the normal space of Ks at x. And we define ∇Ts(x) to be taking derivative
in the tangent space.

For a function f : M 7→ R defined on a smooth manifold M, the function f is a Morse function
(Milnor, 1963; Morse, 1925, 1930) if all critical points of f are non-degenerate. Namely, the eigenvalues
of the Hessian matrix of f at each critical point is away from zero. Being a Morse function is essential for
a density function to have a stable λ-tree (Chazal et al., 2014; Chen et al., 2016b).

To link the concept of Morse function to the Hausdorff density ρ(x), we introduce a generalized density

ρ†s : Ks 7→ [0,∞)

such that ρ†s(x) = limxn∈Ks:xn→x ρ(xn). It is easy to see that ρ†s(x) = ρ(x) when x ∈ Ks but now it is

defined on a smooth manifold Ks. We say ρ(x) is a generalized Morse function if the corresponding ρ†s(x)
is a Morse function for s = 1, · · · , d. Later we will show that this generalization leads to a stable α-tree
for a singular measure.

For Ks, let Cs = {x ∈ K : ∇Ts(x)ρ
†
s(x) = 0} be the collection of its critical points. Then the fact

that ρ†s(x) is a Morse function implies the eigenvalues of the Hessian matrix ∇Ts(c)∇Ts(c)ρ
†
s(c) are non-

zero for every c ∈ Cs. Note that we called gs(x) = ∇Ts(x)ρ
†
s(x) the generalized gradient and Hs(x) =

∇Ts(x)∇Ts(x)ρ
†
s(x) the generalized Hessian. For the case s = 0 (point mass), we define C0 = K0. The the

collection C =
⋃
s=1,··· ,d Cs is called the collection of generalized critical points of ρ(x). And each element

c ∈ C is called a generalized critical point.
Finally, we introduce the concept of reach (Federer, 1959; Chen et al., 2015a) for a smooth manifold

M. The reach of M is defined as

reach(M) = sup{r ≥ 0 : every point in M⊕ r has an unique projection onto M},

where A ⊕ r = {x : d(x,A) ≤ r}. One can view the reach as the radius of the largest ball that can roll
freely outside M. More details about reach can be found in Federer (1959); Chen et al. (2015a). Reach
plays a key role in the stability of a level set; see Chen et al. (2015a) for more details.

2.4. Estimating the α function and the α-tree. In this paper, we focus on estimating the α-trees via
the kernel density estimator (KDE):

p̂n(x) =
1

nhd

n∑
i=1

K

(
‖x−Xi‖

h

)
.
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Specifically, we first estimate the density by p̂n and then construct the estimator α̂n:

(6) α̂n(x) = P̂n ({y : p̂n(y) ≤ p̂n(x)})

where P̂n(A) is the empirical measure and L̂λ = {x : p̂n(x) ≥ λ}. Note that when x does not contain any

point mass of P , α̂n(x) = 1− P̂n
(
L̂p̂n(x)

)
.

To quantify the uncertainty in the estimator α̂n, we consider three error measurements. The first error
measurement is the L∞ error, which is defined as

‖α̂n − α‖∞ = sup
x
|α̂n(x)− α(x)|.

The L∞ error has been used in several cluster tree literatures; see, e.g., Eldridge et al. (2015); Chen
et al. (2016b). An appealing feature of L∞ error is that this quantity is the same (up to some constant)
as some other tree error metrics such as the merge distortion metric (Eldridge et al., 2015). And the
convergence in the merge distortion metric implies the Hartigan consistency (Eldridge et al., 2015), a
notion of consistency of a cluster tree estimator described in Hartigan (1981); Chaudhuri and Dasgupta
(2010); Chaudhuri et al. (2014). Thus, due to the equivalence between L∞ error and the merge distortion
metric, convergence in L∞ implies the Hartigan consistency of an estimated cluster tree.

The other two errors are the integrated error and the probability error (probability-weighted inte-
grated error). Both are common error measurements for evaluating the quality of a function estimator
(Wasserman, 2006; Scott, 2015). The integrated error is

‖α̂n − α‖µ =

∫
|α̂n(x)− α(x)|dx,

which is also known as the integrated distance or L1 distance. The probability error (probability-weighted
integrated error) is

‖α̂n − α‖P =

∫
|α̂n(x)− α(x)|dP (x),

is the integrated distance weighted by the probability measure, which is also known as L1(P ) distance.
The integrated error and the probability error are more robust than the L∞ error–a large difference in a
small region will not have much impact on these errors.

To quantify the uncertainty in the topology of α-tree, we introduce the notion of topological error,
which is defined as

P

(
Tα̂n 6

T
≈ Tα

)
= 1− P

(
Tα̂n

T
≈ Tα

)
.

Namely, the topological error is the probability that the estimated α-tree is not topological equivalent to
the population α-tree.

Finally, we define the following notations. For a smooth function p, we define ‖p‖`,∞ as the supremum
maximal norm of `-th derivative of p. For instance, ‖p‖0,∞ = supx∈K p(x), ‖p‖1,∞ = supx∈K ‖g‖max,
and ‖p‖2,∞ = supx∈K ‖H‖max, where g(x) = ∇p(x) and H(x) = ∇∇p(x) are the gradient and Hessian
matrix. For sets A and B, define A4B = (A\B) ∪ (B\A) to be their symmetric difference. A vector
α = (α1, . . . , αd) of non-negative integers is called a multi-index with |α| = α1 + α2 + · · · + αd and the
corresponding derivative operator is

(7) Dα =
∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
,

where Dαf is often written as f (α).
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3. Theory for Nonsingular Measures. To study the theory for nonsingular measures, we make
the following assumptions.
Assumptions.

(P1) p has a compact support K and is a Morse function with ‖p‖`,∞ <∞ for ` = 0, 1, 2.
(K1) K(x) has compact support and is non-increasing on [0, 1], and

∫
K(‖x‖)dx = 1 and third order

partial derivatives of K(‖x‖) exists.
(K2) Let

Kr =

{
y 7→ K(α)

(
‖x− y‖

h

)
: x ∈ Rd, |α| = r

}
,

where K(α) is defined in (7) and let K∗l =
⋃l
r=0Kr. We assume that K∗2 is a VC-type class. i.e. there

exists constants A, v and a constant envelope b0 such that

(8) sup
Q
N(K∗2,L2(Q), b0ε) ≤

(
A

ε

)v
,

where N(T, dT , ε) is the ε-covering number for an semi-metric set T with metric dT and L2(Q) is
the L2 norm with respect to the probability measure Q.

Assumption (P1) is a common condition to guarantee the stability of critical points (Chazal et al., 2014;
Chen et al., 2016b). Assumption (K1) is a standard condition on kernel function (Wasserman, 2006; Scott,
2015). Assumption (K2) is to regularize the complexity of kernel functions so that we have uniform bounds
on the density, gradient, and Hessian estimation; it was first proposed in Giné and Guillou (2002) and
Einmahl and Mason (2005) and later was used in various literatures such as Genovese et al. (2009, 2014);
Chen et al. (2015b).

We first study the error rates under nonsingular measures. For the case of λ-tree, the error rates are
well-studied and here we summarize them in the following theorem.

Theorem 2. Assume (P1, K1–2). Then

‖p̂n − p‖∞ = O(h2) +OP

(√
log n

nhd

)

‖p̂n − p‖µ = O(h2) +OP

(√
1

nhd

)

‖p̂n − p‖P = O(h2) +OP

(√
1

nhd

)

P

(
Tp̂n

T
≈ Tp

)
≥ 1− e−C0·nhd+4

,

for some C0 > 0.

The rate of consistency under L∞ error can be found in Chen et al. (2015a); Giné and Guillou (2002);
Einmahl and Mason (2005); the integrated error and probability error can be seen in Scott (2015); and
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topological error bound follows from Lemma 2 in Chen et al. (2016b) and the concentration of L∞ distance,
see, e.g., Theorem 9 in Chen et al. (2015a).

Now we turned to the consistency for α-tree. To derive the rate for the α-tree, we need to study the
convergence rate of estimating a level set when the level is the density value of a critical point (also known
as a critical level). The reason is that the quantity α(x) = 1−P (Lp(x)) is the probability content of upper
level set Lp(x) = {y : p(y) ≥ p(x)}. When p(x) = p(c) for some critical point c of p, we face the problem
of analyzing the stability of level sets at a critical level.

Theorem 3 (Level set error at a critical value). Assume (P1) and (K1–2) and d ≥ 2. Let λ be a
density level corresponds to the density of a critical point. Then

µ
(
L̂λ4Lλ

)
= OP

(
‖p̂n − p‖

d
d+1
µ

)
,

where µ is the Lebesgue measure.

The rate in Theorem 3 is slower than the usual density estimation rate. This is because when λ equals to
the density of a critical point, the boundary of Lλ hits a critical point. The regions around a critical point
has very low gradient, which lead to a slower rate of convergence. Note that it is well-known (Wasserman,
2006; Scott, 2015) that under assumption (P) and (K1),

‖p̂n − p‖µ = O(h2) +OP

(√
1

nhd

)
.

Remark 2. The Hausdorff distance when λ is the density of a saddle point is Haus
(
L̂λ, Lλ

)
=

OP (‖ĝn − g‖∞) , where

Haus(A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
and d(x,A) = infy∈A ‖x−y‖. Thus, the symmetric distance and the Hausdorff distance have different rate
of convergence. The reason is that the rate of Hausdorff distance is dominated by the uncertainty around
critical points, which is at the gradient error rate. When we consider the symmetric distance µ(A4B),
the uncertainty around critical point is a minor contribution that can be ignored.

Remark 3. Theorem 3 complements to many existing level set estimation theories. To our knowledge,
no literature has worked on the situation where λ equals to the density of a critical point. Theories of
level sets mostly focus on one of the following three cases: (i) the gradient on the boundary of level set
∂Lλ = {x : p(x) = λ} is bounded away from 0 (Molchanov, 1991; Tsybakov, 1997; Walther, 1997; Cadre,
2006; Laloe and Servien, 2013; Mammen and Polonik, 2013; Chen et al., 2015a), (ii) a lower bound on the
density changing rate around the level λ (Singh et al., 2009; Rinaldo et al., 2012), (iii) an (ε, σ) conditions
for density (Chaudhuri and Dasgupta, 2010; Chaudhuri et al., 2014). When λ equals to a critical level,
none of these assumptions holds.

Based on Theorem 3, we derive the convergence rate of α̂n.
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Theorem 4. Assume (P1) and (K1–2) and d ≥ 2. Let C = {x : ∇p(x) = 0} be the collection of
critical points and let an be a sequence of n such that ‖p̂n − p‖∞ = o(an). Then uniformly for all x,

α̂n(x)− α(x) =

OP (‖p̂n − p‖µ) , if |p(x)− p(c)| > an for all c ∈ C,

OP

(
‖p̂n − p‖

d
d+1
µ

)
, otherwise.

Theorem 4 shows the uniform error rates for α̂n. When the given point whose density is away from
critical levels, the rate follows the usual density estimation rate. When the given point has density value
close to some critical points, the rate is slow down by the low gradient areas around critical points. Note
that the sequence an is to make the bound uniformly for all x; to obtain an integrated error rate (and

the probability error rate) of α̂n, we can choose an = 1
logn

(
O(h2) +OP

(√
1
nhd

))
which leads to the

following result.

Corollary 5. Assume (P1) and (K1–2) and d ≥ 2. Then

‖α̂n − α‖∞ = O
(
h

2d
d+1

)
+OP

((
log n

nhd

) d
2(d+1)

)

‖α̂n − α‖µ = O(h2) +OP

(√
1

nhd

)

‖α̂n − α‖P = O(h2) +OP

(√
1

nhd

)

P

(
Tα̂n

T
≈ Tα

)
≥ 1− e−C0·nhd+2

,

for some C0 > 0.

By comparing Corollary 5 to Theorem 2, the only difference is the L∞ error rate. This is because
Theorem 4 proves that only at level of a critical point we will have a slower rate of convergence. Thus L∞
error will be slowed down by these points. However, the collection of points {x : p(x) = p(c) for some c ∈
C} has Lebesgue measure 0 so the slow rate of convergence does not translate to the integrated error and

probability error. The topological error follows from Theorem 2 and Lemma 1: T (p̂n)
T
≈ Tα̂n , T (p)

T
≈ Tα.

4. Singular Measures: Error Rates. Now we study the error rates under singular measures. When
the measure is singular, the usual (Radon-Nikodym) density cannot be defined. Thus, we cannot define
the λ-tree. However, as is discussed in Section 4, we are still able to define the α-tree. Thus, in this section,
we will focus on the error rates for the α-tree.

4.1. Analysis of the KDE under singular measures. To study the rate of convergence, we first inves-
tigate the ‘bias’ of smoothing in the singular measure. Let ph(x) = E(p̂n), which is also known as the
smoothed density.

Assumption.



12 Y.-C. CHEN

(S) For all s < d, Ks is a smooth manifold with positive reach.
(P2) ρ(x) is a generalized Morse function and there exists some ρmin, ρmax > 0 such that 0 < ρmin ≤

ρ(x) ≤ ρmax < ∞ for all x; moreover, for s > 0, ρ†s has bounded continuous derivatives up to the
third order.

Assumption (S) is to regularize the lower dimensional support to make sure the Hausdorff density ρ(x)
behaves well within each Ks. Assumption (P2) is a generalization of (P1) to singular distributions.

Lemma 6 (Bias of the smoothed density). Assume (S, P2). Let x ∈ Ks and define m(x) = min{` ≥
s : x ∈ K`} − s. Let C†` = (

∫
B`
K(‖x‖)dx)−1, where B` = {x : ‖x‖ ≤ 1, x`+1 = x`+2 = · · · = xd = 0} for

` = 1, · · · , d and C†0 = 1/K(0). Then for a fixed x, when h→ 0 and m(x) > 0,

C†τ(x)h
d−τ(x) · ph(x) = ρ(x) +

{
O(h2) +O(hm(x)), if m(x) > 0

O(h2), if m(x) = 0
.

Moreover, if K` ∩Ks 6= φ, for some s < `, then there exists ε > 0 such that

lim
h→0

sup
x∈K
|Cτ(x)hd−τ(x) · ph(x)− ρ(x)| > ε > 0.

Lemma 6 is a key result about the bias of the KDE. The scaling factor C†τ(x)h
d−τ(x) is to rescale the

smoothed density to make it comparable to the generalized density. The first assertion is a pointwise
convergence of smoothed density. In the case of m(x) > 0, the bias contains two components, the first
one O(h2) is the usual smoothing bias and the second component O(hm(x)) is the bias from ‘higher’
dimensional support. This is because the KDE is isotropic so the probability content outside Ks will also
be included, which causes this additional bias. The second assertion states that the smoothed density
does not uniformly converge to the generalized density ρ(x); together with the first assertion, we conclude
that the smoothing bias converges pointwisely but not uniformly. In what follows, we provide a concrete
example showing the failure of uniform convergence of a singular measure.

Example 1 (Failure of the uniform convergence). Here is an example for the failure of the uniform
convergence. We consider X from the same distribution as Figure 1: with probability 0.3, X = 2 and with
probability 0.7, X follows a standard normal. For simplicity, we assume that the kernel function is the
spherical kernel K(x) = 1

2I(0 ≤ x ≤ 1) and consider the smoothing bandwidth h → 0. This choice of

kernel yields C†1 = 1. Now consider a sequence of points xh = 1 + h
2 . Then the smoothed density at each

xh is

ph(xh) =
1

h
P (xh − h < X < xh + h)

=
1

h
P

(
1− h

2
< X < 1 +

3h

2

)
≥ 1

h
P (X = 1) =

3

10h
,

which diverges when h → 0. However, it is easy to see that τ(xh) = 1 and ρ(xh) = 7
10φ(xh) → 7

10φ(1)
which is a finite number. Thus, |E(ph(xh)− ρ(xh)| does not converge.
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Remark 4. The scaling factor in Theorem 6 C†τ(x)h
d−τ(x) depends on the support Ks where x resides

in. In practice we do not know τ(x) so we cannot properly rescale p̂n(x) to estimate ρ(x). However, we are
still able to ‘rank’ pairs of data points based on Theorem 6. To see this, assume we want to recover the
ordering of x1 and x2 using `(x) (i.e. `(x1) > `(x2) or `(x2) > `(x1) or `(x1) = `(x2)). When x1 and x2 are
both in Ks for some s, the scaling does not affect the ranking between them so the sign of ρ(x1)−ρ(x2) is
the same as the sign of ph(x1)−ph(x2). When x1 and x2 are in different supports (i.e. x1 ∈ Ks1 , x2 ∈ Ks2 ,
where s1 6= s2), ph(x1) and ph(x2) diverges at different rates so that eventually we can distinguish them.
Thus, the ordering of points (for most points) can still be recovered under singular measure. This is an
important property that leads to the consistency of α̂n under other error measurements.

Due to the failure of uniform convergence in the bias, the L∞ error of α̂n does not converge under
singular measures.

Corollary 7 (L∞ error for singular meausres). Assume (S, P2). When Kd∩Ks 6= φ, for some s < d,
‖α̂n − α‖∞ does not converges to 0. Namely, there exists ε > 0 such that

lim inf
n,h

P (‖α̂n − α‖∞ > ε) > 0.

The proof of Corollary 7 is a direct application of the failure of uniform convergence in smoothing bias
in Theorem 6. This corollary shows that for a singular measure, the L∞ error of the estimator α̂n does
not converges in general. Thus, there is no guarantee for the Hartigan consistency of the estimated α-tree.

4.2. Error measurements. Although Corollary 7 presents a negative result on estimating the α-tree,
in this section we will show that the estimator α̂n is still consistent under other error measurements. A
key observation is that there is a ‘good region’ where we have the uniform convergence and the ordering
of ph is consistent to the ordering of `.

Define Ks(h) = Ks\(
⋃
`<sK` ⊕ h) be the set Ks(h) that are away from lower dimensional support.

Define further K(h) =
⋃
s≤dKs(h), which is the union of each Ks(h). Later we will show that the set K(h)

is the ‘good region’.
In Lemma 6, the quantity

m(x) = min{` ≥ τ(x) : x ∈ K`} − τ(x)

plays a key role in determining the rate of smoothing bias. Only when m(x) = 1 we have a slower rate
for the bias. Thus, to obtain a uniform rate on the bias, we introduce the quantity

(9) mmin = inf
x∈K,m(x)>0

m(x).

If m(x) = 0 for all x ∈ K, we define mmin = 2. We define the following quantities:

(10)

δn,h,s = O(h2
∧
mmin) +OP

(√
log n

nhs

)
,

δ
(1)
n,h,s = O(h2

∧
mmin) +OP

(√
log n

nhs+2

)

δ
(2)
n,h,s = O(h2

∧
mmin) +OP

(√
log n

nhs+4

)
.
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Later we will see that these quantities act as the density estimation rate, the gradient estimation rate,
and the Hessian estimation rate.

Theorem 8 (Consistency of the KDE under singular measures). Assume (S, P2, K1–2). Let x ∈ Ks

and m(x) be defined in equation (9). Let C†` be the constants in Lemma 6. Let δn,h,s, δ
(1)
n,h,s, δ

(2)
n,h,s be defined

in equation (10). Then when h→ 0, nh
d+4

logn →∞,

sup
x∈Ks(h)

‖C†shs−dp̂n(x)− ρ(x)‖ = δn,h,s

sup
x∈Ks(h)

‖C†shs−d∇Ts(x)p̂n(x)−∇Ts(x)ρ(x)‖max = δ
(1)
n,h,s

sup
x∈Ks(h)

‖C†shs−d∇Ts(x)∇Ts(x)p̂n(x)−∇Ts(x)∇Ts(x)ρ(x)‖max = δ
(2)
n,h,s,

where ∇Ts(x) is taking gradient with respect to the tangent space of Ks at x.

Theorem 8 shows that after rescaling, the KDE is uniformly consistent within the good region Ks(h)
for the density, gradient, and Hessian estimation. A more interesting result is that, after rescaling, the
error rate is the same as the usual L∞ error rate in the s-dimensional case with a modified bias term
(bias is affected by the higher dimensional support).

Remark 5. (Non-convergence of the integrated distance of the KDE) One may wonder if the scaled

KDE (C†τ(x)h
τ(x)−d · p̂n(x)) converges to the generalized density ρ(x) under the integrated distance. In

general, the answer is false: ∫
‖C†τ(x)h

τ(x)−d · p̂n(x)− ρ(x)‖dx = OP (1).

To see this, consider a point x ∈ Ks and let K` be a higher order support (` > s) with x ∈ K`. Then the
region B(x, h) ∩ K` has `-dimensional volume at rate O(h`−s). For any point y ∈ B(x, h) ∩ K`, ρ(y) = `
but the KDE p̂n(y) is at rate OP (hs−d). Thus, the difference between scaled KDE and the generalized
density

C†`h
d−` · p̂n(y)− ρ(y) = OP (hs−`).

Such y has `-dimensional volume at rate O(h`−s) so the integrated error is at rate OP (hs−`)×O(h`−s) =
OP (1), which does not converge.

Based on Theorem 8, we derive a nearly uniform convergence rate of α̂n.

Theorem 9 (Nearly uniformly consistency of α-trees). Assume (S, P2, K1–2). Let Cs be the collection
of generalized critical points of Ks. Let δn,h,s be defined in equation (10) and rn,h,s be a quantity such that
δn,h,s
rn,h,s

= oP (1). Then when h→ 0, nh
d+2

logn →∞, unifmormly for every x ∈ Ks(h),

α̂n(x)− α(x) =

{
δn,h,s if infc∈Cs |ρ(x)− ρ(c)| > rn,h,s,

(δn,h,s)
s
s+1 otherwise.
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In Theorem 9, the convergence rate haves similarly to the rate in Theorem 8: for a given point x when
the α(x) is away from α value of a generalized critical point (a critical α level); when the α(x) is close to
a critical α level, we have a slower rate of convergence. The quantity rn,h,s behaves like the quantity an
in Theorem 4 which is introduced to guarantee the uniform convergence. To derive the consistency of α̂n
under the integrated error (and the probability error), we will choose rn,h,s =

δn,h,s
logn , which leads to the

following theorem.

Theorem 10 (Consistency of α-trees). Assume (S, P2 , K1–2). Let m(x) be the quantity in equation
(9). Then

‖α̂n − α‖P = δn,h,s,

‖α̂n − α‖µ = δn,h,s.

Namely, Theorem 9 shows that the quantity α̂n(x) is stable for majority points–this implies that the
ordering of points in K from p̂n is consistent to the ordering from `(x) in general.

Remark 6. In Theorem 10, α̂n converges under the integrated distance but in Remark 5, the scaled
KDE fails to converge. Both the scaled KDE and α̂n rescale the original KDE to adjust to the singular
measure. The rescaling in α̂n is with respect to the probability, which is bounded by 1 so the bad regions
does not contribute too much to the integrated error. On the other hand, the scaled KDE is unbounded so
the contribution from the bad regions is huge, causing the failure of convergence in the integrated error.

5. Singular Measures: Critical Points and Topology. Recalled from Section 2.1 that the topol-
ogy of an α-tree Tα is determined by its edge set E(Tα) and the relation among edges C ∈ E(Tα). And
the set Aα contains the levels where the upper level set Aa = {x : α(x) ≥ a} changes its shape. For a
nonsingular measure, it is well-known that Aα corresponds to the density value of some critical points.
For a singular measure, this is not true even when ρ(x) is a generalize Morse function.

Consider the example in Figure 3, the solid box in the left panel indicates a new type of ‘critical
points’, where a merge between elements in different edge sets occurs (change of the topology of level
sets occurs); by the definition of Aα, this corresponds an element in Aα but it is clearly not a generalized
critical point. We called this type of critical points the dimensional critical points (DCPs). In Figure 3,
the dimension d = 2 and we have a 2D spherical distribution mixed with a 1D singular measure that
distributed on the red curves (this red curve is K1). The bluish contours are density contours of the 2D
spherical distribution; the crosses are locations of local modes; and the solid box is the location of a DCP.
To see how the solid box changes the topology of level sets, we display two level sets in the middle and
right panels. In the middle panel, the level is high and there are two connected components (the gray area
and the solid curve) . In the right panel, we lower the level and now the two connected components are
merged at the location of the solid box. Although the location of the solid box does not belong to C, the
collection of generalized critical points, this point does corresponds to mergings of connected components
in the level sets. So this point corresponds to a element in Aa.

Here is the formal definition of the DCP. Recalled that C is the collection of generalized critical points
of ρ(x) and recalled from equation (1) that Aα is the collection of levels of α(x) such that the creation
of a new connected component or a merging of connected components occurs. For simplicity, we denote
A = Aα. For a ∈ A, define ξ(a) to be the integer such that Ks ⊂ Aa for all s ≤ ξ(a) and Kξ(a)+1 6⊂ Aa.
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Fig 3. An example for the dimensional critical points (DCPs). This is a d = 2 cases; there is a 2-dimensional spherical
distribution mixed with a 1-dimensional distribution on a line segment. Left: the blue contours are density contours of the 2D
spherical distribution and the red line segment is, K1, the support of the 1-dimensional singular distribution. The two crosses
are the density maxima at the 2D distribution and the 1D singular distribution. The black square indicates a DCP. To see
how DCP merges two connected compoments, we consider the middle and the right panel, which are level sets of α(x) at two
different levels. Middle: the level set Aa where the level a is high; we can see that there are two connected components (left
gray-black disk and the right line segment). Right: we move down the level a little bit; now the two connected components
merged so there is only one connected component. The merging point is the square point, which is defined as a DCP.

Definition 3. For a ∈ A, we say x is a dimensional critical point (DCP) if the following holds

(1) x ∈ K` for some ` ≤ ξ(a).
(2) there exist an edge C ∈ E(Tα) such that

(i) x /∈ C for all C ∈ C,

(ii) d(x,Cε)→ 0 when ε→ 0, where Cε = C ∩ Tα(a+ ε).

Note that x may not exist, in such a case, there is not DCP for the level a.

The first requirement is to ensure that x is on a lower dimensional support (K` : ` < ξ(a)). The second
requirement shows that the DCP x is not in the same edge C but the distance to the elements (connected
components) of the edge is shrinking to 0. By the definition of α(x), the first requirement implies that
x is contained in Aα(a + ε) for sufficiently small ε. Therefore, we can find C′ ∈ E(Tα) such that every
element C ∈ C′ contains x. Because x is (i) in the elements of edge C′, (ii) not in any element of edge C,
and (iii) the distance from x to the element of C converges to 0 when the level decreases to the level a,
this indicates that x is a merging point of edges C′ and C and the level a is their merging level.

Let CD be the collection of DCPs. For a point c ∈ CD, we denote α†(c) as the level of α function
corresponds to the DCP at c.

Remark 7 (Relation to the usual critical points). The definition of DCPs is very similar to those
saddle points (or local minima) contributing to the merging of level sets. A saddle point (or local minimum)
that contributes to a merging of level sets can be defined as a point x with the following properties

(1) x ∈ Kξ(a)+1.
(2) there exist two different edges C1,C2 ∈ E(Tα) such that

(i) x /∈ C1, x /∈ C2 for all C1 ∈ C1 and C2 ∈ C2,

(ii) d(x,C1,ε)→ 0 when ε→ 0, where C1,ε = C1 ∩ Tα(a+ ε),
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(iii) d(x,C2,ε)→ 0 when ε→ 0, where C2,ε = C2 ∩ Tα(a+ ε).

It is easy to see that for a Morse function, such a point x must be a saddle point or a local minimum.
Comparing this definition to the definition of DCPs, the main difference is the support where x lives in–
if x lives in a lower dimensional support K`, ` ≤ ξ(a), then it is a DCP; if x lives in the support Kξ(a)+1,
then it is a saddle point (or a local minimum).

Remark 8. Note that a DCP might be located at the same position as a critical point. Consider the
example in Figure 1 or Example 1. In this case, there is a DCP located at x = 2, which coincides with a local
mode. However, the DCP and the local mode corresponds to different elements in Aα = {1, 0.7, 0.0319};
the local mode corresponds to the level 1 and the DCP corresponds to 0.0319 because it represents the
merging of the two connected components. Note that the number 0.0319 = 0.7 × (Φ0(−2) + 1 − Φ0(2)),
where Φ0(x) is the cumulative distribution of a standard normal.

To analyze the properties of DCPs and their estimators, we consider the following assumptions.
Assumptions.

(A) The elements in the collection A are distinct and each element corresponds exactly to one critical
point or one DCP (but not both); and all DCPs are distinct.

(B) For every x ∈ ∂Ks (s > 0) and r > 0, there is y ∈ B(x, r) ∩Ks such that ρ(y) > ρ(x).
(C) There exists η0 > 0 such that

inf
c∈Cs

d(c,K`) ≥ η0,

for all ` < s and s = 1, 2, · · · , d.

The assumption (A) is to ensure that there will be no multiple topological changes occurring at the same
level so each level corresponds to only a merging or a creation. The assumption (B) is to guarantee that
there will be no creation of a new connected component at the boundary of a lower dimensional manifold.
Thus, any creation of a new connected component of the level set Aa occurs only at a (generalized) local
mode. The assumption (C) is to regularize (generalized) critical points so that they are away from lower
dimensional supports. This implies that when h is sufficiently small, all critical points will be in the ‘good
region’ K(h).

Lemma 11 (Properties of DCPs). Assume (S, P2, B). The DCPs have the following properties

• If a new connected component of Aa is created at a ∈ A, then there is a local mode c of ρ or an
element in K0 such that a = α(c). Namely, DCPs only merge connected components.
• For any value a ∈ A, either a = α(c) for some c ∈ C or there is a DCP associated to a.

Lemma 11 provides two basic properties of DCPs. First, DCPs only merge connected component. And
secondly, when the topology of connected components of α-level sets changes (when we decrease the level),
there must be either a critical point or a DCP that causes this. Namely, as long as we control the stability
of generalized critical points and DCPs, we control the topology of an α-tree. Thus, in what follows we
will study the stability of generalized critical points and DCPs.

Lemma 12 (Stablility of generalized critical points). Assume (S, P2, K1–2, C). Let c ∈ Ks be a
generalized critical point with n(s) negative eigenvalues of its generalized Hessian matrix. Let Ĉ be the
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collection of critical points of p̂n. Let m(c) = min{` ≥ s : c ∈ K`}− s. Then when h→ 0, nh
d+4

logn →∞ and

m(c) > 1, there exists a point ĉ ∈ Ĉ such that

‖ĉ− c‖ = O
(
h2

∧
m(c)

)
+OP

(√
1

nhs+2

)
‖α̂n(ĉ)− α(c)‖ = (δn,h,s)

s
s+1

and the estimated Hessian matrix at ĉ has n(c) + d− s negative eigenvalues. The quantity δn,h,s is defined
in equation (10).

Lemma 12 is a generalization of the stability Theorem of critical points given in Lemma 16 of Chazal
et al. (2014). The rate is similar to the ones in Theorem 8 and 9; we have a modified bias due to the
lower dimensional support and adaptive stochastic error rate to the dimension of the support where c
resides in. Due to the adaptive rate, generalized critical points are more stable when they are on a lower
dimensional support.

Lemma 13 (Properties of the estimated critical points). Assume (S, P2, K1–2, A, B). Assume there
are k DCPs. Let Ĉ be the critical points of p̂n. Define Ĝ ⊂ Ĉ be the collection of estimated critical points
corresponding to the generalized critical points. Let D̂ = Ĉ\Ĝ be the remaining estimated critical points.

Then when h→ 0, nh
d+4

logn →∞,

• D̂ ⊂ KC(h),

•
∣∣∣D̂∣∣∣ ≥ k, where |A| for a set A is the cardinality,

• D̂ contains no local mode of p̂n.

Lemma 13 provides several useful properties about the estimated critical points (critical points of the
p̂n). First, estimated critical points are all in the bad region KC(h) except those converging to generalized
critical points. Second, the number of estimated critical points will (asymptotically) not be less than the
total number of DCPs. Third, all estimated local modes are estimators of generalized critical points.

Lemma 14 (Stability of critical tree-levels from DCPs). Assume (S, P2, K1–2, A, B). Let c be a DCP

and α†(c) ∈ A be the associated level. Let D̂ be defined in Lemma 13. Then when h → 0, nh
d+2

logn → ∞,

there exists a point ĉ ∈ D̂ such that

‖α̂n(ĉ)− α†(c)‖ = δn,h,ξ(α0(c))+1,

where δn,h,s is defined in (10). Moreover, the Âα̂n(ĉ)+ε and Âα̂n(ĉ) are not topological equivalent.

Lemma 14 illustrates the stability of critical levels from DCPs– for every DCP, there will be an estimated
critical point that corresponds to this DCP and this estimated critical point also represents a merging of
estimated level sets.

Note that in Lemma 12, we derive the rate of convergence of the estimated (generalized) critical points
versus the population critical points but here in Lemma 14, we only derive the rate for the critical tree-
levels. The reason is that the critical points are solution to a certain function (gradient equals to 0) so we
can perform a Talyor expansion to obtain the convergence rate. But for the DCPs, they are not solutions
to some functions so it is unclear how to derive the convergence rate for the locations.
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Example 2 (An example of a DCP and its estimator). Consider again the example in Figure 1 and
Example 1; we have a singular distribution mixed with a point mass at x = 2 with probability 0.3 and
a standard normal with probability 0.7. In this case, as indicated, a DCP is located at x = 2 with level
0.0319 (see Remark 8). In every panel of the top row of Figure 1, there is a local minimum located in the
region x ∈ [1.5, 2]. Moreover, when we increases the sample size (from left to right), this local minimum
is moving toward x = 2. This local minimum is an estimated critical point ĉ ∈ D̂ described in Lemma 14
whose estimated α-level is approaching the α-level of the DCP at x = 2.

Theorem 15 (Topological error of α-trees). Assume (S, P2, K1–2, A, B, C). Then when h →
0, nh

d+4

logn →∞,

P

(
Tα̂n

T
≈ Tα

)
≥ 1− c0 · e−c1·nh

d+4
,

for some c0, c1 > 0.

Theorem 15 quantifies the topological error of the estimated α-tree under singular measures and the
error rate is the same as ‘nonsingular’ measures (Theorem 5). Compared to Corollary 5, the topological
error bound is very similar; both are exponential concentration bound with a factor of nhd+4, which
is the Hessian estimation error rates. The two concentration bounds are similar because as is shown in
Theorem 8, the main difference between singular and nonsingular measures is in the bias part, which
will not contribute to the concentration inequality as long as h → 0. Note that the Hessian error rate is
because we need to make sure the signs of eigenvalues of Hessian matrices around critical points remain
unchanged.

Remark 9. Theorem 15 also implies that, under singular measures, the cluster tree of the KDE p̂n
(estimated λ-tree) converges topologically to a population cluster tree defined by the function α(x). To

see this, recalled that by Lemma 1, Tp̂n
T
≈ Tα̂n . This together with Theorem 15 implies

P

(
Tp̂n

T
≈ Tα

)
≥ 1− c0 · e−c1·nh

d+4 → 1

under suitable choice of h. This shows that even when the population distribution is singular, the estimated
λ-tree still converges topologically to the population α-tree.

6. Discussion. In this paper, we study how the α-tree behaves under both singular and nonsingular
measures. In the nonsingular case, due to the slow rate of level set estimating around saddle points,
the error rate under the L∞ metric is slower than other metrics. But other error rates are the same as
estimating the λ-tree.

When the distribution is singular, we obtain many fruitful results for both the KDE and the estimated
α-tree. In terms of the KDE, we prove that

1. the KDE is a pointwisely consistent estimator after rescaling;
2. the KDE is a uniformly consistent estimator after rescaling for the majority part of the support;
3. the cluster tree from the KDE (estimated λ-tree) converges topologically to a population cluster

tree defined by α.

For the estimator α̂n(x) and the estimated α-tree, we show that
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1. α̂n is a pointwisely consistent estimator of α;
2. α̂n is a uniformly consistent estimator for the majority part of the support;
3. α̂n is a consistent estimator of α under the integrated distance and probability distance;
4. the estimated α-tree converges topologically to the population α-tree.

Moreover, we observe a new type of critical points–the DCPs–that also contribute to the merging of level
sets for singular measures. We study the properties of DCPs and show that estimated critical points from
the KDE approximate these DCPs.

Finally, we point out some possible future directions.

• Persistence homology. The cluster tree is highly related to the persistent homology of level sets
(Fasy et al., 2014; Bobrowski et al., 2014). In the persistent homology, a common metric for evaluat-
ing the quality of an estimator is the bottleneck distance (Cohen-Steiner et al., 2007; Edelsbrunner
and Morozov, 2012). Because the bottleneck distance is bounded by the L∞ metric (Cohen-Steiner
et al., 2007; Edelsbrunner and Morozov, 2012), many bounds on the bottleneck distance is derived
via bounding the L∞ metric (Fasy et al., 2014; Bobrowski et al., 2014). However, for α-trees under
singular measures, the L∞ does not converge (Corollary 7) but we do have topological consistency
(Theorem 15), which implies the convergence in the bottleneck distance. This provides an example
where we have consistency under the bottleneck distance and inconsistency of the L∞ metric. How
this phenomenon affects the persistence homology is unclear and we leave the study along this line
as a future work.
• Higher order homology groups. Our definition of DCPs is for connected components, which are

the zeroth order homology groups (Cohen-Steiner et al., 2007; Fasy et al., 2014; Bubenik, 2015).
For analyzing cluster trees, zeroth order homology groups are sufficient. However, critical points
also contribute to the creation and elimination of higher order homology groups such as loops and
voids which are not covered in this paper. Thus, a future direction is to study if the KDE is also
consistent in recovering higher order homology groups under singular measures.
• Minimax theory. In the seminal work of Chaudhuri and Dasgupta (2010); Chaudhuri et al. (2014),

they derived the minimax theory for estimating the λ-tree under nonsingular measures and they
prove that the the k-nearest neighbor estimator is minimax. When the distribution is nonsingular,
the α-tree and λ-tree are very similar so we expect the minimax theory to be the same. For singular
measures, however, it is unclear how to derive the minimax theory so we plan to investigate this in
the future.

APPENDIX A: PROOFS

Proof of Theorem 3. Let c be a critical point with λ = p(c). To prove this theorem, we partition
the difference L̂λ4Lλ into three regions:

An = (L̂λ4Lλ)
⋂
BC(c,R0),

Bn = (L̂λ4Lλ)
⋂

(B(c,R0)\B(c,Rn)),

Cn = (L̂λ4Lλ)
⋂
B(c,Rn),

where R0 is some small but fixed constant and Rn < R0 is a value that shrinks to 0 when n→∞, h→ 0.
Later we will provide an explicit expression for Rn. We only consider the case where c is a saddle point
because when c is a local mode or local minimum, the set Bn will be an empty set because Cn will cover
the fluctuations around c.
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Overview of the proof. Here is an overview for the proof. For region An, it is away from the
saddle point so there will be a minimal gradient bound on the boundary of Lλ. Thus, we can apply the
existing result from the literatures to bound the rate. Later we will show that this has the usual rate of
convergence OP (‖p̂n−p‖µ). For region Bn, the gradient lower bound on the boundary of Lλ is decreasing
at rate O(Rn) because we are moving close to the saddle point. However, as long as Rn does not shrink
too fast, we can still approximate the difference between L̂λ and Lλ by existing method and the rate will
be OP ( 1

Rn
‖p̂n−p‖µ). The final part Cn is just to control the variation of saddle point; we need to pick Rn

large enough so that the estimated saddle point ĉ will still be inside B(c,Rn). And this part contributes
to the error less than O(Rdn).

Thus, to sum up, the total error rate is bounded by

µ(L̂λ4Lλ) = OP (‖p̂n − p‖µ) +OP

(
1

Rn
‖p̂n − p‖µ

)
+O(Rdn),

so the optimal choice is Rn = O

(
‖p̂n − p‖

1
d+1
µ

)
, which yields the desired result. For simplicity, we use

notation Dλ = ∂Lλ and D̂n = ∂L̂λ.
Part 1: analysis for An. Recalled that g(x) = ∇p(x). For Lλ inside BC(c,R0), there exists a constant

g0 > 0 such that
inf
x∈Dλ

‖g(x)‖ ≥ g0 > 0.

Namely, every point on the boundary of Lλ has nonzero gradient. This is true when R0 is sufficiently
small (the only case the gradient can be close to 0 is when x ∈ Dλ is close to the saddle point c because
we assume all critical values are distinct).

The difference inside An can be approximated by integrating the local difference d(x, D̂λ) over the set
Dλ
⋂
BC(c,R0). By Lemma 2 in Chen et al. (2015a),

d(x, D̂λ) =
1

‖g(x)‖
‖p̂n(x)− p(x)‖(1 +OP (‖p̂n − p‖∞)).

Because the gradient ‖g(x)‖ is lower bounded for Dλ, we conclude that

µ(An) ≤ OP

(∫
Dλ∩BC(c,R0)

1

‖g(x)‖
‖p̂n(x)− p(x)‖dx

)
= OP (‖p̂n − p‖µ) .

Part 2: analysis for Bn. An important observation for the region B(c,Rn) is that the gradient lower
bound behaves at rate O(Rn). This is because g(c) = 0 (definition of saddle point) and the eigenvalues
of Hessian matrix are bounded away from 0. Thus, the gradient has to increase at least linearly when we
are moving away from a saddle point. Therefore, there exists a constant η0 > 0 such that

inf
x∈B(c,R0)\B(c,Rn)

‖g(x)‖ ≥ η0Rn.

Note that a simple choice is η0 being the half of the smallest eigenvalue of H(c).
Now again, we will apply Lemma 2 in Chen et al. (2015a) to approximate the local difference

d(x, D̂λ) =
1

‖g(x)‖
‖p̂n(x)− p(x)‖(1 +OP (‖p̂n − p‖∞)).
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Let D′λ = Dλ
⋂

(B(c,R0)\B(c,Rn)). Because we have a lower bound on the gradient, the quantity∫
D′λ

d(x, D̂λ)dx =

∫
D′λ

1

‖g(x)‖
‖p̂n(x)− p(x)‖dx

≤ OP

(
1

Rn

∫
D′λ

‖p̂n(x)− p(x)‖dx

)

= OP

(
1

Rn
‖p̂n − p‖µ

)
.

Note that to ensure
∫
D′λ
d(x, D̂λ)dx = µ(Bn), we need the normal compatibility property between D̂′λ

and D′λ (see Section 2.3 in Chen et al. 2015a or Chazal et al. (2007)). And this is guaranteed if their

Hausdorff distance is less than the reach of both D′λ and D̂′λ. The reach of D′λ decreases at rate O(Rn)

by Lemma 1 in Chen et al. 2015a and so is the reach of D̂′λ. Thus, as long as we have

(11) ‖p̂n − p‖∞ = o(Rn),

we have
∫
D′λ
d(x, D̂λ)dx = µ(Bn). Later we will show that our choice of Rn is ‖p̂n − p‖

1
d+1
µ so we do have

this result.
Part 3: analysis for Cn. It is well-known that the distance between estimated saddle point and true

saddle point follows the rate
‖ĉ− c‖ = O (‖ĝn(c)− g(c)‖) .

See, e.g., Theorem 1 in Chen et al. (2016a) and Lemma 16 in Chazal et al. (2014). Thus, all we need is
to choose Rn such that

(12) ‖ĉ− c‖ = O (‖ĝn(c)− g(c)‖) = o(Rn).

And it is easy to see that
µ(Cn) ≤ µ(B(c,Rn)) = O(Rdn).

Thus, putting altogether, we have

µ(L̂λ4Lλ) = µ(An) + µ(Bn) + µ(Cn) = OP (‖p̂n − p‖µ) +OP

(
1

Rn
‖p̂n − p‖µ

)
+O(Rdn),

And the optimal choice of Rn is Rn = ‖p̂n − p‖
1
d+1
µ , which leads to the rate

µ(L̂λ4Lλ) = OP

(
1

Rn
‖p̂n − p‖

d
d+1
µ

)
.

Moreover, this choice of Rn satisfies both equation (11) and (12).
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Proof of Theorem 4. Recalled that α̂n(x) = P̂n

(
L̂p̂n(x)

)
and α(x) = P

(
Lp(x)

)
. The main idea for

the proof is the following decomposition:

α̂n(x)− α(x) = P̂n

(
L̂p̂n(x)

)
− P

(
L̂p̂n(x)

)
︸ ︷︷ ︸

(A)

+ P
(
L̂p̂n(x)

)
− P

(
L̂p(x)

)
︸ ︷︷ ︸

(B)

+P
(
L̂p(x)

)
− P

(
Lp(x)

)
.︸ ︷︷ ︸

(C)

Part (A). This is just the difference between empirical measure and probability measure for a given

set. Thus, this term has rate OP

(√
1
n

)
.

Part (B). Because

(13) |P
(
L̂p̂n(x)

)
− P

(
L̂p(x)

)
| ≤ P

(
L̂p̂n(x)4L̂p(x)

)
,

we first investigate a more general bound on the right hand side. Let ε > 0 be a small number. For the
estimated level set L̂λ and L̂λ+ε, we want to control the quantity P (L̂λ4L̂λ+ε) when ε→ 0. Note that to
obtain the bound in equation (13), we pick λ = p(x) and ε = p̂n(x)− p(x).

An interesting result is that P (L̂λ4L̂λ+ε) differs if λ is a critical value (i.e. density value of a critical
point) or not. When λ is not a critical value, the gradient g(x) has a non-zero lower bound on ∂L̂λ and
we have the local approximation

d(x, L̂λ+ε) =
ε

‖g(x)‖
+ o(ε)

for each x ∈ ∂L̂λ. Thus, this implies

(14) P (L̂λ4L̂λ+ε) = O(ε).

When λ coincides with a critical value, then we need to split the region L̂λ4L̂λ+ε into three subregions:

An = (L̂λ4L̂λ+ε)
⋂
BC(c,R0),

Bn = (L̂λ4L̂λ+ε)
⋂

(B(c,R0)\B(c,Rε)),

Cn = (L̂λ4L̂λ+ε)
⋂
B(c,Rε),

where R0 is a non-zero constant and Rε is a constant converging to 0 when ε→ 0.
The idea is similar to the proof of Theorem 3. In An we apply the same local approximation for the

case where λ is not a critical value. Thus, P (An) = OP (ε). For Bn, we still have the local approximation
but now the rate is slowed down by the gradient. Using the same calculation as the Part 2 of the proof of
Theorem 3, we obtain the rate

P (Bn) = OP

(
ε

Rε

)
.
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The final part Cn is to control the area around critical points. This part contributes P (Cn) = OP (εd).
Thus, putting altogether, we have

(15)

P (L̂λ4L̂λ+ε) = P (An) + P (Bn) + P (Cn)

= OP (ε) +OP

(
ε

Rε

)
+OP (Rdε )

= OP

(
ε

d
d+1

)
when we choose Rn = O(ε

1
d+1 ).

Note that the area around critical point is at rate
√
ε. This is because density at critical point behaves

quadratically so difference in density by ε result in a difference in distance by
√
ε. And the choice Rn =

O(ε
1
d+1 ) is obviously slower than

√
ε, so equation (A) is valid.

Plugging-in equation (14) and into equation (13), we conclude that

• if the density at x, p(x), is not a critical value of p̂,

P
(
L̂p̂n(x)

)
− P

(
L̂p(x)

)
= OP (‖p̂n(x)− p(x)‖) ;

• if the density at x, p(x), is a critical value of p̂,

P
(
L̂p̂n(x)

)
− P

(
L̂p(x)

)
= OP

(
‖p̂n(x)− p(x)‖

d
d+1

)
.

Finally, note that for a point x, the case where its density p(x) might be a critical value of p̂n occurs
only when |p(x) − p(c)| ≤ ‖p̂n − p‖∞ for some critical point c of p. Recalled that an is a sequence of n
such that ‖p̂n − p‖∞ = o(an). Then the above bound can be rewritten as

P
(
L̂p̂n(x)

)
=

{
OP (‖p̂n(x)− p(x)‖) , if |p(x)− p(c)| > an for all c ∈ C.
OP

(
‖p̂n(x)− p(x)‖

d
d+1

)
, otherwise.

Note that this bound is uniformly for all x because the sequence an does not depend on x.
Part (C). This part is simply by applying Theorem 3, which shows

• if the density at x, p(x), is not a critical value of p,

P
(
L̂p(x)

)
− P

(
Lp(x)

)
= OP (‖p̂n − p‖µ) ;

• if the density at x, p(x), is a critical value of p,

P
(
L̂p(x)

)
− P

(
Lp(x)

)
= OP

(
‖p̂n − p‖

d
d+1
µ

)
.

Thus, putting everything together, we conclude that uniformly for all x,

α̂n(x)− α(x) =

OP (‖p̂n − p‖µ) , if |p(x)− p(c)| > an for all c ∈ C,

OP

(
‖p̂n − p‖

d
d+1
µ

)
, otherwise.

Note that the pointwise rate ‖p̂n(x) − p(x)‖ and the integrated rate ‖p̂n − p‖µ are at the same order so
we use the integrated rate.
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Proof of Lemma 6. Part 1: pointwise bias. Without loss of generality, we assume x ∈ Ks. We
first consider the case m(x) > 0. In this case, there is higher dimensional support Ks+m(x) such that

x ∈ Ks+m(x). Thus, for any r > 0, the ball B(x, r)
⋂
Ks+m(x) 6= φ.

Let µs(x) be the s-dimensional Lebesgue measure. Because the kernel function K is supported on [0, 1],

ph(x) = E (p̂n(x)) =

∫
1

hd
K

(
‖x− y‖

h

)
dP (y) =

d∑
`=0

∫
K`

1

hd
K

(
‖x− y‖

h

)
dP (y).

When h is sufficiently small, B(x, h)
⋂
K` = φ for any ` < s so the above expression can be rewritten as

ph(x) =
d∑
`=s

∫
K`

1

hd
K

(
‖x− y‖

h

)
dP (y).

Now by the definition of m(x), B(x, r)
⋂
K` = φ for every ` > s and ` < s + m(x). Thus, we can again

rewrite ph(x) as

(16)

ph(x) =

∫
Ks

1

hd
K

(
‖x− y‖

h

)
dP (y)

+

d∑
`≥s+m(x)

∫
K`

1

hd
K

(
‖x− y‖

h

)
dP (y)

=

∫
Ks

⋂
B(x,h)

1

hd
K

(
‖x− y‖

h

)
dP (y)︸ ︷︷ ︸

(I)

+
d∑

`≥s+m(x)

∫
K`

⋂
B(x,h)

1

hd
K

(
‖x− y‖

h

)
dP (y)

︸ ︷︷ ︸
(II)

.

Using the generalized density on the s-dimensional support, the first term equals to

(17)

(I) =

∫
Ks

⋂
B(x,h)

1

hd
K

(
‖x− y‖

h

)
dP (y)

=

∫
Ks

⋂
B(x,h)

1

hd
K

(
‖x− y‖

h

)
ρ(y)dy

Because we assume ρ(x) is at least three-times bounded differentiable, for any yKs that is close to x,

ρ(y) = ρ(x) + (y − x)T gs(x) + (y − x)THs(x)(y − x) + o(‖x− y‖2).

Plugging this into equation (17) and use the fact that K(‖x‖) is symmetric and Ks is an s-dimensional
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manifold,

(I) =

∫
Ks

⋂
B(x,h)

1

hd
K

(
‖x− y‖

h

)
ρ(y)dy

=

∫
x+uh∈Ks

⋂
B(x,h)

1

hd
K (‖u‖) ρ(x)du · hs

+

∫
x+uh∈Ks

⋂
B(x,h)

1

hd
K (‖u‖)uTHs(x)udu · hs+2 + o

(
hs+2

hd

)
= ρ(x) ·

∫
x+uh∈Ks

⋂
B(x,h)

1

hd
K (‖u‖) du · hs +O

(
hs+2

hd

)
.

Because Ks has positive reach,∫
x+uh∈Ks

⋂
B(x,h)

K (‖u‖) du =

∫
B(0,1)

K (‖u‖) du(1 +O(h2)) =
1

C†s
(1 +O(h2)).

Using this and the fact that τ(x) = s, the quantity (I) equals

(I) =
1

C†s
hs−dρ(x) +O(hs−d+2) =

1

C†τ(x)
hτ(x)−dρ(x) +O(hτ(x)−d+2).

To bound the second quantity (II), note that the set K`
⋂
B(x, h) has `-dimensional volume O(h`).

Thus, ∫
K`

⋂
B(x,h)

1

hd
K

(
‖x− y‖

h

)
dP (y) ≤ 1

hd

∫
K`

⋂
B(x,h)

K(0)ρmaxdy = O
(
h`−d

)
.

And the smallest possible ` is ` = s+m(x). Using this and the bound on (I), we have

ph(x) =
1

C†s
hs−dρ(x) +O(hs−d+2) +O(hs−d+m(x))

=
1

C†τ(x)
hτ(x)−dρ(x) +O(hτ(x)−d+2) +O(hτ(x)−d+m(x)).

Therefore, multiplying both side by C†shd−τ(x), we obtain

C†τ(x)h
d−τ(x) · ph(x) = ρ(x) +O(h2) +O(hm(x)),

which proves the first assertion. Note that if m(x) = 0, the we will not have the second term (II) so there
will be no dimensional bias O(hm(x)).

Part 2: failure of uniform convergence of the bias. Without loss of generality, let (s, `) be the
two lower dimensional support such that K`

⋂
Ks 6= φ and s < `.

Let x ∈ K`
⋂
Ks be a point on Ks. Then by the first assertion, we have

C†sh
d−s · ph(x) = ρ(x) +O(h2) +O(hm(x)).

Now consider a sequence of points when h → 0: {xh ∈ K` : ‖xh − x‖ = h2}. We can always find
such a sequence because K`

⋂
Ks 6= φ. For such a sequence, the set B(xh, h)

⋂
Ks converges to the set

B(x, h)
⋂
Ks in the sense that

P ((B(xh, h)
⋂
Ks)4(B(x, h)

⋂
Ks))

P (B(x, h)
⋂
Ks)

→ 0
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when h → 0. This is because the distance in the center of balls shrinks at rate h2 but the radius of the
ball shrinks at rate h.

Thus, ph(xh)
ph(x)

→ 1 when h→ 0. This implies that C†shd−s · ph(xh)→ ρ(x) so

C†τ(xh)h
d−τ(xh) · ph(xh) = C†`h

d−`) · ph(xh) = O(hs−`)

diverges. Thus, we do not have uniform convergence for the bias.

Before we proceed to the proof of Theorem 8, we first derive a useful lemma about the variance of the
KDE.

Lemma 16 (Pointwise variance). Assume (S, P2, K1–2). Then for x ∈ K(h),

Var(p̂n(x)) = O

(
1

nh2d−τ(x)

)
,

Var(Cτ(x)h
d−τ(x) · p̂n(x)) = O

(
1

nhτ(x)

)
.

Proof. Without loss of generality, let x ∈ Ks(h). This implies that B(x, h) ∩K` = φ for all ` < s. By
definition,

Var(p̂n(x)) = E(p̂n(x)− E(p̂n(x)))2

= E

(
1

nhd

n∑
i=1

(
K

(
‖Xi − x‖

h

)
− E

(
K

(
‖Xi − x‖

h

))))2

=
1

n2h2d
E

(
n∑
i=1

(
K2

(
‖Xi − x‖

h

)
− n

(
E2

(
K

(
‖Xi − x‖

h

)))))

≤ 1

nh2d
E
(
K2

(
‖Xi − x‖

h

))
=

1

nh2d

∫
B(x,h)

K2

(
‖y − x‖

h

)
dP (y)

=
1

nh2d

∑
`≤s

∫
B(x,h)∩K`

K2

(
‖y − x‖

h

)
ρ(y)dy

≤ 1

nh2d

∑
`≤s

∫
x+uh∈B(x,h)∩K`

K2(‖u‖)ρmaxdu · h`

= O

(
hs

nh2d

)
= O

(
1

nh2d−s

)
.

Note that in the last inequality, we use the transform y = x+uh and because x+uh has to be on K`, there
is only ` degree of freedom for u. Thus, the change of variable gives dy = du · hs. The above derivation is
for the case x ∈ Ks(h) so τ(x) = s. This proves the first assertion. The second assertion follows trivially
from the first assertion.
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Proof of Theorem 8. Without loss of generality, we pick a point x ∈ Ks(h). The difference has the
following decomposition:

(18) C†sh
s−d · p̂n(x)− ρ(x) = C†sh

s−d · (p̂n(x)− ph(x)) + C†sh
s−d · ph(x)− ρ(x).

The former part is the stochastic variation and the latter part is the bias. The bias is controlled by
Theorem 6:

C†sh
s−d · ph(x)− ρ(x) = O(h2

∧
mmin).

Thus, in what follows we will control the stochastic variation.
It is well-known that the quantity |p̂n(x)− ph(x)| can be written as an empirical process (Einmahl and

Mason, 2005; Giné and Guillou, 2002) and to control the supremum supx∈Ks Csh
d−s · |p̂n(x)− ph(x)|, we

need to uniformly bound the variance. By Lemma 16, the variance is uniformly bounded at rate O
(

1
nhs

)
.

Therefore, by the assumption (K2) and applying Theorem 2.3 in Giné and Guillou (2002), we have

sup
x∈Ks(h)

|C†shs−d · (p̂n(x)− ph(x)) = OP

(√
log n

nhs

)
,

which together with the bias term proves the desired result for density estimation.
The case of the gradient and the Hessian can be proved in a similar way as the density estimation case

so we ignore the proof. The only difference is that the stochastic part has variance 1
nhs+2 and 1

nhs+4 ; the
extra +2 and +4 in the power of h come from taking the derivatives.

Proof of Theorem 9. Recalled that

α̂n(x) = 1− P̂n({y : p̂n(y) ≥ p̂n(x)}).

Now we consider a modified version

α̃n(x) = 1− P ({y : p̂n(y) ≥ p̂n(x)}) = 1− P (Ω̂n(x)).

It is easy to see that |α̂n(x)− α̃n(x)| = OP

(√
1
n

)
. Thus, all we need is to compare α̃n(x) to α(x).

By definition of α(x),

(19)

1− α(x)

= P ({y : `(y) ≥ `(x)})

= P
(
{y : τ(y) > τ(x)}

⋃
{y : τ(y) = τ(x), ρ(y) ≥ ρ(x)}

)
= P ({y : τ(y) > τ(x)}) + P ({y : τ(y) = τ(x), ρ(y) ≥ ρ(x)})
= P (Ω(x)) + P (D(x)),

where Ω(x) = {y : τ(y) > τ(x)} and D(x) = {y : τ(y) = τ(x), ρ(y) ≥ ρ(x)}. Define E(x) = {y : τ(y) =
τ(x), ρ(y) < ρ(x)} and Φ(x) = {y : τ(y) < τ(x)} then Ω(x), D(x), E(x),Φ(x) form a partition of K.
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Using the fact that Ω(x), D(x), E(x),Φ(x) is a partition of K, we bound the difference

(20)

|α(x)− α̃n(x)| = P
(

Ω̂n(x)4(Ω(x) ∪D(x))
)

= P
(

(Ω(x) ∪D(x))\Ω̂n(x)
)

+ P
(

Ω̂n(x)\(Ω(x) ∪D(x))
)

= P
(

Ω(x)\Ω̂n(x)
)

+ P
(
D(x)\Ω̂n(x)

)
+ P

(
Ω̂n(x) ∩ (E(x) ∪ Φ(x))

)
= P

(
Ω(x)\Ω̂n(x)

)
+ P

(
D(x)\Ω̂n(x)

)
+ P

(
Ω̂n(x) ∩ E(x)

)
+ P

(
Ω̂n(x) ∩ Φ(x)

)
≤ P

((
Ω(x)\Ω̂n(x)

)
∩K(h)

)
︸ ︷︷ ︸

(I)

+P
((
D(x)\Ω̂n(x)

)
∩K(h)

)
︸ ︷︷ ︸

(II)

+ P
(

Ω̂n(x) ∩ E(x) ∩K(h)
)

︸ ︷︷ ︸
(III)

+P
(

Ω̂n(x) ∩ Φ(x) ∩K(h)
)

︸ ︷︷ ︸
(IV)

+P (KC(h))︸ ︷︷ ︸
(V)

.

Our approach is to first control (I) and (IV) and then control (II) and (III). Note that Lemma 17
controls the quantity (V):

(21) (V ) ≤ O(h2
∧
mmin).

Bounding (I) and (IV). We first focus on the set K(h) and Ks(h). For a point x ∈ Ks(h), it must
be at least h distance away from lower dimensional support. Thus, its estimated density p̂n(x) will not
contain any additional probability mass from lower dimensional support. Therefore, by Theorem 6 and
Lemma 16, the scaled density

(22) C†sh
d−s · p̂n(x)− ρ(x) = O(h2

∧
m(x)) +OP

(√
1

nhs

)
.

Moreover, we can easily extend equation (22) to a uniform bound

(23) sup
x∈Ks(h)

|C†shd−s · p̂n(x)− ρ(x)| = O(h2
∧
mmin) +OP

(√
log n

nhs

)
= δn,h,s.

This implies that for another point y ∈ K`(h) where ` < s,

(24) sup
x∈K(h)

p̂n(x)

p̂n(y)
= O(h · δn,h,s).

Namely, eventually we will be abel to separate points in different dimensional support if these points are
in the good region K(h). Thus, the contribution from lower dimensional support Ωn(x)

⋂
K(h) can be

well-estimated by Ω̂n in the sense that

(25) P
((

Ω(x)\Ω̂n(x)
)
∩K(h)

)
= O(h · δn,h,s).
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This bounds the quantity (I). And equation (24) also implies

(26) P
(

Ω̂n(x) ∩ Φ(x) ∩K(h)
)

= O(h · δn,h,s),

which bounds the quantity (IV). Moreover, since equation (24) is an uniform result in Ks(h), the bounds
in (I) and (IV) are uniform for all x ∈ K(h).

Bounding (II) and (III). We consider the case in (II) and (III) together. Again we consider x ∈ Ks.
Recalled the bound (II) and (III) are the probability within the regions(

D(x)\Ω̂n(x)
)
∩K(h), Ω̂n(x) ∩ E(x) ∩K(h).

Now define the region Ψ(x;h) = {y : τ(y) = τ(x)} ∩K(h). Thus, we have

(27)
(II) + (III) ≤ P

((
Ω̂n(x)4Ω(x)

)
∩Ψ(x;h)

)
= P

(
(Ω̂n(x) ∩Ψ(x;h))4(Ω(x) ∩Ψ(x;h))

)
.

The event

Ω̂n(x) ∩Ψ(x;h) = {y ∈ K(h) : p̂n(y) ≥ p̂n(x), τ(y) = τ(x), x ∈ K(h)}
=
{
y ∈ K(h) : C†sh

d−s · p̂n(y) ≥ C†shd−s · p̂n(x),

τ(y) = τ(x) = s, x ∈ K(h)
}
.

which can be viewed as the estimated density upper level set at level p̂n(x) of the support Ks(h) (because
τ(x) = s). Similarly, Ω(x)∩Ψ(x;h) is just the upper level set at level ρ(x) of the support Ks(h). Therefore,
the difference can be bounded by Theorem 4:

(II) + (III) ≤

{
δn,h,s, if infc∈Cs |p(x)− p(c)| > rn,h,s

(δn,h,s)
s
s+1 , otherwise

,

where rn,h,s is a deterministic quantity such that δn,h,s = oP (rn,h,s).
Thus, putting the above bound and equations (21), (25), and (26) into equation (20), we have

|α(x)− α̃n(x)| ≤ (I) + (II) + (III) + (IV ) + (V )

≤ O(h · δn,h,s) +O(h2
∧
mmin)

+

{
δn,h,s, if infc∈Cs |p(x)− p(c)| > rn,h,s

(δn,h,s)
s
s+1 , otherwise

=

{
δn,h,s, if infc∈Cs |p(x)− p(c)| > rn,h,s

(δn,h,s)
s
s+1 , otherwise

,

which along with the fact that |α̂n(x)− α̃n(x)| = OP

(√
1
n

)
proves the desired result.

Before we move on to the proof of Theorem 10, we first give a lemma that quantifies the ‘size’ of bad
regions.
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Lemma 17 (Size of good region). Assume (S, P2, K1–2). Define mmin from equation (9) and

m∗min = d−max{s < d : x ∈ Ks ∩Kd}.

Let µ be the Lebesgue measure. Then

µ(KC(h)) = O(hm
∗
min),

P (KC(h)) = O(hmmin).

Proof. Case of the Lebesgue measure. By assumption (S), all supports Ks have Lebesgue measure
µ(Ks) = 0 except Kd. Thus,

µ(KC(h)) = µ(KC
d (h)).

By the definition of m∗min, the quantity d −m∗min = max{s < d : x ∈ Ks ∩ Kd} denotes the support
with largest dimension that intersects the closure of Kd.

Note that for any two compact sets A,B with dimension d(a) and d(b) such that d(b) > d(a) and
A ∩B 6= φ, then the d(b)-dimensional Lebesgue measure

(28) B ∩ (A⊕ r) = O(rd(b)−d(a))

when r → 0. Thus, the set µ(Kd ∩ (Kd−m∗min
⊕ h)) shrinks at rate O(hm

∗
min).

Recalled that Kd(h) = Kd\(
⋃
`<dK` ⊕ h) and KC

d (h) = (
⋃
`<dK` ⊕ h). Because only sets in Kd has

non-zero Lebesgue measure, we have

µ(KC
d (h)) = µ(KC

d (h) ∩Kd)

= µ

(
Kd ∩ (

⋃
`<d

K` ⊕ h)

)

= µ

Kd ∩ (
⋃

`≤d−m∗min

K` ⊕ h)


≤

d−m∗min∑
`=0

µ (Kd ∩ (K` ⊕ h))

= O(hm
∗
min) + o(hm

∗
min),

which proves the first assertion.
Case of the probability measure. The case for the probability measure is very similar to the case

of Lebesgue measure but now we also need to consider lower dimensional support because of the singular
probability measure.
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First we expand the probability of bad regions by the follows:

(29)

P (KC(h)) = 1− P (K(h))

= 1− P (
⋃
`≤d

K`(h))

= 1−
d∑
`=0

P (K`(h))

= 1−
d∑
`=0

P

(
K`\

(⋃
s<`

Ks ⊕ h

))

=
d∑
`=0

P (K`)− P

(
K`\

(⋃
s<`

Ks ⊕ h

))

=
d∑
`=0

P

(
K`

⋂(⋃
s<`

Ks ⊕ h

))

=

d∑
`=0

P

(
K`

⋂(⋃
s<`

Ks ⊕ h

))
Note that we use the fact that P (A)− P (A\B) = B(A ∩B) in the last equality. We will show that

(30) P

(
K`

⋂(⋃
s<`

Ks ⊕ h

))
= O(hmmin).

for every `. For simplicity, we define KC
` (h) = K`

⋂(⋃
s<`Ks ⊕ h

)
.

Without loss of generality, we consider the support K` and KC
` (h). For simplicity, By the definition of

mmin, the largest lower dimensional support that intersects the closure K` has dimension lower than or
equal to K`−mmin

. Note that if ` < mmin then it is easy to see that there will be no other lower dimensional
support intersecting K` so K`(h) = K` and there is nothing to prove. So the set KC

` (h) can be rewritten
as

KC
` (h) = K`

⋂ ⋃
s≤`−mmin

Ks ⊕ h


Now by equation (28), the `-dimensional Lebesgue measure µ` on the set KC

` (h) is at rate

µ`
(
KC
` (h)

)
= O(hmmin) + o(hmmin).

By assumption (P2), the `-dimensional Lebesgue measure on K` implies that bound on probability measure
so we have

P
(
KC
` (h)

)
= O(hmmin).

Because this works for every `, by equation (29) and (30), we have

P (KC(h)) = O(hmmin),

which proves the result.
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Proof of Theorem 10. We first note that it is easy to see m∗min ≥ mmin so the rate of the integrated
error is bounded by the rate of the probability error. Thus, here we only prove the case for the probability
error.

Because K0, · · · ,Kd form a partition of K. We separately analyze the probability error at each K` and
then joint them to get the final bound.

For a support K`, we partition it into three subregions A,B,C, where

(31)

A = KC
` (h) = K`\K`(h)

B = K`(h) ∩ {x : min
c∈Cs
|ρ(x)− ρ(c)| ≤ rn,h,s}

C = K`(h) ∩ {x : min
c∈Cs
|ρ(x)− ρ(c)| > rn,h,s},

where rn,h,s =
h2

∧
mmin+ logn

nhs

logn satisfies the requirement
δn,h,s
rn,h,s

= oP (1).

Case A. By Lemma 17, P (A) = O(hmmin) and |α̂(x)− α(x)| ≤ 1. Thus,

(32)

∫
A
‖α̂n(x)− α(x)‖dP (x) = O(hmmin).

Case B. For set B, note that the generalized density ρ(x) behaves quadratically around critical points.
So difference in density level at rate δ results in the difference in the difference in distance at rate√
δ. Thus, the `-dimensional Lebesgue measure µ`(B) = O(

√
rn,h,s), which by assumption (P2) implies

P (B) = O(
√
rn,h,s). By Theorem 9, ‖α̂n(x)− α(x)‖ = δ

s
s+1

n,h,s uniformly for all x ∈ B. Thus, the error is

(33)

∫
B
‖α̂n(x)− α(x)‖dP (x) = OP

(√
rn,h,s · δ

s
s+1

n,h,s

)
.

Case C. For points in this region, directly applying Theorem 9 yields

(34)

∫
C
‖α̂n(x)− α(x)‖dP (x) = OP (δn,h,s) .

By adding up equation (32), (33), and (34) and use the fact that
√
rn,h,s ·δ

s
s+1

n,h,s = o(δn,h,s) and O(hmmin)
is part of δn,h,s, we obtain

(35)

∫
K`
‖α̂n(x)− α(x)‖dP (x) = OP (δn,h,s) .

This works for every K`, which proves the desired bound.

Proof of Lemma 11. First assertion. By assumption (B) and (M), the first assertion is trivially
true since when we move down the level α, the only situation to have a new connected component is when
α pass through the α-level of a local mode.

Second assertion. For level sets, there are only two situations of change in topology: creation of a
new connected component, and merging of two (or more) connected components. By the first assertion,
we only need to focus on the merging case.
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Assume a ∈ A be a level that only merging of connected component occurs. And recall ξ(a) is the
integer such that Ks ⊂ Aa for all s ≤ ξ(α) and Kξ(a)+1 6⊂ Aa. For ε sufficiently small, the difference
between Aa and Aa+ε is in Kξ(a)+1. Thus, when we move ε down, only the connected components in
Kξ(α)+1 extend. When the merging occurs, there are only two cases: two connected components in Kξ(a)+1

meet each other, or a connected components in Kξ(a)+1 hits a lower dimensional support. Note that there
is no higher dimensional support in Aa because their ordering is less than any point in Kξ(a). The first
case corresponds to a saddle point, which is an element in C. The second case corresponds to a DCP.
Thus, a must be either an α-level of a critical point or a DCP.

Proof of Lemma 12. Without loss of generality, let c be a critical point of ρ(x) on Ks. Namely, the
gradient in the tangent space gs(c) = ∇Ts(c)ρ(c) = 0. Note that ∇Ts(c) denotes taking gradient along the
tangent space of Ks at the point c ∈ Ks. By assumption (C), c is away from lower dimensional support
so when h is sufficiently small, c ∈ K(h). Thus, by Theorem 8,

(36)

C†sh
s−d · ∇Ts(c)p̂n(c) = C†sh

s−d · ∇Ts(c)p̂n(c)−∇Ts(c)ρ(c)

= O(h2
∧
m(c)) +OP

(√
1

nhs+2

)
.

Note that here we only need a pointwise bound for the gradient so the bias depends on m(c) rather than
mmin and we will not have the

√
log n in the OP term.

Let ĉ be an estimator to c. Recalled that Ns(c) denotes the normal space of Ks at the point c ∈ Ks

Note that the full gradient ∇ can be decomposed in to the gradient along the tangent space and the
normal space, i.e. ∇ = [∇Ts(c),∇Ns(c)]. Using Taylor expansion and ∇Ts(c)p̂n(ĉ) = 0, the left hand side of
equation (36) becomes

C†sh
s−d · ∇Ts(c) = O(h2

∧
m(c)) +OP

(√
1

nhs+2

)
= C†sh

s−d · ∇Ts(c)(p̂n(c)− p̂n(ĉ))

= C†sh
s−d · ∇∇Ts(c)p̂n(c)(c− ĉ) +O(‖ĉ− c‖2)

= C†sh
s−d · [∇Ts(c)∇Ts(c),∇Ns(c)∇Ts(c)]p̂n(c)(c− ĉ) +O(‖ĉ− c‖2)

It is easy to see that hs−d∇Ns(c)∇Ts(c)p̂n(c) diverges so the components of c− ĉ in the normal subspace

Ns(c) converges faster than in the tangent subspace Ts(c). The other term hs−d∇Ts(c)∇Ts(c)p̂n(c) converges
to the generalized Hessian at c whose eigenvalues are bounded away from 0 Thus, the inverse of

hs−d∇Ts(c)∇Ts(c)p̂n(c)

exists, and thus the component of c− ĉ on the tangent space Ts(c) is at rate O(h2
∧
m(c)) +OP

(√
1

nhs+2

)
.

This proves that c− ĉ = O(h2
∧
m(c)) +OP

(√
1

nhs+2

)
.

To derive the rate of |α̂n(ĉ)− α(c)|, note that we can decompose it into

|α̂n(ĉ)− α(c)| ≤ |α̂n(ĉ)− α̂n(c)|+ |α̂n(c)− α(c)|.
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Because the KDE around ĉ behaves quadratically, the difference in distance results in square of difference
in density. Thus, the second term dominates the first term. The quantity |α̂n(c)− α(c)| can be bounded

by Theorem 9, which is at rate δ
s
s+1

n,h,s.
For the eigenvalues, it is easy to see that when we are moving away from c along a normal direction

within Ns(c), the estimated density is going down. Thus, these (d − s) directions must have negative
eigenvalues (dimension of the normal subspace is d − s). And the original generalized Hessian matrix at
c has n(c) negative eigenvalues. So the total number of negative eigenvalue of the Hessian matrix of p̂n
at c is n(s) + d − s. Because ĉ is converging to c, the sign of negative eigenvalues also converges, which
proves the lemma.

Proof of Lemma 13. First assertion: location of DCPs. By Theorem 8, the scaled KDE are
uniformly consistent in both density estimation and gradient estimation in the good region K(h).

The estimated dimensional critical points are points satisfying ∇p̂n(x) = 0. Therefore, when δ
(2)
n,h,d

P→ 0,
the only area in K(h) such that ∇p̂n(x) = 0 will be the regions where ∇Tτ(x)(x)ρ(x) is small. This can only
be the regions around generalized critical points. As a result, we cannot have any dimensional critical

points within K(h) when δ
(2)
n,h,d

P→ 0.
Second assertion: number of estimated critical points. This follows directly from Lemma 14

and Assumption (A) and the fact that δ
(2)
n,h,d

P→ 0.
Third assertion: no local modes. By assumption (B), the only case where a creation of a connected

component occurs is a (generalized) local mode. These population local modes will correspond to elements
in Ĉ. Thus, any estimated local mode in D̂ does not have a population target so they are away from the
population local modes and by first assertion, it has to be in the bad region KC(h). It is easy to see that
we cannot have any estimated local mode under such a constraint when we have the gradient and Hessian

consistency of the scaled KDE (δ
(2)
n,h,d

P→ 0).

Proof of Lemma 14. Let c be a DCP and a0(c) be the corresponding α-level of merging. By as-
sumption (A), c is a unique point for α0(c) ∈ D and for any ε that is sufficiently small, there is an unique
connected component Cε ∈ Aa0(c)+ε and a support K` with ` ≤ ξ(a0(c)) such that x ∈ K`, c /∈ Cε and
d(c, Cε)→ 0 when ε→ 0.

The idea of the proof is to find â+ and â− such that in the set Aâ+ , the merging has not yer happened
and in the set Aâ− , the merging has happened. Then we know the actual value ân(ĉ) lies within the
interval [Aâ− ,Aâ+ ].

Case: lower bound. To derive the upper bound, recalled that δn,h,s = O(h2
∧
m(x)) + OP

(√
logn
nhs

)
.

By Theorem 9, any point y ∈ K(h) satisfies |α̂n(y) − α(y)| = δn,h,τ(y). Thus, for any Cε defined as the
connected component within Aa0(x)+ε that is about to merge with K`,

inf
y∈Cε

α̂n(y) > a0(x)− δn,h,ξ(a0(c))+1.

This is because infy∈Cε α(y) ≥ a0(c) by definition and for Cε ∩ K(h), we have the uniform bound from
Theorem 9. For y ∈ Cε\K(h), the estimated α̂n(y) will be influenced by K`, which is a lower dimensional
support. So the estimated α value will be more than a0(c) − δn,h,ξ(a0(c))+1. Thus, we can pick the lower
bound Aâ− = a0(c)− δn,h,ξ(a0(c))+1.
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Case: upper bound. To prove the upper bound, the idea is very simple. We will show that when the
α-level is high enough, Âa′ will not contain the set C̃`⊕ h where c ∈ C̃` and C̃` is a connected component
of Aa0 .

Let C̃` be defined as the above. Because C̃` is a subset of
⋃
s≤`Ks, the set Cε∩ (C̃`⊕h) is always within

the bad region KC(h). Thus, P (Cε ∩ (C̃` ⊕ h)) ≤ P (KC(h)) = O(m2
∧
mmin) by Lemma 17.

Now we consider the boundary ∂(C̃`⊕h) = {x : d(x, C̃`) = h}. Because P (Cε∩(C̃`⊕h)) ≤ O(m2
∧
mmin),

sup
x∈∂(C̃`⊕h)

α(x) ≤ a0(c) +O(m2
∧
mmin).

Moreover, outside the boundary ∂(C̃` ⊕ h) we can apply Theorem 9 to bound α̂n(x)− α(x). Thus,

sup
x∈∂(C̃`⊕h)

α̂n(x) ≤ a0(c) +O(m2
∧
mmin) + δn,h,ξ(a0(c))+1.

This suggests that Aâ+ = a0 +O(m2
∧
mmin) + δn,h,ξ(a0(c))+1 = a0 + δn,h,ξ(a0(c))+1 because O(m2

∧
mmin) is

part of the term δn,h,ξ(a0(c))+1.
Thus, the quantity α̂n(ĉ) must lie within a0 ± δn,h,ξ(a0(c))+1, which is the desired bound. Because there

is a topological change of upper level set for p̂n at such α̂n(ĉ), ĉ must be a critical point of p̂n. This
completes the proof.

Proof of Theorem 15. The main idea is to show that there exists a constant a0 > 0 such that

(37) max
j=0,1,2

max
s=0,··· ,d

|δ(j)n,h,s| < a0 =⇒ Tα̂n
T
≈ Tα.

Note that δ(0)n,h,s = δn,h,s.
By assumption (A), there exists a constant a1 = min{|α1 − α2| : α1, α2 ∈ A, α1 6= α2} > 0. Without

loss of generality, let the elements in A be α1 > α2 > · · · > αm (assume A has m elements) and c(αj) be
the corresponding critical point or the DCP for level αj . By Lemma 12 and 14, we can find a sequence of
points ĉ1, · · · , ĉm such that each ĉj is the estimator to c(αj). And again by Lemma 12 and 14, when

(38) max
s=0,··· ,d

|δ(0)n,h,s| <
a1
2
,

we have
α̂n(ĉ1) > · · · > α̂n(ĉm).

Namely, the ordering will be the same when maxs=0,··· ,d |δ
(0)
n,h,s| is sufficiently small. Thus, we need to

prove that (1) no other connected component of α̂n and (2) there is no other merging point to get the
topological equivalent.

By Lemma 13, there will be no estimated local mode in D̂ so there will be no extra connected component.
In the proof of Lemma 14, we have shown that each estimator of a DCP corresponds to a merging in
the estimated level sets and similarly if connected components are merged at a saddle point or a local
minimum, the corresponding estimator will be a merging point. To use the conclusion of Lemma 12, we

need the uniform consistency in both gradient and Hessian estimation. Namely, we need δ
(1)
n,h,s, δ

(2)
n,h,s to

be sufficiently small. The gradient consistency is to regularize the positions of estimators of generalized
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critical points and the bound on Hessian matrix is to guarantee that the eigenvalues remain the same sign.
Thus, to apply Lemma 12, there is some a2 > 0 such that the conclusion of Lemma 12 holds whenever

(39) max
j=1,2

max
s=0,··· ,d

|δ(j)n,h,s| < a2.

To use Lemma 14, we need δ
(1)
n,h,s to be sufficiently small; this comes from Theorem 9.

Combining equation (38) and (39), we obtain equation (37). For the quantity δjn,h,s, the slowest rate
occurs at j = 2 and s = d. Thus, there are some constants c1, c2 > 0 such that

(40) max
j=0,1,2

max
s=0,··· ,d

|δ(j)n,h,s| < c1h
2
∧
m(x) + c2Zd,

where Zd = OP

(√
logn
nhd+4

)
is the stochastic variation. Recalled that in the proof of Theorem 8, Zd is

Zd = sup
x∈K
‖∇∇p̂n(x)−∇∇ph(x)‖max.

By assumption (K2) and the Talagrand’s inequality (Giné and Guillou, 2002; Einmahl and Mason, 2005),
there is constants c3, c4 > 0 such that when nhd+4 →∞

(41) P (Zd > t) < c3 · e−c4·nh
d+4·t2 .

Thus, when Using equation (40) and (41), when h2
∧
m(x) < a0

c1
,

P (Tα̂n
T
≈ Tα) ≥ P ( max

s=0,··· ,d
|δ(1)n,h,s| < a0)

≥ 1− P
(
Zd >

a0
c2

)
≥ 1− c3 · e

−c4·nhd+4·(a0
c2

)2

= 1− c3 · e−c5·nh
d+4
,

where c5 = c4 · (a0c2 )2 > 0. This proves the desired result.
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