
Confidence band for persistent homology of
density filtration on Rips complex

Jaehyeok Shin
Department of Statistics

Carnegie Mellon University
jaehyeos@andrew.cmu.edu

September 22, 2016

Bobrowski et al. [2014] provided a new way to estimate persistent homology of upper level set density
filtration. Instead of directly calculate persistent homology of KDE filtration on Rd which require grid-
approximation, they suggest calculate persistent homology of KDE filtration on Rip complex whose param-
eter is equal to the bandwidth of KDE. They showed that under some regularity condition, their estimate
is consistent up to a small error coming from discrete nature of homology. In this report, I provide a brief
idea about how to calculate confidence band for their estimate. In section 1, I provide a short summary
of Bobrowski et al. [2014] for persistent homology of density filtration part only. In section 2, I suggest a
simple way to calculate confidence band for their estimate.

1 Summary of Bobrowski et al. [2014]

In Bobrowski et al. [2014], the authors focused on estimating homology of upper level set and persistent
homology of upper level set filtration with respect to density and regression functions. In this section, I will
only focus estimating persistent homology of upper level set density filtration case.

1.1 Notation and Assumptions

Let p be the density of the observed data Dn := {X1, . . . ,Xn} ⊂Rd . The (upper) level sets of p is defined by

DL :=
{

x ∈ Rd : p(x)≥ L
}

(1)

As a basic block, we will use the kernel density estimator defined by

p̂r(x) :=
1

nrdCK

n

∑
i=1

Kr(x−Xi) where Kr(x) := K(x/r)
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Define an estimator of DL

D̂L(n,r) :=U(D̂
L
n ,r) :=

⋃
X∈D̂

L

n

Br(X) (2)

where D̂
L
n := {Xi : p̂r(Xi)≥ L;1≤ i≤ n}, and Br(X) is the ball centered at X with radius r

We need some assumptions on kernel function K, density p, and level L.

Definition 1. Let p : Rd → R be the density function and DL be the upper level set of p.

1. We say that L is a homological regular value if there exists ε > 0 such that for every v2 ≤ v1 in
(L− ε,L+ ε) the map Hk(Dv1)→ Hk(Dv2) induced by inclusion is an isomorphism for every k ≥ 0.
Otherwise, we say that L is a homological critical value.

2. A function f is called tame if it has a finite number of homological critical values, and rank(Hk(DL))
is finite for all L and k.

Definition 2. Given a level L > 0 and ε ∈ (0,L/2), we say that L is ε-regular if

∂DL+2ε ∩∂DL+ 3
2 ε

= ∂DL+ 1
2 ε
∩∂DL = ∂DL∩∂DL− 1

2 ε
= ∂DL− 3

2 ε
∩∂DL−2ε = /0

where ∂ is the set boundary.

Assumption 1. The marginal density p of X satisfies the following conditions,

1. supp(p) is bounded.

2. p is tame.

3. pmax := sup
x∈Rd

p(x)< ∞

4. Every L are ε-regular, and the set DL ⊂ Rd are bounded.

Assumption 2. The kernel function K : Rd → R satisfies the following conditions,

1. supp(K)⊂ B1(0)

2. K(0) = 1 and K(x)≤ 1, ∀x

3.
∫

K :=CK ∈ (0,1)
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1.1.1 Key results

Lemma 1. For every L > 0,ε ∈ (0,L), if r→ 0 and nrd → ∞, then for large enough n we have

P
(

D↓L+ε
(2r)⊂ D̂L(n,r)⊂ D↑L−ε

(2r)
)
≥ 1−3ne−C∗ε nrd

(3)

where ∂Dr
L :=

⋃
x∈∂DL

Br(x), r > 0, D↑L(r) := DL∪∂Dr
L, and D↓L(r) := DL \∂Dr

L

Using the above lemma, we can estimate persistent homology of level sets filtration. Let PH∗(p) be the
persistent homology of p constructed by the continuous filtration {DL}L∈R. Define

Nε := sup
x∈Rd
dp(x)/2εe, Lmax = 2εNε , and Li = Lmax−2iε

and consider the following discrete filtration {
D̂Li(n,r)

}
i∈Z

(4)

Denoting the persistent homology of the above filtration by P̂H
ε

∗(p), the authors proved the following theo-
rem.

Theorem 2. If the assumption 1 and 2 hold, and r→ 0, nrd → ∞, then

P
(

dB

(
P̂H

ε

∗(p),PH∗(p)
)
≤ 5ε

)
≥ 1−3Nεne−C?

ε/2nrd
, (5)

where

C?
ε =

ε2CK

3pmax + ε
, and dB is the bottleneck distance.

In particular, if nrd ≥ D logn with D > (C?
ε/2)

−1, we have

lim
n→∞

P
(

dB

(
P̂H

ε

∗(p),PH∗(p)
)
≤ 5ε

)
= 1

Proof. Define a discrete version of the filtration (4) given by {DLi+ε}i∈Z, and denote the persistent homol-
ogy of it by PHε

∗(p). Since {DLi+ε}i∈Z is a discrete approximation of the continuous filtration {DL}L∈R,
with step size 2ε , the maximum difference between PH∗(p) and PHε

∗(p) would be the step size, and thus we
have

dB (PHε
∗(p),PH∗(p))≤ 2ε

Thus, it is enough to show that with a high probability, we have

dB

(
P̂H

ε

∗(p),PHε
∗(p)

)
≤ 3ε

Let E be the event that we have the following sequence of inclusions

DL0+ε DL1+ε DL2+ε · · ·
←↩

←
↩ ←↩

←
↩ ←↩

←
↩

D̂L0(n,r) D̂L1(n,r) D̂L2(n,r)
, (6)
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Since we assume every L is ε-regular, if r is small enough, by applying Lemma 1 Nε times, we can show
that if n is large enough

P(E)≥ 1−3nNεe−C?
ε/2nrd

Using the notation in Chazal et al. [2009], (6) implies that {D̂Li(n,r)}i∈Z and {DLi+ε}i∈Z are weakly ε-
interleaving. Using Theorem 4.3 in [chazal2009proximity] yields

dB

(
P̂H

ε

∗(p),PHε
∗(p)

)
≤ 3ε (7)

2 How to calculate confidence band

In this section, we tried to provide a simple way how to calculate confidence band of the persistent homology
of filtration {

D̃L(n,r)
}

L∈R
(8)

where D̃L(n,r) is the same as Eq.(2) except D̃L(n,r) := Rd for ∀L≤ 0.

Let P̃H∗(p) be the corresponding persistent homology, and let PH∗(pr) be the persistent homology of upper
level set filtration of pr := E(p̂r). Our intermediate objective is find Ĉα such that

P
(

dB

(
P̃H∗(p),PH∗(pr)

)
> Ĉα/

√
n
)
→ α

We need further assumption on K.

Assumption 3. The support of kernel function K is exactly equal to unit ball.

Theorem 3. If the assumption 1, 2, and 3 hold,

dB

(
P̃H∗(p),PH∗(pr)

)
≤ ‖ p̂r− pr‖∞ + ĉr (9)

where ĉr := max
i

sup
‖x−Xi‖≤r

|p̂r(x)− p̂r(Xi)|

Proof. By the strong stability theorem in Chazal et al. [2009], it is enough to show that

DL ⊂ D̃L−‖ p̂r−pr‖∞−ĉr , and D̃L ⊂ DL−‖ p̂r−pr‖∞−ĉr , for ∀L ∈ R

For the first part, if L < ‖ p̂r− pr‖∞, then DL ⊂ D̃L−‖ p̂r−pr‖∞−ĉr = Rd . If not,

x ∈ DL⇔ pr(x)≥ L

⇒ p̂r(x)≥ L−‖ p̂r− pr‖∞(> 0)

⇒∃Xi such that ‖x−Xi‖ ≤ r (because p̂r(x) is positive and supp(K) is equal to unit ball.)

⇒∃Xi such that ‖x−Xi‖ ≤ r & p̂r(Xi)≥ L−‖ p̂r− pr‖∞− ĉr

⇔ x ∈ D̃L−‖ p̂r−pr‖∞−ĉr
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For the second part, if L < ‖ p̂r− pr‖∞, then D̃L ⊂ DL−‖ p̂r−pr‖∞−ĉr = Rd . If not,

x ∈ D̃L⇔∃Xi such that ‖x−Xi‖ ≤ r & p̂r(Xi)≥ L

⇒∃Xi such that ‖x−Xi‖ ≤ r & p̂r(x)≥ L− ĉr

⇒ pr(x)≥ L−‖ p̂r− pr‖∞− ĉr

⇔ x ∈ DL−‖ p̂r−pr‖∞−ĉr

Since we can use bootstrap to estimate Ĉα which satisfies

P
(√

n‖pr− p̂r‖∞)> Ĉα

)
→ α as n goes to infinity and r is fixed

we can construct an asymptotic confidence band for the persistent homology via the following theorem.

Theorem 4.

P
(

dB

(
P̃H∗(p),PH∗(pr)

)
> Ĉα/

√
n+ ĉr

)
→ α (10)

Proof. By the theorem 3,

P
(

dB

(
P̃H∗(p),PH∗(pr)

)
> Ĉα/

√
n+ ĉr

)
≤ P

(
‖pr− p̂r‖∞ + ĉr > Ĉα/

√
n+ ĉr

)
= P

(√
n‖pr− p̂r‖∞ > Ĉα

)
→ α

Corollary 5. If we replace D̃L(n,r) with R̃L(n,r), the Rips complex with the radius r constructed on D̂
L
n :=

{Xi : p̂r(Xi)≥ L;1≤ i≤ n}, then

P
(

dB

(
P̃H

R
∗ (p),PH∗(pr)

)
> Ĉα/

√
n+ ĉ√2r

)
→ α (11)

where P̃H
R
∗ (p) is the persistence diagram of

{
R̃L(n,r)

}
L∈R

Proof. By the nerve theorem, we know that the Čech complex C̃L(n,r) :=C(D̂
L
n ,r) is homotopy equivalent

to the homology of the union of balls D̃L(n,r). From the relationship C̃L(n,r)⊂ R̃L(n,r)⊂ C̃L(n,
√

2r), the
corollary follows.

Remark 6. We can use different value h for bandwidth of kernel density estimator and r for radius of ball
centered at each data point if h≤ r.
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2.1 Toy examples

By the corollary 5 , we can calculate persistent homology for the estimated density function filtration on the
Rips complex with radius r. To choose appropriate r, we used the diagram of the usual Rips filtration. Since
our filtration is based on Rips complex with radius r, our diagram can only capture the persistent homology
classes whose birth time is smaller than r and death time is greater than r in the Rips diagram. Once the
Rips diagram reveals some persistent homology classes whose lifetimes are longer than the others, we can
choose appropriate r which allow us to check the significance of these classes.

We calculated Rips diagram, density diagram, and our diagram over 6 toy data sets. The number of data is
equal to 300. 330, 500, or 530 depending on the number of circles and the existence of outliers. The alpha
level is set to 0.2. The below figures illustrate performances of our methods for several situations.
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Figure 1: The data points are uniformly selected from a circle.
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Figure 2: The data points are uniformly distributed over a circle with small gaussian noise.
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Figure 3: The data points are uniformly selected from a circle. Few outliers are added to the data set.
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Figure 4: The data points are uniformly selected from two circles.
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Figure 5: The data points are uniformly distributed over two circles with small gaussian noise.
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Figure 6: The data points are uniformly selected over two circles. Few outliers are added to the data set.
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