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Michael Lesnick, Universality of the Homotopy Interleaving Distance
Homotopy interleaving is a homotopy-invariant analogues of interleavings.

Whereas ordinary interleavings can be interpreted as pairs of “approximate iso-
morphisms” between filtered spaces, homotopy interleavings can be viewed as
pairs of “approximate weak equivalences”. Homotopy interleaving distance dHI
is an universal pseudometric satisfying natural stability and homotopy invari-
ance axioms. Furthermore, it can strengthen Sheehy’s approximation results
for sparse Rips filtrations to topological level, formulate a conjectural persistent
analogue of the Whitehead Theorem, and a space-level formulation of Sheehy’s
homological persistent nerve theorem.

Peter Bubenik, Discovering Geometry using Topological Data Analysis
He gave an introduction on how to analyze data using landscapes. He ran

analysis on two dataset: constant metric space and Alzheimers Disease Neu-
roimaging Initiative (ADNI).

When space with constant curvature−1(hyperbolic), 0(euclidean), 1(spherical)
are considered, triangles from hyperbolic are thinner than from euclidean, and
triangles from spherical are fatter than from euclidean. Hence, when death/birth
are compared, hyperbolic < euclidean < spherical holds. Landscapes combined
with SVM on 100 samples showed good classification rate.

Alzheimers Disease Neuroimaging Initiative (ADNI) data is a surface data
in 3d. He filtered each hippocampus in 144 directions, calculated persistence
landscape, and applied SVM. Classification rate was 73%.

He also mentioned our TDA package.

Matthew L Wright, Multidimensional Persistence: A Practical Approach
Paper: Interactive Visualization of 2-D Persistence Modules, [arXiv]
Video: Matthew Wright, Visualizing 2-Dimensional Persistent Homology

[video]

Two-dimensional (2-D) persistence allow us to work with data indexed by
two parameters, such as distance and density. 2-D persistence module M is a
collection of k-vector modules {Mu}u∈R2 .

We can visualize 2-D persistence in three ways:
1. the dimension of each homology vector space Mi,j .
2. The rank invariant:
- For u ≤ v, rank(u, v) is the dimension of homology at u that also exists at

v.
- Let L be the line through u and v.
- The restriction of M to L is a 1-D persistence module ML, and we can

visualize this.
3. The bigraded Betti numbers.
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RIVET is Rank Invariant Visualization and Exploration Tool. We can get
RIVET at http://rivet.online

ThomasWanner, Topological Microstructure Analysis Using Persistence Land-
scapes

Model for Phase Separation
Quenching of homogeneous alloys may lead to phase separation generating

complicated microstructures. Averaged persistence landscapes can be used to
recover central system information in the Cahn-Hilliard theory of phase separa-
tion.

Genki Kusano, Kernel method for persistence diagrams
Paper: Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka, Persistence weighted

Gaussian kernel for topological data analysis [ arXiv ]
Let Ω be a set, and let k : Ω × Ω → R a nice function (positive definite

kernel). Gram matrix (k(xi, xj)) plays an important role for statistical analysis
on Ω. k : Ω × Ω → R is called a positive definite kernel when k(x, y) = k(y, x)
holds and (k(xi, xj)) is positive semidefinite. Then Moore-Aroszajn theorem
says that a positive definite kernel k uniquely defines the Hilbert space Hk,
where k(·, x) : Ω→ R is an element in Hk.

Let Mb(Ω) be a finite signed Radon measure on Ω. Then we can define a
mapping from Mb(Ω) to Hk by µ 7→ Ek(µ) :=

∫
k(·, x)dµ(x).

Now we use kernel on persistence diagram. By appropriate weight function
w : R2 → R, a persistence diagram D is represented as a weighted measure
µwD =

∑
x∈D w(x)δx. Then we can sequentially embed as D 7→ µwD 7→ Ek(µwD).

Practically, we propose to use Gaussian kernel kG(x, y) = exp
(
−‖x−y‖

2

2σ2

)
and

weight function wave(x) = arctan(Cpers(x)p).
Stability theorem [Fukumizu, Hiraoka, 2016] implies that ‖Ek(µwDq(X)) −

Ek(µwDq(Y ))‖H ≤ L(M)dH(Dq(X), Dq(Y )).
Their application was about which index is the change point between liquid

and glass?

Matthew Kahle, Maximally persistent cycles in random geometric complexes
Paper: Omer Bobrowski, Matthew Kahle, Primoz Skraba, Maximally Per-

sistent Cycles in Random Geometric Complexes [ arXiv ]
Book: Mathew Penrose, Random Geometric Graphs

The random geometric graph G(n, r) has its vertices n points chosen i.i.d.
in Rd. Then two vertices are adjacent if they are within distance r. Then we
have following proposition:
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Proposition. Let G1 be the number of vertices in the largest connected compo-
nent of G(n, r)

There exists a constant c∗ with following property:
If r ≤ c√

n
and c < c∗, then w.h.p G1 = O(log n).

If r ≥ c√
n
and c > c∗, then w.h.p G1 = Ω(n).

Random geometric graph extends to random geometric complexes, where
C(n, r) is the Cech complex. Then we have following proposition:

Proposition. Consider n points chosen i.i.d. uniformly in the unit square
[0, 1]2.

If r � n−3/4 then w.h.p H1(C(n, r)) = 0.
If r �

√
log n/n then w.h.p. H1(C(n, r)) = 0.

If n−3/4 � r �
√

log n/n then w.h.p. H1(C(n, r)) 6= 0.

For persistent homology, they considered multiplicative persistence rather
than additive persistence.

Definition. p(σ) = d(σ)/b(σ) rather than p(σ) = d(σ)− b(σ).

Advantages of the multiplicative definition are as follows:
1. In the random setting, many cycles σ satisfy d(σ)− b(σ) ≈ d(σ).
2. This makes dimensionless.
3. The relationship between Cech and Rips is a multiplicative one.
Then we have following theorem:

Theorem. (Two-dimensional case.) Consider n points chosen i.i.d. uniformly
in the unit square [0, 1]2. Then w.h.p. the maximal persistence in degree one
homology is of order max

σ
p(σ) � logn

log logn .

where main tool is from isoperimetric inequality.

Theorem. (Federer-Fleming, 1960) If σ is a k-cycle in Rd of k-dimensional
volume V , then the filling radius R satisfies R = O(V 1/k).

There are several questions.
1. lim maxσ p(σ)

logn/ log logn =?
2. other distributions? e.g. multivariate normal

2017-01-05
Seth Sullivant, Introduction to Algebraic Statistics
See his webpage for book draft [ link ]

Megan Owen, Means and a Central Limit Theorem in tree space.
The space of metric phylogenetic trees introduced by Billera, Holmes, and

Vogtmann “Geometry of the Space of Phylogenetic Trees” (2001) [ pdf ] is a
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polyhedral cone complex. It is also non-positively curved or CAT(0), so there is
a unique shortest path (geodesic) between any two trees and and a well-defined
notion of a mean tree for a given set of trees. Also, the calculation is fast.

Mean tree is sticky: mean tends to be pulled towerds lower-dimensional data.
Can prove a Central Limit Theorem if mean is in interior of a top-dimensional

orthant:
Let x̂: Frechet mean, x̂k: Frechet mean. Then

√
k(x̂k − x̂)

L→ N(0, A>V A).
Also have a CLT for when mean in interior of codimension 1 boundary.

There is a work for confidence intervals: Amy Willis, Confidence sets for
phylogenetic trees [ arXiv ].

Jeff Sommars, A Computer Algebra System for R: Macaulay2 and the m2r
package

Macaulay2 is the language for algebraic geometry. And m2r is a socket
between Macaulay2 and R.

2016-01-06
Donald Richards, Distance Correlation: A New Tool for Detecting Associa-

tion and Measuring Correlation Between Data Sets
It is unwise to apply linear regression to percentage data. We can instead

consider distance correlation: joint characteristic function can be defined as
ψX,Y (s, t) = E exp [i(sX + tY )]. Then the distance covariance is defined as
V(X,Y ) = 1

γpγq

∫
Rp+q |ψX,Y (s, t)− ψX(s)ψY (t)|2. And then the distance cor-

relation is defined as R(X,Y ) = V(X,Y )√
V(X,X)

√
V(Y,Y )

. Its empirical version is

Rn(X,Y ) = Vn(X,Y )√
Vn(X,X)

√
Vn(Y,Y )

. Distance correlation has higher statistical
power.

Peter Bubenik, An Introduction to Topological Data Analysis
He gave an brief introduction on the concept of persistent homology and

landscapes, and how they can be used to analyze biological data.

Erica Flapan, Topological Complexity in Protein Structures
In proteins, knots prevent proteins from degrading. If Taylor’s theory is

correct, only knots appearing in protein has unknotting number 1.

Statistical proof and the problem of irreproducibility
Mumford, “Intelligent Design Found in the Sky with p < 0.001”. But we

should consider the correction for multiplicity in the number of possible variables
selected as significant using multiple hypotheses correction and FDR control.
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2016-01-07
Miguel del Alamo, Variational Multiscale Estimators for Nonparametric Re-

gression and Statistical Inverse Problems
Our Model: nonparametric regression
yn(x) = f(x) + ξn(x), x ∈ Γn (equidistant grid)

Penelized estimation : minL(g, yn) + λS(g)
Smoothness-constrained estimator : minL(g, yn) s.t. S(g) ≤ η
Data-friendly-constrained estimation : minS(g) s.t. L(g, yn) ≤ γ

Multiresolution norm

‖y‖B = sup
B∈B

1√
#Γn∩B

∣∣∣∣∣ ∑
s∈Γn∩B

y(x)

∣∣∣∣∣ for y ∈ RΓn

Multiscale Nemirovski-Dantzig (MIND) estimator
min
g
S(g)

s.t. ‖Sng − yn‖B ≤ γn ∼
√

log n

Choose γn s.t. ‖Snf −yn‖B ≤ γn with high probability, then f is admissible
for the minimization problem.

TV regularization
f̂ ∈ arg min |g|BV s.t. ‖Sng − yn‖B ≤ γn
nearly minimax optimal
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