PERSISTENCE IMAGES

An Alternative Persistent Homology Representation

June 23, 2015

Lori Ziegelmeier*, Tegan Emerson, Eric Hanson, Rachel Neville, Sofya Chepushtanova, Francis Motta, Chris Peterson, Michael Kirby, Patrick Shipman

SOCG 2015 Minisymposium on Computational Topology Statistical Approaches to Topological Data Analysis

OVERVIEW

- 1. Introduction
- 2. Persistent Homology
- 3. Persistence Images
- 4. Data Analysis
- 5. Conclusion

INTRODUCTION

MOTIVATION:

- Topological data analysis allows extraction of coarse topological features from data
- Persistent homology is a key technique to extract topological features
- Extending the list of tools from machine learning which can apply to persistent homology features is desirable

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information.

PERSISTENT HOMOLOGY

TOPOLOGICAL DATA ANALYSIS

- 1. Envision data as a point cloud
- 2. Create connections between proximate points
 - build simplicial complex
- 3. Determine topological structure of complex
 - compute homology
- 4. Vary proximity parameter to assess different scales
 - calculate persistent homology

1. ENVISION DATA AS A POINT CLOUD

2. BUILD A SIMPLICIAL COMPLEX

3. COMPUTE BETTI NUMBERS

4. COMPUTE PERSISTENT HOMOLOGY

PERSISTENCE DIAGRAMS AS A METRIC SPACE

The space of Persistence Diagrams (PDs) can be endowed with a metric.

Definition

The Bottleneck distance between two PDs X and Y is given by

$$d_B(X, Y) := \inf_{\gamma: X \to Y} \sup_{x \in X} ||x - \gamma(x)||_{\infty},$$

where $||\cdot||_{\infty}$ is the L_{∞} -distance and γ ranges over bijections between *X* and *Y*.

Any machine learning algorithm that only requires a distance matrix as input can be implemented on the space of PDs.

Many other techniques do not fall into this category:

- Support vector machines
- Decision tree classification
- Neural networks
- Feature selection

Need a 'feature vector' representation to analyze data in these algorithms.

PERSISTENCE IMAGES

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

1. For each point (b_x, b_y) in PD **B**, center a Gaussian.

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

- 1. For each point (b_x, b_y) in PD **B**, center a Gaussian.
- 2. Overlay a grid onto the PD.

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

- 1. For each point (b_x, b_y) in PD **B**, center a Gaussian.
- 2. Overlay a grid onto the PD.
- 3. The image value at pixel *p*, a square in the grid, is the sum of all Gaussians over the area in that square

$$I(p) = \iint_{p} \sum_{(b_x, b_y) \in \mathbf{B}} \frac{1}{2\pi\sigma_x\sigma_y} e^{-\frac{1}{2}\left(\frac{(x-b_x)^2}{\sigma_x^2} + \frac{(y-b_y)^2}{\sigma_y^2}\right)} dy dx$$

where σ_x and σ_y are variances in the Gaussian.

May desire to weight points further from the diagonal more and suppress points closer to the diagonal.

Modify definition of a pixel as follows:

$$I(p) = \iint_{p} \sum_{(b_x, b_y) \in \mathbf{B}} f(|\mathbf{b}|) \frac{1}{2\pi\sigma_x\sigma_y} e^{-\frac{1}{2}\left(\frac{(x-b_x)^2}{\sigma_x^2} + \frac{(y-b_y)^2}{\sigma_y^2}\right)} dy dx$$

where the weighting function $f(|\mathbf{b}|)$ depends on the distance from the diagonal, $|\mathbf{b}| = b_y - b_x$.

May desire to weight points further from the diagonal more and suppress points closer to the diagonal.

Modify definition of a pixel as follows:

$$I(p) = \iint_{p} \sum_{(b_x, b_y) \in \mathbf{B}} f(|\mathbf{b}|) \frac{1}{2\pi\sigma_x\sigma_y} e^{-\frac{1}{2}\left(\frac{(x-b_x)^2}{\sigma_x^2} + \frac{(y-b_y)^2}{\sigma_y^2}\right)} dy dx$$

where the weighting function $f(|\mathbf{b}|)$ depends on the distance from the diagonal, $|\mathbf{b}| = b_y - b_x$.

Options for *f* could include:

- Exponential
- Bump function
- Piecewise linear
- Sigmoidal

PARAMETERS FOR PERSISTENCE IMAGES

○ Resolution of the image (*i.e.* choice of grid)

- As resolution tends to infinity, converges to a continuous representation of the PD.
- Variance of the Gaussian
 - Corresponds to filtration step in PH computation
 - Related to confidence in location of points in PD
- Weighting function *f*
 - Suppress the effects of noise and amplify signal

PERSISTENCE IMAGE PIPELINE

DATA ANALYSIS

TOY DATA

Points sampled from six topological spaces: the solid cube, a circle, a sphere, three clusters, three clusters within three clusters, and a torus

25 point clouds from each space, consisting of 500 points, 2 levels of noise $\eta = 0.05, 0.1$

COMPARISON OF K-MEDOIDS CLASSIFICATION

Goal:

Compare classification accuracy of toy data in the PD framework equipped with the Bottleneck distance and the PI framework equipped with Euclidean distance.

COMPARISON OF K-MEDOIDS CLASSIFICATION

Goal:

Compare classification accuracy of toy data in the PD framework equipped with the Bottleneck distance and the PI framework equipped with Euclidean distance.

Use k-medoids:

- Iterative, clustering algorithm
- Takes as input a pairwise distance matrix and the number of clusters
- Chooses an existing datum, represented by an index in a distance matrix, as the center of each cluster so that the distance between each point and the center with which it is identified is minimized

CONFUSION MATRICES AND ACCURACY α , NOISE $\eta = 0.05$

<u>CONFUSION MATRICES AND ACCURACY</u> α , NOISE $\eta = 0.05$

CONFUSION MATRICES AND ACCURACY α , NOISE $\eta = 0.1$

(a) PD, H_0 , $\alpha = 74.7$ (b) PD, H_1 , $\alpha = 91.3$

<u>CONFUSION MATRICES AND ACCURACY</u> α , NOISE $\eta = 0.1$

BENEFITS OF PI

Improved accuracy

- Time reduced
 - $\circ~1.9\times10^5$ seconds to generate a bottleneck distance matrix
 - Under 300 seconds to generate set of PIs and compute Euclidean distance
- Analyze multiple homology dimensions simultaneously by concatenating corresponding images
- Can implement more machine learning algorithms on PIs
 - e.g. Support Vector Machines, supervised binary classifier

SVM ACCURACY ON PI

Noise $\eta = 0.05$

SVM ACCURACY ON PI

Noise $\eta = 0.05$

(i) PI, Both, $\alpha = 100$

Noise $\eta = 0.1$

TOY DATA PARAMETER SEARCH

Parameter Search:

- $\odot~$ 20 resolution choices from images of size 5 \times 5 to 100×100
- 0 40 variance choices from 0.0001 to 0.2

TOY DATA PARAMETER SEARCH

Parameter Search:

- $\odot~$ 20 resolution choices from images of size 5 \times 5 to 100×100
- 0 40 variance choices from 0.0001 to 0.2

Resolution had little effect on accuracy of toy data analysis.

For fixed resolution of 20×20 , k-medoids accuracy:

Dynamical system to model turbulent mixing in DNA microarrays (Hertzsch et. al.)

- Linked: coupled system
- Twist: mechanism of mixing

Dynamical system to model turbulent mixing in DNA microarrays (Hertzsch et. al.)

- Linked: coupled system
- Twist: mechanism of mixing

Many parameter values exhibit interesting behavior.

LINKED-TWIST MAP CLASSIFICATION ACCURACY

- 3 parameter regimes for the Linked-Twist Map
- 25 samples of 500 points and 1000 points
- Each of the two sets were analyzed with persistence and put into PI framework
- \bigcirc Analyzed H_1 PIs with k-medoids

LINKED-TWIST MAP CLASSIFICATION ACCURACY

- 3 parameter regimes for the Linked-Twist Map
- 25 samples of 500 points and 1000 points
- Each of the two sets were analyzed with persistence and put into PI framework
- \bigcirc Analyzed H_1 PIs with k-medoids
 - 500 points: 92% accuracy
 - 1000 points: 96% accuracy

CONCLUSION

CONCLUSION

Persistence Images

Pls present a method for vectorization of topological characteristics of data that:

- have an interpretable connection to PDs
- yield higher classification accuracy than PDs equipped with the bottleneck distance
- speed up computations
- allow multiple homology dimensions to be analyzed simultaneously
- provide a wider access to a variety of metrics and machine learning tools

Thank you!

Lori Ziegelmeier Iziegel1@macalester.edu Department of Mathematics, Statistics, and Computer Science MACALESTER COLLEGE

