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INTRODUCTION



MOTIVATION:

# Topological data analysis allows extraction of coarse
topological features from data

# Persistent homology is a key technique to extract
topological features

# Extending the list of tools from machine learning which can
apply to persistent homology features is desirable

Goal:

Develop an alternative representation of persistent homology
that ‘vectorizes’ topological information.
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PERSISTENT HOMOLOGY



TOPOLOGICAL DATA ANALYSIS

1. Envision data as a point cloud

2. Create connections between proximate points
◦ build simplicial complex

3. Determine topological structure of complex
◦ compute homology

4. Vary proximity parameter to assess different scales
◦ calculate persistent homology
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1. ENVISION DATA AS A POINT CLOUD
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2. BUILD A SIMPLICIAL COMPLEX
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3. COMPUTE BETTI NUMBERS

β0=4
β1=1
β2=0
β3=0
etc.
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4. COMPUTE PERSISTENT HOMOLOGY
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PERSISTENCE DIAGRAMS AS A METRIC SPACE

The space of Persistence Diagrams (PDs) can be endowed
with a metric.

death

birth

Definition

The Bottleneck distance between two PDs X and Y is given by

dB(X ,Y) := inf
γ:X→Y

sup
x∈X
| |x − γ(x)| |∞ ,

where | |· | |∞ is the L∞-distance and γ ranges over bijections between
X and Y .
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MACHINE LEARNING TASKS ON PD

Any machine learning algorithm that only requires a distance
matrix as input can be implemented on the space of PDs.

Many other techniques do not fall into this category:

# Support vector machines
# Decision tree classification
# Neural networks
# Feature selection

Need a ‘feature vector’ representation to analyze data in these
algorithms.
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PERSISTENCE IMAGES



PERSISTENCE IMAGES (PI)

Goal:

Develop an alternative representation of persistent homology
that ‘vectorizes’ topological information while maintaining an
interpretable connection to the original PD.

1. For each point (bx , by) in PD B, center a Gaussian.
2. Overlay a grid onto the PD.
3. The image value at pixel p, a square in the grid, is the sum

of all Gaussians over the area in that square

I(p) =
"

p

∑
(bx ,by)∈B

1
2πσxσy

e
− 1

2

(
(x−bx )2

σ2
x

+
(y−by )2

σ2
y

)
dydx

where σx and σy are variances in the Gaussian.
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WEIGHTING A PERSISTENCE IMAGE

May desire to weight points further from the diagonal more and
suppress points closer to the diagonal.

Modify definition of a pixel as follows:

I(p) =
"

p

∑
(bx ,by)∈B

f(|b|)
1

2πσxσy
e
− 1

2

(
(x−bx )2

σ2
x

+
(y−by )2

σ2
y

)
dydx

where the weighting function f(|b|) depends on the distance
from the diagonal, |b| = by − bx .

Options for f could include:
# Exponential
# Bump function
# Piecewise linear
# Sigmoidal
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PARAMETERS FOR PERSISTENCE IMAGES

# Resolution of the image (i.e. choice of grid)

◦ As resolution tends to infinity, converges to a continuous
representation of the PD.

# Variance of the Gaussian

◦ Corresponds to filtration step in PH computation
◦ Related to confidence in location of points in PD

# Weighting function f

◦ Suppress the effects of noise and amplify signal
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PERSISTENCE IMAGE PIPELINE
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DATA ANALYSIS



TOY DATA

Points sampled from six topological spaces: the solid cube, a
circle, a sphere, three clusters, three clusters within three
clusters, and a torus

25 point clouds from each space, consisting of 500 points, 2
levels of noise η = 0.05, 0.1 19



COMPARISON OF K-MEDOIDS CLASSIFICATION

Goal:

Compare classification accuracy of toy data in the PD frame-
work equipped with the Bottleneck distance and the PI frame-
work equipped with Euclidean distance.

Use k-medoids:

# Iterative, clustering algorithm
# Takes as input a pairwise distance matrix and the number

of clusters
# Chooses an existing datum, represented by an index in a

distance matrix, as the center of each cluster so that the
distance between each point and the center with which it is
identified is minimized
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CONFUSION MATRICES AND ACCURACY α, NOISE η = 0.05
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CONFUSION MATRICES AND ACCURACY α, NOISE η = 0.05
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CONFUSION MATRICES AND ACCURACY α, NOISE η = 0.1
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BENEFITS OF PI

# Improved accuracy

# Time reduced

◦ 1.9 × 105 seconds to generate a bottleneck distance matrix
◦ Under 300 seconds to generate set of PIs and compute

Euclidean distance

# Analyze multiple homology dimensions simultaneously by
concatenating corresponding images

# Can implement more machine learning algorithms on PIs
◦ e.g. Support Vector Machines, supervised binary classifier
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SVM ACCURACY ON PI

Noise η = 0.05
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SVM ACCURACY ON PI

Noise η = 0.05
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TOY DATA PARAMETER SEARCH

Parameter Search:

# 20 resolution choices from images of size 5 × 5 to
100 × 100

# 40 variance choices from 0.0001 to 0.2
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TOY DATA PARAMETER SEARCH

For fixed resolution of 20 × 20, k-medoids accuracy:
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LINKED-TWIST MAP

Dynamical system to model turbulent mixing in DNA
microarrays (Hertzsch et. al.)

# Linked: coupled system
# Twist: mechanism of mixing

Many parameter values exhibit interesting behavior.
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LINKED-TWIST MAP CLASSIFICATION ACCURACY

# 3 parameter regimes for the Linked-Twist Map

# 25 samples of 500 points and 1000 points

# Each of the two sets were analyzed with persistence and
put into PI framework

# Analyzed H1 PIs with k-medoids

◦ 500 points: 92% accuracy
◦ 1000 points: 96% accuracy
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CONCLUSION



CONCLUSION

Persistence Images

PIs present a method for vectorization of topological charac-
teristics of data that:

# have an interpretable connection to PDs
# yield higher classification accuracy than PDs equipped

with the bottleneck distance
# speed up computations
# allow multiple homology dimensions to be analyzed

simultaneously
# provide a wider access to a variety of metrics and machine

learning tools
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QUESTIONS?

Thank you!

Lori Ziegelmeier
lziegel1@macalester.edu
Department of Mathematics, Statistics, and Computer Science
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