PERSISTENCE IMAGES

An Alternative Persistent Homology Representation

June 23, 2015

Lori Ziegelmeier*, Tegan Emerson, Eric Hanson, Rachel Neville, Sofya Chepushtanova, Francis Motta, Chris Peterson, Michael Kirby, Patrick Shipman

SOCG 2015 Minisymposium on Computational Topology Statistical Approaches to Topological Data Analysis

OVERVIEW

- 1. [Introduction](#page-2-0)
- 2. [Persistent Homology](#page-4-0)
- 3. [Persistence Images](#page-12-0)
- 4. [Data Analysis](#page-21-0)
- 5. [Conclusion](#page-39-0)

INTRODUCTION

MOTIVATION:

- \circ Topological data analysis allows extraction of coarse topological features from data
- \circ Persistent homology is a key technique to extract topological features
- \circ Extending the list of tools from machine learning which can apply to persistent homology features is desirable

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information.

PERSISTENT HOMOLOGY

TOPOLOGICAL DATA ANALYSIS

- 1. Envision data as a point cloud
- 2. Create connections between proximate points
	- build simplicial complex
- 3. Determine topological structure of complex
	- compute homology
- 4. Vary proximity parameter to assess different scales
	- calculate persistent homology

1. ENVISION DATA AS A POINT CLOUD

2. BUILD A SIMPLICIAL COMPLEX

3. COMPUTE BETTI NUMBERS

4. COMPUTE PERSISTENT HOMOLOGY

PERSISTENCE DIAGRAMS AS A METRIC SPACE

The space of Persistence Diagrams (PDs) can be endowed with a metric.

Definition

The Bottleneck distance between two PDs X and Y is given by

$$
d_B(X, Y) := \inf_{\gamma: X \to Y} \sup_{x \in X} ||x - \gamma(x)||_{\infty},
$$

where $||\cdot||_{\infty}$ is the L_{∞} -distance and γ ranges over bijections between X and Y.

Any machine learning algorithm that only requires a distance matrix as input can be implemented on the space of PDs.

Many other techniques do not fall into this category:

- \circ Support vector machines
- **Decision tree classification**
- \bigcirc Neural networks
- \cap Feature selection

Need a 'feature vector' representation to analyze data in these algorithms.

PERSISTENCE IMAGES

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

1. For each point (b_x, b_y) in PD **B**, center a Gaussian.

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

- 1. For each point (b_x, b_y) in PD **B**, center a Gaussian.
- 2. Overlay a grid onto the PD.

Goal:

Develop an alternative representation of persistent homology that 'vectorizes' topological information while maintaining an interpretable connection to the original PD.

- 1. For each point (b_x, b_y) in PD **B**, center a Gaussian.
- 2. Overlay a grid onto the PD.
- 3. The image value at pixel p, a square in the grid, is the sum of all Gaussians over the area in that square

$$
I(p) = \iint\limits_{p} \sum_{(b_x,b_y)\in \mathbf{B}} \frac{1}{2\pi \sigma_x \sigma_y} e^{-\frac{1}{2}\left(\frac{(x-b_x)^2}{\sigma_x^2} + \frac{(y-b_y)^2}{\sigma_y^2}\right)} dydx
$$

where σ_x and σ_y are variances in the Gaussian.

May desire to weight points further from the diagonal more and suppress points closer to the diagonal.

Modify definition of a pixel as follows:

$$
I(p) = \iint_{p} \sum_{(b_x, b_y) \in \mathbf{B}} f(|\mathbf{b}|) \frac{1}{2\pi \sigma_x \sigma_y} e^{-\frac{1}{2} \left(\frac{(x-b_x)^2}{\sigma_x^2} + \frac{(y-b_y)^2}{\sigma_y^2} \right)} dy dx
$$

where the weighting function $f(|b|)$ depends on the distance from the diagonal, $|\mathbf{b}| = b_v - b_x$.

May desire to weight points further from the diagonal more and suppress points closer to the diagonal.

Modify definition of a pixel as follows:

$$
I(p) = \iint_{p} \sum_{(b_x, b_y) \in \mathbf{B}} f(|\mathbf{b}|) \frac{1}{2\pi \sigma_x \sigma_y} e^{-\frac{1}{2} \left(\frac{(x-b_x)^2}{\sigma_x^2} + \frac{(y-b_y)^2}{\sigma_y^2} \right)} dy dx
$$

where the weighting function f(|**b**|) depends on the distance from the diagonal, $|\mathbf{b}| = b_v - b_x$.

Options for f could include:

- \circ Exponential
- **Bump function**
- **Piecewise linear**
- Sigmoidal

PARAMETERS FOR PERSISTENCE IMAGES

 \circ Resolution of the image (*i.e.* choice of grid)

- As resolution tends to infinity, converges to a continuous representation of the PD.
- \circ Variance of the Gaussian
	- Corresponds to filtration step in PH computation
	- Related to confidence in location of points in PD
- Weighting function f
	- Suppress the effects of noise and amplify signal

PERSISTENCE IMAGE PIPELINE

DATA ANALYSIS

TOY DATA

Points sampled from six topological spaces: the solid cube, a circle, a sphere, three clusters, three clusters within three clusters, and a torus

25 point clouds from each space, consisting of 500 points, 2 levels of noise $\eta = 0.05, 0.1$

COMPARISON OF K-MEDOIDS CLASSIFICATION

Goal:

Compare classification accuracy of toy data in the PD framework equipped with the Bottleneck distance and the PI framework equipped with Euclidean distance.

COMPARISON OF K-MEDOIDS CLASSIFICATION

Goal:

Compare classification accuracy of toy data in the PD framework equipped with the Bottleneck distance and the PI framework equipped with Euclidean distance.

Use k-medoids:

- \circ Iterative, clustering algorithm
- \circ Takes as input a pairwise distance matrix and the number of clusters
- \circ Chooses an existing datum, represented by an index in a distance matrix, as the center of each cluster so that the distance between each point and the center with which it is identified is minimized

(f) PD, H_0 , $\alpha = 74.7$ (g) PD, H_1 , $\alpha = 91.3$

BENEFITS OF PI

 \circ Improved accuracy

- \cap Time reduced
	- 1.9 \times 10⁵ seconds to generate a bottleneck distance matrix
	- Under 300 seconds to generate set of PIs and compute Euclidean distance
- \circ Analyze multiple homology dimensions simultaneously by concatenating corresponding images
- \circ Can implement more machine learning algorithms on PIs
 \circ e a Support Vector Machines, supervised binary classifie
	- e.g. Support Vector Machines, supervised binary classifier

SVM ACCURACY ON PI

Noise $\eta = 0.05$

SVM ACCURACY ON PI

Noise $\eta = 0.05$

(h) PI, H_1 , $\alpha = 100$

(i) PI, Both, $\alpha = 100$

Noise $\eta = 0.1$

TOY DATA PARAMETER SEARCH

Parameter Search:

- \circ 20 resolution choices from images of size 5 \times 5 to 100×100
- \bigcirc 40 variance choices from 0.0001 to 0.2

TOY DATA PARAMETER SEARCH

Parameter Search:

- \circ 20 resolution choices from images of size 5 \times 5 to 100×100
- \bigcirc 40 variance choices from 0.0001 to 0.2

Resolution had little effect on accuracy of toy data analysis.

For fixed resolution of 20×20 , k-medoids accuracy:

Dynamical system to model turbulent mixing in DNA microarrays (Hertzsch et. al.)

- \circ Linked: coupled system
- \circ Twist: mechanism of mixing

Dynamical system to model turbulent mixing in DNA microarrays (Hertzsch et. al.)

- \circ Linked: coupled system
- \circ Twist: mechanism of mixing

Many parameter values exhibit interesting behavior.

LINKED-TWIST MAP CLASSIFICATION ACCURACY

- \circ 3 parameter regimes for the Linked-Twist Map
- \circ 25 samples of 500 points and 1000 points
- \circ Each of the two sets were analyzed with persistence and put into PI framework
- \circ Analyzed H₁ PIs with k-medoids

LINKED-TWIST MAP CLASSIFICATION ACCURACY

- 3 parameter regimes for the Linked-Twist Map
- 25 samples of 500 points and 1000 points
- \circ Each of the two sets were analyzed with persistence and put into PI framework
- \circ Analyzed H_1 PIs with k-medoids
 \circ 500 points: 92% accuracy
	- 500 points: 92% accuracy
	- 1000 points: 96% accuracy

CONCLUSION

CONCLUSION

Persistence Images

PIs present a method for vectorization of topological characteristics of data that:

- \circ have an interpretable connection to PDs
- \circ yield higher classification accuracy than PDs equipped with the bottleneck distance
- \circ speed up computations
- allow multiple homology dimensions to be analyzed simultaneously
- provide a wider access to a variety of metrics and machine learning tools

Thank you!

Lori Ziegelmeier lziegel1@macalester.edu Department of Mathematics, Statistics, and Computer Science MACALESTER **COLLEGE**

