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Archetypal analysis represents each individual in a data set as a mixture of individuals of 
pure type or archetypes. The archetypes themselves are restricted to being mixtures of the 
individuals in the data set. Archetypes are selected by minimizing the squared error in 
representing each individual as a mixture of archetypes. The usefulness of archetypal analysis 
is illustrated on several data sets. Computing the archetypes is a nonlinear least squares 
problem, which is solved using an alternating minimizing algorithm. 
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1. INTRODUCTION 

For multivariate data {xi, i = 1, . . . , n}, where 
each x, is an m vector xi = (xl,, . . . , x,~)‘, an in- 
teresting problem is to find m vectors zi, . . . , zP 
that characterize the archetypal patterns in the data. 
For instance, a data set analyzed by Flury and Ried- 
wyl (1988) consisted of six head dimensions for 200 
Swiss soldiers. The purpose of the data was to help 
design face masks for the Swiss Army. 

A natural question is whether there are a few pure 
types or archetypes of heads such that the 200 heads 
in the data base are mixtures of the archetypal heads. 

One possible answer is provided by a variant of 
principal components. For given m vectors zi, . . . , 
zP, the linear combination Ekaikz, that best approx- 
imates xi is defined as the minimizer of 

II% - F ~,kZkl12. 
Then the “best patterns” zl, . . . , z,, are the mini- 
mizers of 

Without loss of generality, take z,, . , zP to be 
orthonormal. Then the minimizers of (1.1) maximize 

(1.2) 

where S = X’X. The maximizers of (1.2) are the 
eigenvectors of S corresponding to the p largest ei- 
genvalues. Thus, if each x, is centered at its mean, 
the solution is given by the principal-components de- 
composition. 

The “patterns” derived this way are usually not 
an answer to the problem posed previously. For in- 
stance, the first four patterns found using the Swiss 

Army data do not correspond to any real or even 
fictitious heads. In some of the patterns, the distance 
between two points on the head is negative. 

This is not surprising, given that the principal- 
components approach nowhere requires either that 
the patterns resemble pure types in the data or that 
each xi be approximated by a mixture of the patterns 
(i.e., aik 2 0, E:k~,k = 1). 

In archetypal analysis, the patterns zi, . . . , zP 
considered are mixtures of the data values {x,}. Fur- 
thermore, the only approximations to xi allowed are 
mixtures of the {z~}. 

More precisely, for fixed zi, . . , zP, where 

zk = cfikiX,, k = 1,. . . ,p, 

and Pki 2 0, &Pkj = 1, define the {ffjk}, k = 1, . . , 
p, as the minimizers of 

11% - i: %&II2 k=l 

under the COnStraintS (Yik 2 0, ck’Y;k = I. Then define 
the archetypal patterns or archetypes as the mixtures 
Zl, . 7 z,, that minimize 

c llxi - ,z, a,kzkl12 
1 

and denote the minimum value by RSS(p) (RSS = 
residual sum of squares). For p > 1, the archetypes 
fall on the convex hull of the data (see Sec. 3). Thus 
the archetypes are extreme data values such that all 
of the data can be well represented as convex mix- 
tures of the archetypes. But the archetypes them- 
selves are not wholly mythological because each is 
constrained to be a mixture of points in the data. 

In contrast to principal-components analysis, ar- 
chetype analysis does not nest, nor are the successive 
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archetypes orthogonal to one another. As more ar- 
chetypes are found, the existing ones can change to 
better capture the shape of the data set. As we hope 
the examples will show, however, archetypes can give 
a uniquely informative way to understand multivar- 
iate data and curves. 

The article is organized as follows: Section 2 gives 
examples of archetype analysis as applied to data. 
Section 3 discusses the locations of the archetypes. 
Section 4 contains a description of the algorithm used 
to compute archetypes. Section 5 contains some re- 
sults regarding convergence of the algorithm, and 
Section 6 gives a brief summary. 

Previous work that has the flavor of archetypal 
analysis is mainly based on principal components. A 
natural approach is to use the quantiles of the prin- 
cipal-component scores to select “representative” in- 
dividuals. For example, Jones and Rice (1992) used 
principal components to summarize a collection of 
curves. The principal components themselves are in- 
formative, but additional information is obtained by 
selecting the curves corresponding to the median, 
minimum, and maximum values of the principal- 
component score. Such choices may be misleading, 
however, particularly if the principal components 
themselves are difficult to interpret. 

Flury and Tarpey (1992) suggested that if extreme 
curves are required, they might be chosen by con- 
sidering those curves for which the Mahalanobis dis- 
tance from the mean is large. The curves with large 
Mahalanobis distance may in fact be very similar to 
each other, however, and may not reflect the ex- 
tremes present in the data. 

The analysis of the Swiss Army data (ex. 2.1) by 
Flury (1993) was based on “principal points,” a con- 
cept similar to that of cluster centers. This method 
has also been used to get representative curves as an 
alternative to the Jones-Rice approach (see Flury 
1990, 1993). One feature of principal points that is 
not shared by archetypes is that principal points is a 
concept for theoretical distributions. 

Other related work is that of Woodbury and Clive 
(1974), who used maximum likelihood estimation 
based on grades of membership to derive pure types. 
Similar ideas are also evident in latent class analysis 
(Lazarsfeld and Henry 1968) and latent budget anal- 
ysis (De Leeuw and van der Heijden 1991; van der 
Heijden, Mooijaart, and De Leeuw 1992). 

2. EXAMPLES 

The three following examples illustrate how ar- 
chetypes can be used to understand data structure. 
The first example, involving head measurements of 
Swiss Army soldiers, is given because of its intuitive 
appeal. The second and third examples are more 

serious applications, involving air pollution and To- 
kamak fusion data. 

2.1 Swiss Army Head-Dimension Data 

The Swiss Army data consist of six measurements 
on each head. Two are measures of the width of the 
face just above the eyes and just below the mouth. 
The third is the distance from the top of the nose to 
the chin, the fourth the length of nose, and the fifth 
and sixth are the distances from the ear to the top 
of the nose and chin, respectively. Figure 1 pictures 
the archetypal heads for p = 2, 3, 4, 5. 

These pictures (Fig. 1) are given as graphical il- 
lustration of the idea of archetypes. They are “ex- 
treme” or “pure” types of patterns such that each 
real individual can be well approximated by a mix- 
ture of the pure types or archetypes. 

Figure 2 shows the values of 100 x RSS(p)IRSS( 1). 
In Section 3, we note that, for p = 1, the single 
archetype is the mean of the {xi}. Thus RSS(l) is 
simply the total sum of squares &((x; - stll* and the 
ratio 100 x RSS(p)IRSS(l) measures the percent- 
age of decrease in squared error when p archetypes 
are used to represent the data. 

2.2 Air-Pollution Data 

These data consist of measurements of data rele- 
vant to air pollution in the Los Angeles Basin in 1976. 
There are 330 complete cases consisting of daily mea- 
surements on the variables ozone (OZONE), 500 
millibar height (500MH), wind speed (WDSP), hu- 
midity (HMDTY), surface temperature (STMP), in- 
version base height (INVHT), pressure gradient 
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Figure 1. Archetypes for Head-Dimension Data. 
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Figure 2. Percent RSS for Swiss Army Archetypes. 

(PRGRT), inversion base temperature (INVTMP), 
and visibility (VZBLTY). These data were stan- 
dardized to have mean 0 and variance 1, and arche- 
types were computed. Figure 3 is a graph of 100 x 
RSS(p)/RSS(l). We focus on three archetypes. 

Figure 4 displays the percentile value of each vari- 
able in an archetype as compared to the data. For 
example, the height of the first bar for OZONE in 
archetype 1 is 92. This indicates that the OZONE 
value in archetype 1 is in the 92nd percentile of the 
330 OZONE readings in the data. 

Archetype 1 is high in OZONE, 5OOMH, HMDTY, 
STMP, and INVTMP and low in INVHT and 
VZBLTY. This indicates a typical hot summer day. 
The nature of the other two archetypes is less clear. 
The PRGRT is predominantly measured in the north- 
south direction. A low percentile value indicates a 
large negative pressure gradient and a high value a 
large positive gradient. The differences in PRGRT 
and WDSP in archetypes 2 and 3 indicate a connec- 
tion with air-mass motion in the basin. The temper- 
atures are lower in archetype 3, so it seems to repres- 
ent cooler days toward winter. 

1 2 3 4 5 

P 

Figure 3. Percent RSS for Air-Pollution Archetypes. 

Archetype 1 

OZONE 5WMH WDSP HMDlY STMP INVHT PRORTINVTMPVZBL-IY 

Archetype 3 

OZONE 500MH WDSP HMDTY STMP INVHT PRQRTINVTMPVZBLTY 

Figure 4. Percentile Profiles of Air-Pollution Archetypes 

We can get more insight by looking at another 
graphical representation. With three archetypes- 
21, zz, and z,--the vector of variables xi for the ith 
day is best approximated by the mixture x1 = (Y,~z~ 
+ (Y;~z~ + (Y,~z~. There is a simple way to get a two- 
dimensional data representation. Let pl, I+, p”.i be 
the vertices of a two-dimensional equilateral triangle, 
and map z, + pi, i = 1, 2, 3. Then we represent xi 
by a,l~l + ai2~2 + QP~. 

Figure 5(a)-(d) gives such plots separately for each 
of the four seasons. Clearly, the summer days cluster 
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Figure 5. Mixture Plots for Air-Pollution Archetypes. 
(a) Spring; (b) Summer; (c) Fall; (d) Winter. 
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close to the first archetype. Spring mixes mainly the 
first and third, fall the first and second, and winter 
the second and third. 

The archetype mixture coefficients can also be used 
to see how the individual variables vary as functions 
of archetypes. For instance, let the mixture coeffi- 
cients of the ith day’s data be (~,i, cri2, ai3. If 0, is 
the OZONE value for the ith day, we would gen- 
erally expect Oi to be large if ail is close to 1 and 
smaller otherwise (see Fig. 4). 

To make this more specific, Oi was regressed on 
terms of up to 3rd degree in cyiI, cyiz, ai (actually 
only on terms in (~i,, LY;~ because ai1 + ai + ai = 
1). The resulting prediction equation for OZONE as 
a function of (pi, (Ye, (Ye is plotted as a surface in 
Figure 6(a). As noted there, the R2 of the equation 
is .85. 

The values are normalized before fitting so that 0 
represents the lowest value in the 330 data values of 
OZONE and 1 the highest. The vertical pole in the 
figure has height 1. 

The results show that OZONE is well determined 
by the mixture coefficients, nearly 0 between arche- 
types 2 and 3, and rising toward the maximum near 
archetype 1. Other plots give interesting but different 
information. For instance Figure 6(b) of the INVTMP 
shows moderate temperature at archetype 2 increas- 

(4 

ing to a maximum at archetype 1 and with an R* of 
.93. 

The plot of INVHT [Fig. 6(c)] has R2 = .69 with 
an interesting nonlinearity between archetypes 1 and 
2, staying close to its minimum value until almost 
halfway to archetype 2. All of the variables have R2 
at around .8 or higher except for inversion height 
(.69), wind speed (.45), and visibility (.37). The plot 
of WDSP is given in Figure 6(d). 

Although this data set has been extensively studied 
in the literature (Breiman and Friedman 1985 and 
Hastie and Tibshirani 1990, among others), the 
archetypal analysis reveals new aspects. The data 
(except for two variables) can be surprisingly 
well represented as a mixture of three archetypal 
days. 

This analysis is a vest-pocket edition of the prob- 
lem that initiated this study of archetypes. The En- 
vironmental Protection Agency has funded elaborate 
computer models to simulate the production of ozone 
in the lower atmosphere. Hundreds of chemical 
equations are embedded in the codes. The usual run- 
ning time is (or was) as slow as real time; that is, a 
24-hour computer run is needed to simulate 24 real 
hours. 

Given this, in a typical project, only a few days 
can be modeled. The problem becomes to select data 

(b) 

3 

(4 

Figure 6. Perspective Plots of Regression Surfaces for Air-Pollution Archetypes: (a) OZONE, R2 = 25; (b) INVTMP, R2 = .93; 
(c) INVHT, R= = .69; (d) WDSP, R2 = .45. 
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Raw Temperature Curves Normalied Temperature Curves 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 

Figure 7. Raw Log (temperature) Against Radius. 

representing a few “prototypical” days. This selec- 
tion problem led to the idea of archetypes. 

2.3 Tokamak Fusion Data 

A Tokamak resembles a giant hollow doughnut 
filled with hot plasma. In each run, a strong external 
magnetic field is imposed. A current is induced in 
the plasma inside the doughnut and causes the lines 
of magnetic flux to spiral. Physical theory has not 
been able to accurately model the complex plasma 
conditions, so understanding the statistical structure 
of the experimental results is an important under- 
taking. In particular, one outstanding problem has 
been to understand how the shapes of the temper- 
ature profiles relate to the covariates. Pioneering work 
on this issue has been done by Kurt Riedel and co- 
workers (see Kardaun, Riedel, McCarthy, and Lack- 
ner 1990; McCarthy et al. 1991; Riedel and Imre 
1993). Archetypal analysis gives another view. 

Smoothed Temperature Curves 

I 
7 1 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 

radius 

Figure 8. Smoothed Log (temperature) Against Radius. 

2.2 2.4 2.6 

radius 

2.8 3.0 

Figure 9. Normalized, Smoothed, Log (temperature) Against 
Radius. 

We use a data set containing 40 temperature pro- 
files from the Tokamak Fusion Test Reactor at the 
Princeton Plasma Physics Laboratory. Each profile 
consists of 61 plasma temperature measurements (in 
KeV) at values of the radius ranging from 1.8m to 
3.2m. Figure 7 is a plot of log temperature versus 
radius for the 40 profiles. 

In each of the 40 runs, there were five global co- 
variates: 

1. ESF: edge safety factor 
2. LPC: log plasma current (amperes) 
3. TMF: toroidal magnetic field (Tesla) 
4. LVG: loop voltage (volts) 
5. LPD: log particle density (particles per cubic 

meter) 

The ESF, the most important covariate, is related to 
the spiraling of the toroidal magnetic field lines gen- 
erated by the Tokamak current. 

Start by smoothing the curves using smoothing 
splines. Results are in Figure 8. To focus on the 

0 
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P 

Figure 10. Percent RSS for Tokamak Archetypes. 
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3 Archetypes 2 
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Figure 11. Three Archetypal Curves, Tokamak Data. 
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Figure 12. Mixture Plot for Three Tokamak Archetypes. 

shapes rather than on scale differences, we ignored 
the regions of radius R I 2.2 and R 2 3.0, where 
there was little shape difference, and used only 35 
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Figure 13. Perspective Plots of Regression Surfaces for Tokamak Archetypes: (a) ESF, R2 = .71; (b) Lpc, R2 = .44; (c) TMF, 
R2 = 24; (dj L VG, R2 = .19; (el LPD, R2 = .07. 
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Table 1. Association Between 
Archetypes and Covariates 

Archetype ESF LPC TMF LVG 

1 LOW High Moderate High 
2 Low Moderate Low Moderate 
3 High Low High Low 

values for each curve. The curves were shifted up or 
down to have the same value at R = 2.2 and then 
divided by their average over the remaining R range 
(see Fig. 9). 

Archetypes were extracted, treating each curve as 
a point in 35dimensional space, and 100 x RSS(p)I 
RSS(l) was graphed in Figure 10. We focus on three 
archetypes (Fig. 11). The two-dimensional repre- 
sentation is given in Figure 12 and shows that most 
of the curves are mixtures of archetypes 1 and 3 but 
with some significant pulls toward archetype 2. 

The surface plots of the five covariates, scaled in 
the same way as the ozone surface plots, are in Figure 
13(a)-(e). Because there are only 40 data points, the 
regression used only the linear and quadratic terms 
in the mixture coefficients, giving five independent 
variables. 

The R* were ESF .71, LPC .44, TMF .24, LVG 
.19, and LPD .07. Given that we are using 40 cases 
and five variables, some of these R* are substantial. 

The surface plots show that the archetypes and the 
covariates are associated, as shown in Table 1. 

This archetypal analysis gives some new and in- 
teresting insights into the relationships between the 
temperature profiles and the covariates. Much more 
extensive statistical work needs to be done in this 
area. 

3. LOCATION OF THE ARCHETYPES 

The following proposition helps in understanding 
the nature of archetypes. 

Proposition 1. Let C be the convex hull of x1, 
. . . > x,. Let S be the set of data points on the bound- 
ary of C, and let N be the cardinality of S. 

1. If p = 1, choosing z to be the sample mean 
minimizes RSS. 

2. If 1 < p < N, there is a set of archetypes {z,, 
. . . 7 z,} on the boundary of C that minimize RSS. 

3. If p = N, choosing {z,, . . . , z,} = S results 
in RSS = 0. 

Proof. In each case, it is easily verified that the 
proposed archetypes are mixtures of the data. It re- 
mains to show that the archetypes minimize the RSS. 
For 1, the sample mean is the unconstrained mini- 
mizer of the RSS. For 2, suppose without loss of 
generality that z1 is strictly interior to C, let z(t) = 
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Figure 14. Simulated Bivariate Normal Data, Four Arche- 
types. 

zj+t(z,-zj),fort>landjfl,andchoosetso 
that z(t) is on the boundary of C. For zl, . . , zp 
fixed, RSS is minimized with respect to the (Y’S by 
choosing for all i 2% = 1 (Y,~z~ to be the point in the 
convex hull of zl, . . , zp that is closest to xi. But 
the convex hull of z(t), z2, . . . , zp contains the con- 
vex hull of z,, . . . , zp, so z(t), z2, . . , z,, provide 
a larger set over which to minimize (1) with respect 
to the (Y’s. For 3, the convex hull of zl, . . . , zp is 
C, so RSS = 0. 

The editor raised the question of where the ar- 
chetypes of simple distributions are located. In gen- 
eral, the locations are quite data dependent and 
sensitive to outliers. Since analytic results seem for- 
midable, the following simulation was done: 

1. Generate a sample of size 1,000 from N(p., X), 
where p = (i), C = (.A .f). Discard any points out- 
side the 95% density contour-that is, with Mahal- 
anobis distance 2 x:(.95). 

2. Fit four archetypes. 
3. Repeat 100 times. 

The plots of all archetypes are in Figure 14. They 
cluster around the ends of the major and minor axes 
of the 95% density contour. This is what we ex- 
pected, but it is comforting to get confirmation. 

4. THE ARCHETYPE ALGORITHM 

Let x1, . . . , x, be n m-dimensional data points. 
The problem is to find z,, . . . , zp, where 

and {oik} and zl, . . . , zr, minimize 

n P 2 

RSS = c 
/I 

xi - c aikzk 
I/ 

(4.1) 
i=l k=l 
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subject to the constraints 

ai, for i=l,. 

$, ffik = 1 for i=l,. 

pk,zO for k=l, 

n 

, n, k = 1, . . . , p 

,n 

3 p, j = 1, . . . ) 11 

,Flpk, = 1 for k = 1,. . ,p. 

The zk’s are the archetypes; the algorithm used to 
compute them will be called the archetype algorithm. 

The residual sum of squares in (4.1) can be written 

RSS = SI Xi - k$, aik ,zl PkjXj II 
2 

3 
i=l I/ 

and the archetype problem is to find (Y’S and /3’s to 
minimize this RSS subject to the preceding con- 
straints. This problem could be solved using a gen- 
eral-purpose constrained nonlinear least squares al- 
gorithm, but this may prove impractical for all but 
the smallest problems. Instead, we propose an al- 
ternating constrained least squares algorithm. 

4.1 Alternating Optimization 

The algorithm alternates between finding the best 
(Y’S for a given set of x mixtures and finding the best 
x mixtures for a given set of cr’s. Each step requires 
the solution of several convex least squares (CLS) 
problems of the following form: Given u and t,, . . , 
t,, find wl, . , wq to minimize IIu - X:=1 wktkl12 
subject to wk 2 0 for k = 1, . . , q and X:%= 1 h’k 
= 1. 

At each step, the sum of squares (4.1) is reduced, 
and the algorithm stops when the reduction is suf- 
ficiently small. 

First consider finding the best (Y’S for a given set 
of x mixtures zl, . . . , zP. Finding the best (Y’S re- 
quires the solution of n CLS problems-namely, 
minimizing 

II P 

II 

2 

X; - c aikZk 
k=l 

for each i, subject to (Yjk 2 0 for k = 1, . . , p and 
zf=, aik = 1. Each of the n CLS problems has m 
observations and p variables. 

Now consider finding the best x mixtures for the 
current set of 0~‘s. If all but one of the x mixtures are 
held constant, we show that the remaining one can 
be found by solving a CLS problem. More precisely, 

if z, is the x mixture of interest, let 

v; = x; - 

and write (4.1) as 

RSS = i CIf/llVi - z//l* 

Because the first term does not depend on zI, min- 
imizing RSS is equivalent to minimizing 11~ - z,ll* = 
11~ - C;=, p,,x,ll*, subject to the constraints plj 2 0 
forj = 1,. . . ,nandC;=‘=,&, = 1,whichisaCLS 
problem with n variables and m observations. 

The entire collection of x mixtures is found by 
cycling through the set, optimizing with respect to 
each x mixture in turn, until the improvement in the 
objective function from an entire pass is smaller than 
some prescribed tolerance. The resulting x mixtures 
are the archetypes. 

4.2 Implementation 

Many methods are available for solving CLS prob- 
lems. The method used to develop and test the al- 
gorithm is a penalized version of the NNLS algorithm 
of Lawson and Hanson (1974). In particular, we ob- 
taintiandi,, . . . , iP by adding an extra element M 
touandt,, . . . , tp, where M is large. Then 
II P ii* 

lb - c wkikll 
II ~ II k=l 

= II- k$wktki[ + M2//1 - $,wki’l 

which is minimized under nonnegativity restrictions. 
For large M, the second term dominates and forces 
the equality constraint to be approximately satisfied 
while maintaining the nonnegativity constraint. The 
speed of the archetype algorithm is determined by 
the efficiency of the CLS method. The penalized 
nonnegative least squares method is appealing be- 
cause it can be used when the number of variables 
is larger than the number of observations. It is still 
quite slow, however, and alternative convex least 
squares procedures are being developed (Cutler 1993). 

Initially, the x mixtures may be chosen at random 
without replacement from the data. Some caution 
should be exercised in choosing initial x mixtures that 
are not too close together because this can cause slow 
convergence or convergence to a local optimum. 
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At any stage, if one or more of the x mixtures is 
inside the convex hull of the others, C;‘= i af, can be 
0. When this occurs, the archetype is redundant 
and may be replaced by that data point xi for which 
11x; - CfZl (~~~~~11~ is the largest. 

5. CONVERGENCE 

As with many alternating optimization algorithms, 
the archetype algorithm can be shown to result in a 
fixed point of an appropriate transformation, but there 
is no guarantee that this will be a global minimizer 
of RSS. 

First consider the inner loop used to compute the 
p’s. Let 

= (b;, . . , b;)’ 

for bk = (Pkl, . . . , Pk,,)‘. The inner loop produces 
iterates pi, &, . . . by minimizing (4.1) with respect 
to the current bk while holding the others fixed. This 
gives RSS@,) 5 RSS(&) d * . ., and because the 
set B of feasible p’s is compact, the iterations for the 
inner loop have a limit point p * . 

Treating RSS in (4.1) as a function of p gives 

RSS(P) = i x:x; - 2c’p + P’HP, 
i=l 

where c = (cil, . . , cl,!, . . . , cpl, . . , c,,,)’ for 
ck/ = aikx:x, and H = X’X @ A’A, where A has i, 
k element aik, X = (x,, . . . , x,,), and @ denotes 
the direct product. Because X’X and A’A are both 
positive semidefinite, His also positive semidefinite, 
so RSS is a convex function of p. 

Proposition 2. The limit point p * minimizes RSS 
over B. 

Proof. If g : A + R is a convex continuously 
differentiable function and A is a convex subset of 
Rq, then g has a global minimum at y* E A iff Vg(y*)‘(y 
- y*) 2 0 V y E A. Let b: = (p;*l, . . . , p,T,) for i 
= 1, . . , p and RSS,(b) = RSS(bT, . , btpl, 
b, WE+,, . . . , b,*). Then RSSk : B, + R is a convex 
continuously differentiable function and B, = {b E 
R” : bi 2 0 and C:=, bj = l} is compact. Because 
bz minimizes RSS, over B,, VRSS,(b,*)‘(b - bf) 2 
0 V b E B,. But VRSS(p*)t = (VRSS,(b;)‘, . . , 
VRSS,(b;)‘), so 

VRWP*HP - P*) 

= j, VRSS,(b:)‘(b, - b;) 2 0 

V p = (b;, . . . , b;)’ E B, x . . . x B, = B, and 
since RSS is convex, this implies that p* minimizes 
RSS over B. 
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Proposition 3. If A has rank p, then the x mix- 
tures zI, . . , z,‘, which minimize (4.1) for fixed (Y’S, 
are unique. 

Proof. Let z’ = (z’,, . . , z;) and treat RSS as 
a function of z. Then 

RSS(z) = i x;xi - 2d’z + z’Gz, 
r=l 

where d’ = (d;, . . , d;) for d, = C;= 1 crikxi, G = 
I,,, @ A’A, and I,,, denotes the m by m identity matrix. 
Because A has rankp, G is positive definite, so RSS(z) 
is strictly convex. Now RSS is minimized over a con- 
vex set, so the constrained problem has a unique 
minimum. 

Propositions 2 and 3 establish the convergence of 
the inner loop to x mixtures that minimize (4.1) for 
fixed (Y’s. Although the p’s might not be unique, the 
corresponding x mixtures are unique. That the (Y’S 
minimize (4.1) for fixed x mixtures is immediate. 
These results do not imply that the alternating opti- 
mization algorithm invariably converges to the global 
minimum of (4.1). Numerical experiments suggest 
that convergence to local minima or other stationary 
points becomes more of a problem as the number of 
archetypes required increases. For example, in the 
Swiss Army mask data, in 1,000 random starts for 
computing two archetypes, all converged to the same 
solution. 

But local minima problems occurred in computing 
three or more archetypes. To see the extent of the 
problem, 500 random starts were used in computing 
two, three, four, and five archetypes for the mask 
data. This was repeated for the air-pollution and 
Tokamak data discussed in Section 2. 

The results are given in Table 2. The fifth column 
gives the number of trials until the global minimum 
was first found, the sixth column gives the percentage 
of times local minima were found in the 500 trials, 
and the last column gives the average central pro- 

Table 2. Local Minima and Timings 

Trials until Percentage CPU sac. 
Data set n m p global min. local min. per trial 

Masks 200 6 2 1 0 1.5 
3 2 27 2.5 
4 1 51 4.5 
5 5 73 5.8 

Pollution 330 9 2 1 0 2.2 
3 1 0 4.0 
4 1 30 8.5 
5 1 45 13.4 

Tokamak 40 35 2 1 0 1.4 
3 2 37 1.5 
4 3 73 2.2 
5 3 76 4.1 
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cessing unit seconds per trial on a SPARC 10 pro- 
cessor. 

All examples given in this article have been vali- 
dated as global minima through the use of repeated 
random starts. 

6. CONCLUDING REMARKS 

Archetype analysis gives a simple and useful way 
of looking at multivariate data. Archetypes are rel- 
atively easy to interpret, and the mixture coefficients 
can provide interesting information about the struc- 
ture of the data. Past this, the examples speak for 
themselves. 

Sometimes the variables used in the analysis should 
be standardized before computing archetypes- 
sometimes not. The Swiss-head-dimension and air- 
pollution data were standardized, but not the To- 
kamak data. When to use standardization depends 
on one’s sense about the data. 

Because the archetypes are located on the bound- 
ary of the convex hull of the data, the procedure can 
be sensitive to outliers. Robust versions could be 
developed using convex hull peeling or the outlying- 
ness idea of Donoho and Gasko (1992). 

In the more serious examples, we worked with 
three archetypes getting various graphical displays 
such as the mixture triangles and surface plots. Sup- 
pose that more than three archetypes are needed for 
a reasonable approximation to the data. We think 
that analogous graphical displays can be made using 
an appropriate mapping of the archetypes to the plane. 
Some experimentation has been done along these 
lines with encouraging results, but we leave the issue 
to future work. 
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