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Previously suggested methods for constructing confidence bands for cumulative distribution 
functions have been based on the classical Kolmogorov-Smirnov test for an empirical distri- 
bution function. This paper gives a method based on maximum likelihood estimation of the 
parameters. The method is described for a general continuous distribution. Detailed results are 
given for a location-scale parameter model, which includes the normal and extreme-value 
distributions as special cases. Results are also given for the related lognormal and Weibull 
distributions. The formulas derived for these distributions give a band with exact confidence 
coefftcient. A chi-squared approximation, which avoids the use of special tables, is also de- 
scribed. An example is used to compare the resulting bands with those obtained by previously 
published methods. 

KEY WORDS: Confidence band; Cumulative distribution function; Maximum likelihood 
estimator; Location-scale parameter models; Normal distribution; Lognormal 
distribution; Extreme-value distribution; Weibull distribution. 

1. INTRODUCTION 
The problem of estimating the unknown cumula- 

tive distribution function (cdl) of a continuous 
random variable often occurs in reliability studies and 
life testing. A typical case arises in strength tests of a 
given material. A small number of samples is taken 
and the stress at which each sample breaks is then 
measured. The problem is to use these observations to 
obtain estimates of the proportion of samples in a 
large batch that will break at a given stress, for a 
whole range of stress values. This problem can be 
formulated as one where an unknown cdf has to be 
estimated. It may not always be enough to give an 
estimate of the cdf alone. In the strength-test example, 
it may also be important to know that estimates of the 
proportion of samples breaking at different stress 
values are not in error by more than some specified 
amount. Some indication is thus needed of the accu- 
racy of the estimated cdf. One approach is to con- 
struct a confidence band that will contain, with a high 
confidence level, the entire unknown cdf. This is the 
problem considered in this paper. 

Several methods have been described for construct- 
ing confidence bands for cdfs. Steck (1971) gives very 
general confidence bands by finding the probability 

that the empirical cdf lies between two arbitrary cdf’s. 
Most methods, however, are based on the 
Kolmogorov-Smirnov test. Bradley (1968) gives a gen- 
eral version using this approach, while Breth (1978) 
shows how Bayesian confidence bands can be con- 
structed with this technique. The most attractive solu- 
tions using this method are those of Kanofsky and 
Srinivasan (1972) for the normal distribution, and 
Srinivasan and Wharton (1975) for the Weibull distri- 
bution. 

A weakness of methods which make use of the 
Kolmogorov-Smirnov test is that they give rise to a 
band which is of constant (vertical) width. This makes 
the band unnecessarily broad in the tails. In fact, part 
of such a band will have ordinate values that are 
greater than one, while part will have ordinate values 
that are negative. Obviously these are values which no 
cdf can take. Kanofsky and Srinivasan recognize this 
problem and overcome it in the case of the normal 
distribution by exploiting special properties of the 
distribution to cut away certain portions of the initial 
band without altering the confidence coefficient of the 
band. The full method requires the initial band to be 
constructed using special tables, and then, again using 
special tables, four further curves to be calculated that 
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are used to “whittle down” the initial band. Srinivasan 
and Wharton apply the same method to the Weibull 
distribution, but it should be pointed out that there 
appear to be numerical errors in the table used for 
calculating the curves which are used for whittling 
down the initial band. Consequently the table does 
not always give curves that intersect the initial band at 
the points claimed for them. 

cdf will entirely lie with probability 1 - c(.) The 
method suggested below produces a band by first 
obtaining a confidence region for 8. The band is then 
derived from this region. 

The method suggested in this paper is based on a 
different idea. It can be applied in principle to any 
continuous distribution that is dependent on a 
number of unknown parameters. First, a confidence 
region is constructed for the unknown parameters. A 
confidence band is then obtained by seeing how the 
cdf changes as the parameters are varied within the 
confidence region. The method has the merit of giving 
a band directly, without the need to resort to any 
whittling-down procedure. In particular, the method 
automatically gives a band whose ordinate values lie 
between 0 and 1. 

To illustrate the method, explicit formulas are given 
for confidence bands for the cdf of a location-scale 
parameter model. Bands for the normal and extreme- 
value distributions are given as special cases. In both 
these cases, the method has the practical advantage 
that the bands are given explicitly in terms of the cdf 
of a known distribution and a single constant. The 
constant can be approximated by the chi-squared 
quantile with little error even for small sample sizes. 
Tables are given that provide the exact confidence 
coefficient if this approximation is used and thus 
enable the user to assess the adequacy of the approxi- 
mation. As an alternative, we include tables of the 
exact values for the constant when it is required to 
calculate confidence bands with a specified exact con- 
fidence coefficient. Confidence bands for the lognor- 
ma1 and Weibull distributions follow very simply from 
the normal and extreme-value cases, respectively. 

Suppose first that a lOO(1 - CI) percent confidence 
region R has already been constructed in the parame- 
ter space for the unknown parameter vector. Then, 
considering the graph y = F(x, 0) in the (x, y) plane we 
look at the way this varies as 8 varies in R. These 
varying graphs will sweep out an S-shaped region, B. 
As the true value of 19 lies in R with probability 1 - CI 
this means that the probability is at least 1 - c( that 
one of the graphs used to sweep out the region B is the 
unknown true cdf of X. Thus B is a confidence band 
for F(x, 0) in which the true cdf will entirely lie, with 
probability at least 1 - CI. It is conceivable that there 
may be values of 8 outside R which give rise to cdf’s 
lying entirely within the band B, thus increasing the 
confidence coefficient and making B conservative. In 
general, it does not appear possible to give simple 
conditions on R which ensure that B is not conserva- 
tive in this sense, but it turns out that the bands for the 
location-scale parameter models given below are not 
conservative. This follows from special properties of 
these distributions. 

A method for determining the upper and lower 
envelopes of the confidence band consists of taking 
the pth quantile value x,, defined by 

PCX I xp] = F(x,, e) = p, (2.1) 

and looking at how x, varies, for fixed p, as t, varies in 
R. Mathematically, the problem is thus to find the 
maximum and minimum values of xP given by equa- 
tion (2.1), subject to the condition 0 E R. The method 
depends on finding R, a confidence region for 0, as its 
first step. 

Numerical examples are given that provide a com- 
parison between the suggested new method and the 
earlier methods of Kanofsky and Srinivasan (1972) 
and Srinivasan and Wharton (1975). 

The general method is described in Section 2, and 
the particular cases in Section 3. The numerical exam- 
ples follow in Section 4. 

Our suggested choice of R requires the maximum 
likelihood estimator, 8, of 8 to be determined first. Use 
is then made of the well-known result, given for exam- 
ple in Kendall and Stuart (1961), that f? has asymp- 
totically a multivariate normal distribution with mean 
8 and variance-covariance matrix (Z(0)) ‘, where I(e) 
is the Fisher information matrix, -E(8 In L/&Ii ad,), 
and L is the likelihood function. This means that 

2. METHOD 

Let X be a continuous random variable with cumu- 
lative distribution function F(x, 8) dependent on a 
vector 8 of k unknown parameters. A random sample 
of size n is drawn from which it is desired to calculate 
a confidence band for the cdf. (In direct analogy to the 
standard definition of a confidence region, a 
lOO(1 - ~1) percent confidence band, B, for the graph 
of the cdf of X, y = F(x, 0), is defined as a region in the 
(x, y) plane, in which the graph of the unknown true 

Q(e) = (0 - e)Tz(e)(O - e) (2.2) 
is asymptotically a chi-squared variable with k de- 
grees of freedom. 

Let y be the value for which 
P[Q(e) I y] = 1 - c(. (2.3) 

A confidence region R for the unknown 8 can be 
constructed by taking all 0 satisfying Q I y. This 
yields a region R, which is asymptotically ellipsoidal 
in shape, whose boundary is given by all 8 satisfying 

(4 - e)Tz(e)(O - 8) = y. (2.4) 
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If y is set equal to the chi-squared quantile ,&cl) 
defined by P(x2 I xi(m)) (where x2 is a chi-squared 
variable with k degrees of freedom), the confidence 
coeflicient of the region will tend to 1 - CI with in- 
creasing sample size. The precise value of the confi- 
dence coeflicient can be obtained by evaluating the 
probability (2.3) with y set equal to X;(R), either by 
quadrature or by Monte Carlo simulation. For the 
specific distributions considered in the next section 
x:(a) turns out to be a good approximation to y for 
most sample sizes. Alternatively, y can be calculated to 
obtain a band with a prescribed exact confidence coef- 
ficient. 

It should be mentioned that other quantities such 
as Q(e) = (8 - e)Tz(&O - e) or Q&7) = -2 
MwW48)1~ where L(e) is the likelihood function, 
could also have been used instead of Q(0) as they are 
also asymptotically xt variables. For small samples 
Qz(0) is usually a better approximation to xi than Q(0) 
or Qi(0). However Q,(e) is a more complicated ex- 
pression than Q(0) or Qr(e) and its use would increase 
the labor of calculating the band. An advantage of 
working with Q(0) is that 1(e) is the same for all 
samples of a given size n and hence one can solve once 
and for all for the confidence band. 

3. APPLICATIONS TO LOCATION-SCALE 
PARAMETER AND RELATED MODELS 

3.1 The General Location-Scale Parameter Model 

We now apply the method of the previous section 
for constructing confidence bands to a general 
location-scale parameter model. The normal and 
extreme-value models are then considered as special 
cases. The related lognormal and Weibull models 
follow from these. The reader requiring practical re- 
sults for any of these cases without details of deri- 
vation may wish to consult the appropriate subsection 
directly. 

We start with a known continuous distribution 
with cdf F(l) say, and probability density function 
(pdf)f(r), and consider the random variable X with 
cdf F[(x - ~)/a] where ,u and r~ are the unknown 
location and scale parameters. 

For a random sample xi, x2, . . . , x, the maximum 
likelihood estimates 1;, d can be found in the standard 
way by solving the likelihood equations. For the 
above location-scale model, if we write g(5) = lnf(<) 
and g’(t) = dg(@/d& these equations are (see, e.g., 
Kendall and Stuart 1961) 

1 g’(fi) = 0 

where ti = (xi - 8)/c?. 

C [ig’(ti) + n = 0 (3.1) 

The confidence region R for the unknown p and IS 
can now be constructed. For the location-scale model 
the information matrix is (see for example Kendall 
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and Stuart 196 1) of the form 

I@, u) = na -2( -;; -;:) (3.2) 

where k,, k,, k, are constants independent of p and G. 
Equation (2.4), giving the boundary of R thus reduces 
to 

‘7~ 4 = nk,(@ - d2/02 

-2nk,(@ - ,u)(d - o)/a2 + nk,(d - ~)‘/a = y. (3.3) 

As was shown in Section 2, y can be approximated 
by a x2 percentile. The adequacy of this approxi- 
mation will be examined for particular distributions 
later. Note that, to find exact values of y requires 
calculation of the distribution of the middle ex- 
pression of (3.3), where this is regarded as a random 
variable dependent on the distributions of b and d. 
This variable can be written as 

Q = nk, M2 - 2nk,MS + nk, S2, (3.4) 

where M = (p - p)/c and S = (8 - o)/a and p and r~ 
are the unknown parameter values. Now the likeli- 
hood equations (3.1) can also be rewritten in terms of 
M and S using the substitution li = (ti - M)/(l + S) 
where li = (xi - ~)/a. Since the ti have a distribution 
independent of p and cr, it follows that M and S and 
hence Q are also independent of p and G. This prop- 
erty greatly simplifies tabulation of exact values for y. 

Equation (3.3) can be rearranged by multiplying by 
a2. If cr > 0 the solutions are clearly unaltered. When 
multiplied by rs2 (3.3) becomes a quadratic in /* and cr. 
The boundary of R is thus an ellipse when the dis- 
criminant is negative. This obtains when 

Y/n < (h k2 - k31ko. (3.5) 

This condition turns out not to be stringent in prac- 
tice and will be assumed to hold in what follows. 

We now consider how quantiles of the distribution 
vary as (,u, a) varies in R. The pth quantile is found 
from the equation (x,, - ~)/cJ = F-‘(p) = a, say. This 
gives x, explicitly as 

xp = ,u + ao. (3.6) 

In the (p, a) plane, if p and hence a is fixed, equation 
(3.6) shows that the values of (p, a) which give a 
constant x,, lie along a straight line with slope -a- ’ 
and intercept with the p axis equal to xP. A family of 
parallel lines is thus generated by varying x,,. Still 
with p and a fixed, we look at how xP varies if (p, a) is 
constrained to be in R. Clearly the smallest and 
largest values obtainable, x^,(min) and i,,(max), corre- 
spond to two parallel tangents to the ellipse R (see 
Figure 1). This pair of values thus determines the 
limits of the band B at a given value of p. 
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Figure 1. Confidence Region for Parameters of a Location -Scale Parameter Model and Band B for the pth 
Quan tile 

Explicit formulas for 2&min) and x^,(max) can be 
found as follows. Since the maximum and minimum of 
x, occur for (p, G) lying on the boundary of R, the 
method of Lagrangian multipliers can be used to solve 
the problem. The Lagrangian is xP + qC(p, a), where 
xP is given by (3.6), C(p, a) by (3.3) and v] is the 
Lagrange multiplier. The maximum and minimum are 
found by setting the partial derivatives with respect to 
p and c equal to zero : 

The multiplier q can be eliminated by division 

~/$=p. (3.7) 

Equation (3.7) can be expressed in terms of the vari- 
ables M and S as defined in (3.4) and quadratic terms 
eliminated by using equation (3.3), rewritten in terms 
of M and S to give 

(k, + ak,)M = y/n + (k, + ak,)S. (3.8) 

This expression can be used to eliminate M from (3.3) 
to give a quadratic in S 

b(k, k, - kf)S2 + 2(y/n)(k, k, - k:)S 

+ k,(y/n)2 - (k, + akJ2y/n = 0, 

where b = k, + 2k,a + k,a’. The roots of this equa- 
tion are 

S = [ - 1 f (k, + ako)(nb/y - 1)112 

x (k, k, - kf)-“2]y/(nb). (3.9) 

These roots are real so long as b > y/n. The smallest 
value b can take as a varies is (k, k, - kf)/ko, so this 
condition, that b > y/n for all values of a, reduces to 
the very one given earlier in (3.5) that R should be an 
ellipse. 

In terms of M and S, equation (3.6) for the pth 
percentile xP is 

xp = 2, - &(M + aS)(l + S)-’ (3.10) 

where ~2~ = fi + ad. 
The value of S obtained by taking the negative 
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square root in (3.9) and the corresponding value of M 
from (3.8) are then substituted into (3.10) to give the 
largest value I,(max). The positive value of the square 
root gives the smallest value R,(min). These formulas 
reduce to 

of the confidence band with coefficient 1 - a thus 
reduce to 

I,(max) = xIP + db(N - ZJ ’ 

x^,(min) = xIp - Sb(N + ZJ ’ 
(3.13) 

x^,(max) = ZP + db(N - k, - ak,)-’ 
(3.11) 

where b = 2 + zi, N = [2nb/y - 2]112, and iP is the 

Z,(min) = I, - 6b(N + k, + ak,)- ’ 
pth quantile estimator 

where 

N = [(k. k, - k:)(nb/y - l)]“’ 

and 

b = k, + 2k,a + k,a’. 

Alternatively the band can be specified in terms of 
its upper and lower limits at each x value. This can be 
done by inverting (3.11) so as to give p in terms of x. 
This yields upper and lower limits of the band as 

2,=p+f3zp. (3.14) 

Here y is the ath quantile of Q as defined in (3.3). The 
discussion following equation (3.4) shows that the dis- 
tribution of Q is independent of p and 0. Thus y 
depends only on a and the sample size. Selected values 
are given in Table 1. If the approximation xi(a) is used 
for y, exact values of the confidence coefficient are 
given in Table 2. 

The tables were obtained as follows. The variable Q 
is 

&,a,(4 = F(t + 4 
&,(x) = F(5^ - h) 

(3.12) 

where 

h = {yn-‘k,‘[l + (k,[ + k,)2 

x (k, k, - kf)- ‘1) ‘I2 and [ = (x - @)/a. 

That the band is exact, and not conservative in the 
sense of Section 2, can be shown as follows. The only 
values of (p, rr) that give rise to a cdf lying entirely 
within the band B are those that give xp values which 
lie within the limits Z,(min) and R,(max) for all p, 
0 < p I 1. But, as p varies, 0 I p I 1, the pair of 
parallel tangents giving Z,(min) and x^,(max) rotate 
about R in such a way that the slopes will take all 
values between -co and co. This means, as R is an 
ellipse and hence convex, that the (p, a) values which 
lie simultaneously between all tangent pairs consist 
precisely of those in the region R. This shows that the 
band B is not conservative, as no (p, 0) value outside R 
is possible that will give a cdf lying entirely within the 
band B. 

Q = n(@ - ~)~/a~ + 2n(& - a)‘/a2 = q1 + q2 (say). 

Now q, is well known to be a chi-squared variable 
with one degree of freedom. The distribution of q2 is 
more complicated. It is well-known that n&‘/a2 is a 
chi-squared random variable with (n - 1) degrees of 

Table 1. Exact Values of y for the Normal Distri- 
bution, Equation (3.13) 

l-a 
Sample Size 0.800 0.850 0.900 0.950 0.990 

3.2 Normal Distribution 

The results of the previous subsection specialize 
immediately to give a confidence band for the cdf of 
the normal distribution with unknown mean p and 
variance a2. The maximum likelihood estimates of p 
and 0 are well known to be 

$ = X and C? = {c (xi - %)2/n 1 112. 

The constants in the Fisher information matrix Z(,U, CJ) 
are k, = 1, kI = 0, and k, = 2 (see Bury 1975) and, in 
the expression for the pth quantile (equation 3.6), a = 
zP, where zP is the pth quantile of the standardized 
normal distribution. Equations (3.11) giving the limits 

5 3.544 4.138 4.961 6.350 9.750 

6 3.485 4.078 4.903 6.300 9.636 

7 3.443 4.035 4.861 6.260 9.567 

8 3.413 4.003 4.829 6.229 9.520 

9 3.390 3.979 4.804 6.204 9.484 

10 3.372 3.960 4.783 6.183 9.457 

12 3.345 3.931 4.753 6.152 9.416 

14 3.326 3.911 4.732 6.130 9.367 

16 3.312 3.986 4.716 6.113 9.365 

18 3.301 3.884 4.703 6.099 9.348 

20 3.293 3.875 4.693 6.089 9.335 

25 3.278 3.858 4.675 6.069 9.310 

30 3.268 3.848 4.664 6.056 9.294 

35 3.261 3.840 4.655 6.047 9.282 

40 3.255 3.834 4.649 6.040 9.274 

50 3.248 3.826 4.640 6.031 9.262 

60 3.243 3.821 4.634 6.024 9.253 

80 3.237 3.814 4.627 6.016 9.244 

100 3.233 3.810 4.623 6.011 9.238 

m 3.219 3.794 4.605 5.991 9.210 
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Table 2. Exact Confidence Coefficient Corre- 
sponding to a x$(u) Value Used as an Approxi- 
mation to y in the Normal Distribution Case, Equa- 
tion (3.13) 

1-a 
Sample Size 0.800 0.850 0.900 0.950 0.990 

5 0.766 0.823 0.881 0.940 0.987 

6 0.773 0.828 0.885 0.942 0.988 

7 0.777 0.831 0.887 0.943 0.988 

8 0.780 0.834 0.888 0.944 0.988 

9 0.783 0.836 0.890 0.944 0.989 

10 0.785 0.837 0.891 0.945 0.989 

12 0.767 0.840 0.892 0.946 0.989 

14 0.789 0.841 0.894 0.946 0.989 

lb 0.791 0.842 0. a94 0.947 0.989 

18 0.792 0.843 0.895 0.947 0.989 

20 0.793 0.844 0.896 0.948 0.989 

25 0.794 0.845 0.896 0.948 0.989 

30 0.795 0.846 0.897 0.948 0.990 

35 0.796 0.847 0.897 0.949 0.990 

40 0.796 0.847 0.898 0.949 0.990 

50 0.791 0.848 0.898 0.949 0.990 

60 0.798 0.848 0.899 0.949 0.990 

80 0.798 0.848 0.899 0.949 0.990 

100 0.799 0.849 0.899 0.949 0.990 

freedom and that the pdf of q2 can be written in terms 
of the pdf of c?, which in turn can be expressed in terms 
of the pdf of n$/a2. Moreover, since @ and d2 are 
independent, q1 and q2 are also independent. Thus the 
distribution of q1 + q2 is the convolution of the distri- 
butions of q1 and q2. The convolution was evaluated 
numerically using a standard integration program 
(NAG routine DO1 AGF). Table 1 was obtained by 
varying y iteratively until the confidence coefficient 
was equal to preselected values. Notice that the con- 
dition (3.5) for N to be real reduces to y < 2n and this 
is satisfied by all values of y in Table 1. Table 2 was 
obtained simply by evaluating the confidence coef- 
ficient at the selected approximate values of y. 

3.3 The Lognormal Distribution 

The probability density functionf(u) of a lognor- 
mally distributed random variable V is given by 

f(4 = 

i 

(~Tco~)-~‘~u-~ exp{ -(202)-’ 
x(lno-P)~}, u>O 

0, otherwise. 

This is not itself a location-scale parameter model; 
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however, if I/ is lognormally distributed X = In V is 
normally distributed with mean p and variance u2. 
Thus given a random sample drawn from the above 
lognormal distribution, a confidence band for the cdf 
can be constructed using (3.13). The sample is trans- 
formed to normality by taking natural logarithms and 
then the limits of the band x^,(max) and f,,(min) are 
calculated from equation (3.13). As the log transform- 
ation is monotone the band can be transformed back 
by exponentiating these limits to give limits for up as 

i?&max) = exp{x^,(max)} 

ti,(min) = exp{x^,(min)}. 

3.4 The Extreme-Value Distribution 

The cdf of a random variable X that has the 
extreme-value distribution with unknown location 
parameter p and scale parameter c is 

F(x) = exp{ - expC - (x - dbl > 
--co < x < co. (3.15) 

The notation here follows that of Bury (1975). Note 
that some authors write the second exponential in 
(3.15) with a positive sign instead. 

The maximum likelihood estimates 1; and ci of p 
and D cannot be given explicitly, but can be calculated 
from the likelihood equations by iterative methods. 
For details see, for example, Bury (1975). The con- 
stants in the Fisher information matrix I@, a) in this 
case are k, = 1, k, = 1 - c, and k, = 7c2/6 + k:, 
where c = 0.577216 is Euler’s constant (see Bury 
1975). In the expression for the pth quantile (equation 
3.6), a = -In ln(l/p). Equations (3.11) giving the 
limits of a confidence band with coefficient 1 - c1 thus 
reduce to 

I,(max) = i, + eb(N - k, - a)-’ 

f,(min) = 1, - eb(N + k, + a)-’ 
(3.16) 

where b = k, + 2k,a + u2, N = [z2(nb/y - 1)/6]112 
and xIP is the pth quantile estimator 

iCp = p + &a. (3.17) 

As in the normal model, y depends only on a and 
the sample size. Selected values are given in Table 3. 
Table 4 gives the actual value of the confidence coef- 
ficient when y is approximated by the chi-squared 
quantile x:(a). The tables were obtained as follows. 
Calculation of y requires evaluation of the distribution 
of the random variable Q of equation (3.3). Unlike the 
normal, this distribution is difficult to evaluate, even 
numerically. Instead it has been estimated by Monte 
Carlo methods. For each sample size the values of y 
are based on l,OOO,OOO pseudo-random samples. 
Table 3 is believed to be accurate as far as the quoted 
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Table 3. Exact Values of y for the Extreme Value 
Case, Equation (3.16) 

l-a 
Sample Size 0.80 0.85 0.90 0.95 0.99 

5 

6 

7 

8 

9 

10 

12 

14 

16 

18 

20 

25 

30 

35 

40 

50 

60 

70 

80 

100 

m 

3.70 4.34 5.27 7.08 

3.62 4.25 5.17 6.89 

3.57 4.19 5.10 6.76 

3.53 4.16 5.05 6.69 

3.50 4.12 5.01 6.61 

3.47 4.08 4.97 6.55 

3.44 4.05 4.92 6.47 

3.40 4.01 4.88 6.40 

3.36 3.98 4.84 6.34 

3.37 3.97 4.83 6.33 

3.36 3.96 4.81 6.30 

3.33 3.93 4.77 6.25 

3.31 3.91 4.74 6.20 

3.30 3.88 4.72 6.16 

3.29 3.87 4.70 6.14 

3.26 3.85 4.68 6.11 

3.26 3.85 4.67 6.08 

3.25 3.84 4.66 6.07 

3.25 3.83 4.65 6.07 

3.24 3.82 4.64 6.04 

3.219 3.794 4.605 5.991 

* 

* 

11.48 

11.26 

11.00 

10.80 

10.55 

10.34 

10.21 

10.10 

10.04 

9.89 

9.74 

9.64 

9.61 

9.52 

9.44 

9.48 

9.38 

9.34 

9.210 

* The method fails if y , nr'/6 (see text). 

third decimal place. In Table 4 the values are pro- 
duced by interpolation, and the error is believed to be 
at most +.05. The second decimal place is included 
for guidance only. The condition for N to be real is 
that y < nn2/6. The calculated values of y for sample 
sizes 5 and 6 for 99 percent confidence bands exceed 
nrt2/6 and have not been quoted in Table 4. 

3.5 The Weibull Distribution 

The pdff(w) of the Weibull distribution is given by 

ma~u-1 exp{ -(w//l)a} w > 0 
otherwise 

(3.18) 

This is not a location-scale parameter model but if W 
is a Weibull-distributed random variable then X = 
-In W has the extreme value distribution with cdf 
(3.15). The parameters of the two distributions are 
related by the equations CI = c ’ and fi = exp( - y). 
Thus a random sample from the Weibull distribution 
may be transformed by taking natural logarithms and 
changing the sign, to give a random sample for an 

Table 4. Exact Confidence Coefficient Corre- 
sponding to a 1: (a) Value Used as an Approxi- 
mation to y in the Extreme -Value Case, Equation 
(3.16) 

1-a 
Sample Size 0.800 0.850 0.900 0.950 0.990 

5 0.752 0.809 0.867 0.925 

6 0.759 0.815 0.872 0.929 

7 0.765 0.820 0.875 0.932 

8 0.768 0.823 0.878 0.933 

9 0.771 0.826 0.880 0.935 

10 0.774 0.828 0.882 0.936 

12 0.778 0.831 0.884 0.938 

14 0.781 0.834 0.887 0.940 

16 0.784 0.836 0.888 0.941 

18 0.786 0.837 0.889 0.942 

20 0.786 0.838 0.890 0.943 

25 0.789 0.840 0.892 0.944 

30 0.791 0.842 0.893 0.945 

35 0.792 0.843 0.894 0.946 

40 0.793 0.844 0.895 0.946 

45 0.795 0.846 0.896 0.947 

50 0.796 0.846 0.897 0.948 

60 0.797 0.847 0.897 0.948 

80 0.796 0.847 0.898 0.948 

100 0.798 0.848 0.898 0.949 

* 

* 

0.979 

0.980 

0.982 

0.982 

0.984 

0.984 

0.985 

0.986 

0.986 

0.987 

0.987 

0.988 

0.988 

0.988 

0.989 

0.989 

0.989 

0.989 

* The method fails for these values (see text). 

extreme value distribution. A confidence band for the 
extreme value cdf of the transformed sample can be 
calculated from (3.16), to give values g,(max) and 
2,(min) for any p. 

A band for the Weibull cdf of the original sample is 
obtained by noting that the pth quantile wP of the 
Weibull distribution can be obtained from the 
(1 - p)th quantile x1-P of the extreme value distri- 
bution from the equation 

wp = exp(-x,-J. 
As the log transformation is monotone, the limits 

x^i -,(max) and z?~ _,(min) can be transformed back by 
exponentiating the limits after changing the sign to 
give limits for wP as 

3,(max) = exp{ - 2, - p(min)} 

G,(min) = exp{ - Z1 -,(max) 1. 
(3.19) 

4. NUMERICAL EXAMPLES 

To illustrate the use of the formulas of Section 3 we 
construct confidence bands for the cdfs for the log- 
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Bearing life in hours x 1000 

Figure 2. Estimated Distribution Function and 90% Confidence Bands for Normal Model and Kanofsky and 
Srinivasan Band 

normal and Weibull distributions for a particular set 
of data. It is not the intention to make any formal 
comparison of the fits of the different models; the aim 
is merely to illustrate the ease with which bands can 
be calculated. 

Schafer and Angus (1979) gave the operational lives 
(in hours) of 20 bearings. These are 2398, 2812, 3113, 
3212, 3523, 5236, 6215, 6278, 7125, 8604, 9003, 9350, 
9460,11584,11825,12628,12888,13431,14266,17809. 

In order to calculate the cdf and the confidence 
bands using a lognormal model the data are first 
transformed by taking natural logarithms. The maxi- 
mum likelihood estimates of the mean and standard 
deviation of these transformed data are respectively 
fi = 8.8984 and 6 = .5970. The estimated cdf is calcu- 
lated from (3.14) for a range of values of p between 0 
and 1. Equation (3.13) enables upper and lower limits 
to be placed on these estimates. For example, when 
a = .l and p = .90, a = zP = 1.28155 and from equa- 
tion (3.14) .?, = 9.6635. Table 1 gives the exact value 
of y for a 90 percent confidence band and sample size 
20 of 4.693. The values of b and N for equation (3.13) 
are b = 3.6424 and N = 5.3894. Equation (3.13) gives 
T,(min) = 9.338 and x^,(max) = 10.193. If the x2 ap- 
proximation to y is used (i.e. y N ~2 (0.1) = 4.605), 
N = 5.4441. Equation (3.13) then also gives x^,(min) = 

9.340 and x^,(max) = 10.186. The values of i,, , Z,(min), 
and x^,(max) have to be transformed by exponentiat- 
ing to give the required quantile tiP and limits for the 
90 percent confidence band, L;,(min) and C&max) for 
the lognormal model. These values are t’, = 15,733 
with C,(min) = 11,356 and CP(max) = 26,710 
when the exact value of y is used and t;,(min) = 11,386 
and C&max) = 26,527 when the approximate value of 
y is used. Similar calculations were done for a range of 
values of p. Figure 2 is a diagram of the estimated cdf 
and the 90 percent confidence bands using the x2 
approximation to y. Using the exact value of y makes 
no discernible difference to the diagram. 

The use of (3.12) to calculate limits for the cdf F(x) 
at a fixed value of x can also be illustrated with these 
data. For example, corresponding to a lifetime of 
u = 10,000 hours, x = ln(10,OOO) = 9.2103 and 5 from 
equation (3.12) is .5225. With the appropriate values 
for ke, k,, and k,, h = .5115; whence pmax = F(1.034) 
and Fmin = F(O.O1 l), F in this case being the cdf of the 
standard normal distribution. Thus E,,, = 0.849 and 
F^,i, = 0.504. Since the log transformation is mono- 
tonic increasing these are the appropriate bands for 
the lognormal model at v = 10,000 hours. 

For comparison, the method of Kanofsky and Srin- 
ivasan (1972) for constructing a confidence band has 
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Bearing life in hours x 1000 

Figure 3. Estimated Distribution Function and 90% Confidence Bands for Weibull Model and Srinivasan 
and Wharton Band 

also been used. This method defines the band in terms 
of upper and lower limits for the cdf F in the form 

P(max) 

P(min) 

=$+I, 

=F-I, 
(4.1) 

where F^ is the estimated cdf. Now I, is difficult to 
evaluate explicitly, but Kanofsky and Srinivasan 
(1972) have tabulated 1, for a wide range of values. In 
this example I,,, = . 16. This band is rather broad in 
the tails. Kanofsky and Srinivasan (1972) indicate how 
the tails can be whittled down using curves that inter- 
sect the band in (4.1) and it is this reduced band that is 
drawn in Figure 1. For this example it would appear 
that the bands obtained by the method of Kanofsky 
and Srinivasan are narrower in the central part of the 
cdf but wider in the tails. 

For the fitting of the Weibull distribution it is again 
necessary to transform the data. The natural loga- 
rithms are taken and the sign is changed. Maximum 
likelihood estimates of the parameters are obtained by 
the iterative method suggested in Bury (1975). The 
values obtained are fi = - 9.1796, d = .4748. These 
values enable the estimate of the cdf to be evaluated 
using (3.17) to work out the quantiles xP for a range of 
values of p. Equations (3.16) are then used to evaluate 

the confidence band. As an example, when a = .l and 
p = .90, 1 - p = .lO and a = -.8340. From equation 
(3.17) xIP = -9.5756. From Table 3, the exact value of 
y for a 90 percent confidence band and sample size 20 
is 4.81. The values of b and N of equations (3.16) are 
respectively b = 1.8141 and N = 3.2806, giving 
f, -.(max) = -9.342 and ii -,(min) = -9.876. Alter- 
natively, the x2 approximation to y (y N x2(.1) 
= 4.605) gives N = 3.3638, x^, -,(max) = -9.348 and 

x^, -,(min) = - 9.867. The required quantile GP and 
the limits for the confidence band G,(min) and 
G&max) can now be obtained from equation (3.19). 
These values are GP = 14,409 with G&min) = 11,411 
and G,(max) = 19,454 when the exact value of y is 
used and G&min) = 11,470 and G,(max) = 19,291 
when the approximate value of y is used. Similar 
calculations were performed for a range of values of p. 
The band obtained is shown in Figure 3. As in the 
normal case, use of the approximate value of y rather 
than the exact value makes no discernible difference to 
the figure. 

Bands for the cdf F(x) for a fixed value of x can be 
worked out from (3.12). For example, corresponding 
to a lifetime of w = 10,000 hours x = -ln( 10,000) = 
- 9.2103 and 5 = -.0647. With the appropriate 
values of ko, k,, and k,, h = .4982 so that p,,, = 
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F(.4335) and Emin = F( -.5629). In this case F(t) = 
exp( -exp[ - 41) is the standardized cdf of the 
extreme-value distribution corresponding to (3.15) 
with p = 0 and (T = 1. This gives F(.4335) = ,523 and 
F( -.5629) = .173. The transformation from the 
extreme-value to the Weibull model is monotonic de- 
creasing, so the appropriate limits for the confidence 
bands for the Weibull cdf at w = 10,000 hours are 
1 - .523 = .477 and 1 - ,173 = .827. 

Srinivasan and Wharton (1975) gave a method of 
constructing a confidence band of the form (4.1). In 
this example, with significance level 0.1 I,,, = .17; this 
band is also shown in Figure 3. They provide a sug- 
gested procedure for whittling down the tails, but 
Table 3 of their paper appears to be in error. The 
maximum likelihood estimates of the parameters CI 
and /? of the Weibull pdf (3.18) are respectively ti = 
2.1060 and fr = 9697. The initial lower limit for the 
confidence band for the cdf is then obtained by substi- 
tuting these values into the Weibull cdf F(w; CC, fi) 
corresponding to the pdf (3.18) and subtracting 1,,, = 
.17. In the right tail this curve is replaced by a different 
Weibull cdf. These two curves are supposed to inter- 
sect at w2 = &cx~)“~, where x2 is obtained from tables 
provided by Srinivasan and Wharton. From these 
tables x2 = 2.9101, so w2 = 16104. The parameters for 
the cdf for the right tail are obtained by multiplying 
the maximum likelihood estimates by factors, also 
obtained from tables. These factors, using the notation 
of Srinivasan and Wharton, are c(r = .4713 and pr = 
1.2416, which gives M: = .9926 and /l = 12040. These 
values of x and fl are substituted into F(w; ~1, /I). Un- 
fortunately F(16104; .9926, 12040) = .7367 whereas 
F(16104; 2.1060, 9697) - .17 = .7755 so that the two 
curves do not intersect at w2. The narrower bands 
have not therefore been shown in Figure 3. 

5. CONCLUDING COMMENTS 

The method suggested in this paper for calculating 
confidence bands for a cdf of a continuous random 
variable appears to compare favorably with previous 
methods. For the normal, lognormal, extreme-value, 
and Weibull distributions the suggested methods give 
simple results. The equations given in Section 3 in- 
volve a certain amount of calculation, but this can 
readily be done either on a computer or on a pro- 

grammable calculator, say. The method is appealing 
in that a single band is produced from the equations. 
There is no need to start from a band that is clearly 
too broad in the tails and whittle it down. 

The general idea of working out such bands by first 
obtaining a confidence region for the parameters 
could be applied to any continuous random variable. 
Two things would have to be checked. First, the confi- 
dence region for the parameters we have suggested is 
based on an asymptotic result; the adequacy of the 
approximation would have to be checked for small 
sample sizes using methods like those used in this 
paper. Second, care would have to be taken to show 
that the bands obtained were exact bands with the 
stated confidence coefficient and not conservative 
bands. The point was discussed in Section 2, and 
Section 3 outlines how the point has to be checked in 
specific cases. 
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