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In many regression problems, data on the dependent variable are censored; that 
is, the values of some observations are known only to be above or else below some 
value. Such data often arise in accelerated life testing where life is the dependent 
variable and temperature or stress is the independent variable and some test units 
have not failed at the time of the analysis. In such situations, the standard techniques 
of least squares estimation for the parameters of a linear regression model cannot be 
used, since the values of the censored observations are not known. 

This is Part I of a two-part series on t’he theory and application of linear estimation 
methods for regression analysis using the ordered observations of censored data. 
The use of these methods is illustrated with analyses of censored data from an 
accelerated life test of motor insulation and of censored data from tandem specimens 
in a creep-rupt,ure test on an alloy. 
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INTRODUCTION 

The problem. Often one desires to estimate the relationship between some 
measure of product performance and one or more stress, environmental or other 
independent variables. Typically, performance measurements are obtained at a 
number of stress conditions. The resulting data are used to estimate the relation- 
ship between performance and stress, The estimated relationship, which smoothes 
the data, is then used to estimate performance at one or more conditions. 

It may happen that the performance data are censored; that is, some perform- 
ance values at some stress conditions are known only to be above or else below 
some value. Such data often arise when the dependent (performance) variable 
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is time to failure. The time to failure of each unfailed unit is known only to 
exceed some value, which represents its survival time at the time of the analysis. 
Also, censored data occur when an electrical parameter is measured using an 
instrument with a limited scale. Readings are obtained for all values falling 
within the scale of measurement. All that is known for a value outside this range 
is whether it was below or else above the measurement scale. 

This two-part article describes linear estimation methods for regression 
analysis when the data on the dependent variable are censored. In such situa- 
tions, censored data on some performance variable are obtained at different 
values of one or more independent variables, and the relationship between 
performance and these variables is to be estimated. 

Types of censoring. A number of different types of censored data will be 
briefly described for background. A more detailed discussion is provided by 
Nelson (1969). 

Data are said to be singly censored if the values of the observations in one of 
the distribution tails are not known and are doubly censored if the values of the 
observations in both tails are unknown. Life test data are frequently singly 
censored to the right; that is, the failure times of unfailed units are known only 
to be beyond their current running times. This would be the case, for example, 
in a life test if all units are placed on test at the same time and all unfailed units 
have, as a result, accumulated the same running time at the time of analysis. 
Instrumentation data may be doubly censored; that is, observations may be 
beyond the scale of measurement at either tail of the distribution. Data are 
said to be multiply or progressively censored if the censored values and un- 
censored values are intermixed. Multiply censored life data are frequently 
encountered in the field where different units have differing running times at 
the time of an analysis of the data. 

Censored data are said to have Type I censoring if censored observations 
occur only at specified values of the dependent variable. Such censoring results, 
for example, in life testing when all units are put on test at the same time and 
the data are collected and analyzed at a specified point in time. For life data, 
this is called time censoring. In this type of censoring, the censoring values are 
fixed and the number of censored observations is random. The insulation life 
data in the example in Section 2 involve this type of censoring. Censored data 
are said to have Type II censoring if the number of censored observations is 
specified and their censored values are random. Such censoring results, for 
example, in life testing when all units are put on test at the same time and the 
testing is terminated when a specified number have failed. For life data, this is 
called failure censoring. The dat,a in the example in Section 3 on tandem creep- 
rupture specimens have Type II censoring. 

The model. The model and assumpt,ions, upon which the methods are based, 
are described briefly here and in greater detail in the Appendix in Part II. It is 
assumed that the dependent variable has a specified two parameter distribution 
with a location parameter p and a scale parameter g. The location parameter is 
given in terms of I’ independent variables x1 , . . . , xp by the linear relationship 

PCS1 , . .’ , SP) = P” + PI21 + . . . + PPZP 
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where the values of the coefficients PO , & , . . . , BP are unknown. The scale 
parameter LT is assumed to be a constant whose value is unknown. 

In practice, the normal or the smallest extreme value distributions is often 
used as the distribution for the dependent variable. For the normal distribution, 
the location parameter p is the mean (also the 50’th percentile) and the scale 
parameter (r is the standard deviation of the distribution. For the smallest 
extreme value distribution, the location parameter is the mode (also the 63.2’th 
percentile), and the scale parameter is a multiple of the standard deviation of 
the distribution. The lognormal or Weibull distribution can also be used as the 
distribution for the dependent variable, since the logarithm of a lognormal 
variate or of a Weibull variate has a normal or smallest extreme value distribu- 
tion, respectively. Then, for the lognormal distribution, the logarithmic mean 
is the location parameter, and for the Weibull distribution, the natural logarithm 
of the scale parameter is the location parameter. In the case of the Weibull 
distribution, this leads to linear unbiased estimates of the natural logarithm of 
the Weibull scale parameter and of the reciprocal of the shape parameter. These 
special models are presented in more detail by Nelson and Hahn (1971). 

It is assumed that independent random samples are taken at each of K 
different conditions, and, for the sample at the k’th condition (k = 1, . . * , K), 
the values of the independent variables are zkl , . . . , xkP . Then the value of the 
location parameter at the k’th condition is 

!A = PO + PlZkl + * . * + PPZkP . 

Suppose that the size of the k’th sample is AT, and that Rk sample values are 
observed and the remaining N, - R, observations are Type II censored. Let 
Ylkt < *** 5 YkRk denote the ordered observed values. These need not be the Rk 
smallest order statistics but may be any set of Rk observed values. For example, 
they may be the order statistics in a progressively censored sample with Type II 
censoring (see Nelson (1969), Thomas and Wilson (1970), and Mann (1970)). 
Although the underlying theory is based on Type II censoring, the methods 
will also be applied to Type I censored data. The consequences of this are not 
serious in most practical situations. This matter is discussed further by Hahn 
and Nelson (1971). 

Related work. Work on linear estimation for regression analysis of censored 
data has been done by Lieblein and Zelen (1956) and is described in Section 2F. 
Alternative methods to the method of linear unbiased estimation presented 
here for regression analysis of censored data are maximum likelihood and 
graphical methods. Hahn and Nelson (1971) review and compare the three 
methods (graphical, maximum likelihood and linear unbiased estimation) and 
provide a guide to help readers decide on an appropriate method in a given 
application. 

Outline of the contents of this article. This article is published in two parts. 
The first part, which appears here, contains Sections 1 and 2. The second part, 
which will appear in a later issue of TECHNOMETRICS, contains Sections 3, 
4, 5 and the Appendix. The theory and methods for obtaining minimum variance 
(“best”) linear unbiased estimators of the parameters of a linear regression model 
are developed in the Appendix. The best linear unbiased estimators are more 
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precise and are therefore preferred over other linear unbiased estimators. 
However, the method leads to a problem in generalized least squares estimation, 
that is, one where the observations have unequal variances and are correlated. 
This presents no new theoretical problems, but requires complicated hand 
calculations, if a computer program for generalized regression analysis is not 
available. Much of the body of this paper therefore concentrates on procedures 
which are computationally simpler and whose basis is also described in the 
Appendix. 

Step-by-step procedures for a method for simple (but not minimum variance) 
linear unbiased estimation of the parameters of a linear regression model with 
censored data on the dependent variable are given in Section 2 for the special 
case of one independent variable. These procedures are illustrated with an 
analysis of censored data on insulation life described by the Arrhenius model. 
Section 3 provides step-by-step procedures for obtaining linear estimates of 
the regression model parameters for the special case where the sample size at 
each test condition is the same and only the first order statistic is observed 
(i.e., uncensored). In this case, the simple method for linear unbiased estimation 
does not apply, but the method for best linear unbiased estimation is easy to 
apply. The method for this case is illustrated by an analysis of censored creep- 
rupture data on tandem specimens of an alloy, tested at differing stress levels. 
Limitations of linear estimation methods are briefly indicated in Section 4, and 
concluding remarks on linear estimation are made in Section 5. 

A company report (Nelson and Hahn (1971)) on which the present paper is 
based, includes three additional appendices. The first of these appendices reviews 
available tabulations of factors required for obtaining the various estimators. 
The second appendix contains some short tabulations of such factors. The third 
appendix briefly presents four commonly used statistical dist,ributions and t,heir 
corresponding linear regression relationships. 

METHODS FOR SI~VPLE LXEAR UNBIASED ESTIMATION OF THE PARAMETERS 
OF A LIXEAR R,EGRESSIOX MODEL 

A. Introduction 

This section contains a step-by-step presentation of simple methods for 
calculating linear unbiased estimates for the parameters of a linear regression 
model from censored data. It includes methods for obtaining approximate 
confidence intervals for the parameters as well as for estimating other quantities 
of interest in practical problems. The emphasis in this section is on the applica- 
tion of the methods, which are illustrated by a numerical example. The unbiased 
estimators presented here are linear functions of the ordered observations but 
are not the best ones (i.e., do not have minimum variance). 

The theory for the simple methods for linear unbiased estimation is given 
in the Appendix. The discussion in the Appendix is more general than that 
provided here, since the presentation here is limited to certain simple, important 
applications of the theory. 

The simple method involves obtaining the best linear unbiased estimates of 
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the location and scale parameters of the distribution at each test condition, using 
existing tabulations for such estimates, and then using these estimates to fit to 
the data the regression relationship between the independent variable and the 
location parameter. This method is described step by step in subsection C. 
The fitting involves a regression analysis based upon uncorrelated observations, 
since the results at the different test conditions are statistically independent of 
one another. However, a weighted regression analysis is required, since the 
variances of the estimates of the location parameters at the different test condi- 
tions will in general vary due to the differing sample sizes and differing amounts 
of censoring at each test condition. A weighted regression analysis on uncorre- 
lated observations, however, is reasonably simple to perform either directly or 
by transforming the problem to one of a simple regression (fitted through the 
origin) as described in the Appendix. 

A still simpler method for obtaining linear unbiased estimators is to conduct 
a standard (i.e., unweighted) regression analysis instead of performing a weighted 
regression analysis on the estimates of the location parameters at the test 
conditions. The simpler method is presented step by step in subsection D. 
This method ignores the fact that the variances of the estimates at the different 
test conditions vary. As a result, the computations can be carried out by essen- 
tially any available computer program for standard least squares regression 
analysis. This method also leads to linear unbiased estimates, but with higher 
variances than those of the previous simple estimates, which take into account 
the differences in variances by a weighted regression analysis. In the special 
case where the sample size and the censoring scheme are identical at each test 
condition, the variances of the estimates at each test condition are the same and 
consequently the weighted regression analysis simplifies to an unweighted 
regression analysis. In situations where the sample sizes and the censoring 
schemes are similar, but not identical, at the various test conditions, the loss 
in efficiency in using the unweighted as compared to the weighted regression 
analysis is not great. The unweighted regression analysis may be preferred due 
to its computational ease. This computational ease applies to obtaining point 
estimates only and does not carry over to calculating confidence intervals or 
conducting hypothesis tests. 

The preceding methods for unbiased linear estimation are similar to the 
graphical method which is presented by Hahn and Nelson (1970) and which 
provided the authors with the motivation for the simple methods. 

B. Description of an Insulation Life Problem 

A problem concerning the analysis of censored data from an accelerated life 
test of Class B insulation in motorettes will be used to illustrate the methods of 
analysis presented in Part I. This problem will now be described. 

In order to evaluate a new Class B insulation for electric motors, temperature 
accelerated life testing was conducted on 40 motorettes. Ten motorettes were 
put on test together at each of four temperatures (150°C, 17O”C, 190°C, 22O’C). 
The main purpose of the experiment was to obtain information about the dis- 
tribution of insulation life (in particular, its median and 10% point) for the 
design temperature of 13O’C. At the time the analysis was performed, seven 
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motorettes at 17O’C had failed, five each had failed at 19O’C and 22O”C, and 
none had failed at 15O“C. Such motorettes are inspected periodically for failure, 
and each recorded failure time is the midpoint of the period in which the failure 
occurred. The data are sho\yn in Table 2.1. Crawford (1970) published these 
data and, assisted by the authors, originally used graphical and maximum 
likelihood methods to analyse the data. 

For many products undergoing temperature accelerated life testing, the 
Arrhenius model has been found satisfactory for estimating life at design 
temperatures. This model will be used to analyze the Class B insulation data. 
The assumptions of the model are 

i) for any temperature, the life distribution is lognormal, 
ii) the standard deviation u of the logarithmic life is a constant (i.e., inde- 

pendent of temperature), and 
iii) the mean P(Z) of the logarithmic life is a linear function of the reciprocal 

z = l/T of the absolute temperature T, that is, 

P(Z) = PO + PlZ (2.1) 

190°c 

TABLE 2.1 
Insulation Life Data at Various Test Temperatures 

15O’C All 10 motorettes still on test without failure at 8064 hours. 

Plotting PosXon 
170°c Hours to Failure Rank i 100 (i - 0.5)/n 

1764 1 5 
2772 2 15 
3444 3 25 
3542 4 35 
3760 5 45 
4860 6 55 
5196 7 65 

3 motorettes still on test without failure at 5448 hours. 

Plotting Position 
Hours to Failure Rank i 100 (i - 0.5)/n 

40s 1 5 
408 2 15 

1344 3 25 
1344 4 35 
1440 5 45 

5 motorettes still on test without failure at 1680 hours. 

220°c 
Plotting Position 

Hours to Failure Rank i 100 (i - 0.5)/n 

408 1 5 
408 2 15 
504 3 25 
504 4 35 
504 5 45 

5 motorettes still on test without failure at 528 hours, 
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TEMPERATURE. C 

FIGURE 2.1-The Arrhenius Model on Arrhenius Paper 

where p0 and p1 are parameters characteristic of the product and the test 
method. (It is convenient to work with 2 = 1000/T.) 

The antilogarithm of the mean logarithmic life P(Z) is the median life and is 
regarded as a nominal life. Equation (2.1) is called the Arrhenius relationship. 
An example of such a relationship is depicted in Figure 2.1 on Arrhenius plotting 
paper. Such paper has a horizontal scale for reciprocal absolute temperature and 
a vertical logarithmic scale for time. The model is also depicted in Figure 2.2 
on lognormal probability paper. Methods for analyzing complete data with this 
model are given by Nelson (1970a). 



254 W. NELSON AND G. J. HAHN 

The grouped nature of the data will not be taken into account in the analysis. 
That is, it will be assumed that the times midway between inspections in 
Table 2.1 are the actual times to failure. The actual failure could have occurred 
any time between the time it was detected and the time of the,preceding inspec- 
tion. The times between inspections are short, and the effect of the grouping on 
the results is therefore small. 

Linear methods for estimating the life distribution at the design temperature 
from censored data are given in the next subsection. These methods can also be 

J / 

FIGURE 2.2-The Arrhenius Model on Lognormal Probability Paper 
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used for other distributions and regression relationships. Corresponding linear 
methods for complete data are presented by Nelson (1970b) for the inverse 
power law model, which involves the Weibull distribution and a simple linear 
regression relationship. 

C. Simple Linear Unbiased Estimators for Regression with One Independent 
Variable and Censoring to the Right (Using Weighted Regression Analysis) 

Given next are the specific expressions for the simple linear unbiased estimators 
of the parameters in the linear regression model with one independent variable 
and data censored to the right. They are applied to the insulation life problem 
just presented. This method requires that there be at least two observed (i.e., 
uncensored) values at each of the test conditions which are to be included in the 
analysis. This requirement is met at t’he three test temperatures (test conditions) 
of 170°C, 19O’C and 22O’C in the insulation life example, but not at 15O’C. 
Therefore that information cannot be used in the following analysis. A step-by- 
step presentation of the method is given below. 

CALCULATIONAL STEPS 

Notation 

Let k denote a typical test condition for which at least the 2 smallest sample 
values are observed, k = 1, . . . , K. 

Let Nk denote the total sample size at the k’th condition, k = 1, . . . , K. 
Let Rk denote the number of (uncensored) observations at the k’th condition, 

k zz 1, . . . , K, (assumed here to be the R, smallest values, where Rk 2 2). 
Let X~ denote the value of the independent variable x at the k’th condition, 

k = 1, ..a ,K. 
Let ykI , . . . , ykR& denote the values of the dependent variable y for the Rk 

observed values at the k’th condition, arranged in order of magnitude, i.e., 
ykl is the smallest observation, yk2 is the second smallest observation, etc., where 
k = 1, ..a , K. 

Insulation Life Example (see Section SB) 

There are 3 temperatures at which 2 or more failures were obtained. Thus, 
there are K = 3 test conditions. 

The sample sizes are N, = N, = N, = 10. 
The numbers of observed (uncensored) values are R, = 7, R, = 5, R, = 5. 
The values of the independent variable are 

xl = 1000/(170 + 273.2) = 2.256 for 170°C, 

X 2= 1000/(190 + 273.2) = 2.159 for 190°C, 

5 3 = 1000/(220 + 273.2) = 2.028 for 22O’C. 

Since the assumed distribution is lognormal, we use the logarithms of the times 
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to failure: 
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Y11 = 3.2463, *. . ) 1/l: = 3.7157, 

Y 21 = 2.6107, . * . , yyz5 = 3.1584, 

ysl = 2.6107, . . . , yS5 = 2.7024. 

Times are tabulated in Table 2.1 and are plotted on lognormal probability 
paper in Figure 2.3. Plotting positions are given in Table 2.1. 

100,000~ 5 IO 20 30 50 70 80 90 95 98 

50,000- 

1000 

500 

A OBSERVED TIMES TO FAILURE AT 190°C 
0 OBSERVED TIMES TO FAILURE AT 17O’C 
X ESTIMATE OF 50th PERCENTILE OF THE 

TIME TO FAILURE DISTRIBUTION 
I I I I I I I I I 

FIGUBE 2.3-Lognormal Plots of the Insulation Life Data at the Different Test Temperatures 

-1 I o OBSERVED TIMES TO FAILURE AT 220°C 
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THE SIMPLE ESTIMATION PROCEDURE 

Step 1. Obtain the tabulated coefficients 

a,@, , Nk), . . . , ad& , Ark), 

b,(Rk , .vd, * . . , b,,(R, , Sk), k = 1, -.. , K, 

for the best linear unbiased estimates of the location and scale parameters p 
and g, respectively. These coefficients depend on the number R, of observed 
values, the size Nk of the sample at the test condition and the assumed distribu- 
tion for the random variation. Tabulations of such coefficients are given by 
Sarhan and Greenberg (1962). 

Example. Since the random variation in the logarithmic ykr’s is assumed to be 
normally distributed, the required following coefficients are obtained from 
Table 1OC.l of Sarhan and Greenberg (1962). For k = 1, RI = 7, N, = 10: 

i 4, 10) 
i .0244 

2 .0636 

3 .0818 

4 .0962 

5 .1089 

6 .1207 

7 .5045 

For k = 2, 3, R, = Rs = 5, N, = NS = 10; 

i a,(5, 10) 
i -.1240 

2 -.0016 

3 .0549 

4 .0990 

5 .9718 

W, 10) 
-.3252 

-.1758 

-.1058 

-.0502 

-.0006 

.0469 

.6107 

bi(5, 10) 
- .4919 

-.2491 

-.1362 

-.0472 

.9243 

Step I?. Calculate the best linear unbiased estimates of the location and 
scale parameters at each test condition as 

P: = g dRk , Nk)Yki , u: = g b&k , NJYki j for k = 1, * ** 9 K, 

Example. The estimates are 

Jo; = (0.0244)(3.2465) + .-- + (0.5045)(3.7157) = 3.6381, 

p: = (-0.1240)(2.6107) + 9.. + (0.9718)(3.1584) = 3.2233, 

/.tf = (-0.1240)(2.6107) + .e. + (0.9718)(2.7024) = 2.7142, 
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UT = (-0.3252)(3.2465) + -. . + (0.6107)(3.7157) = 0.2265, 

a: = (-0.4919) (2.6107) + . . . + (0.9243) (3.1584) = 0.4110, 

a; = (-0.4919)(2.6107) + . . . + (0.9243)(2.7024) = 0.0677. 

The fitted distribution lines on the lognormal plots of these data in Figure 2.3 
were drawn using these parameter estimates rather than by a visual fit. The 
antilogarithm of the estimate of the logarithmic mean at a temperature is the 
estimate of the median life at that temperature. For example, the estimate of 
the median life at 17O’C is antilog (3.6381) = 4350 hours. This and the other 
estimates of the median lives for the test temperatures are shown as crosses in 
Figures 2.3 and 2.4. The antilogarithm of the sum of the estimates of the log- 
arithmic mean and standard deviation at a temperature is the estimate of the 
84th percentile at that temperature. For example, the estimate of the 84th 
percentile at 170°C is antilog (3.6381 + 0.2265) = 7320 hours. In Figure 2.3, 
the fitted distribution line at each test t)emperature is drawn through the corre- 
sponding estimate of the median and the 84th percentile. 

Step S. For ea,ch test condition, obtain from the tabulations the standardized 
variances 

%a = VP&*(& , Nk), V(d) = VmtdRk , NJ, k = 1, ... , K, 

of the best linear unbiased estimators of the location and scale parameters. 
These depend on Rk , Nk , and the assumed distribution of the random variation. 
Selected tabulations of these standardized variances are given by Sarhan and 
Greenberg (1962). 

Example. Using Table lOC.2 of Sarhan and Greenberg (1962) for R, = 7 and 
N, = 10, one obtains fork = 1 

V&T) = 0.1167 and V(aT) = 0.0989. 

For k = 2, 3, R, = R, = 7, N, = N, = 10, one obtains 

V(,*,) = V(/L$) = 0.1664 

and 

V(u:) = V(u;) = 0.1613. 

Step 4. Obtain the pooled estimate U* of the scale parameter u as 

u* = v(u*) 2 (u*k/v(u:)) 
k-1 

where 

v(u*) = [ 5 (l/v(cT:))]-l. 
k--l 

The estimated standard error of U* is 

S(u*) = VqFp. 
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FIGURE 2.kArrhenius Plot of the Insulation Life Data 

Example. The calculations for the estimate of u and its estimated standard 
error are 

v(u*) = [(l/0.0989) + (l/0.1613) + (l/0.1613)]-’ = 0.04442, 

u* = 0.04442[(0.2265/0.0989) + (0.4110/0.1613) 

+ (0.0677/0.1613)] = 0.2336, 

s(u*) = mu* = m (0.2336) = 0.0492. 
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Step 6. The linear unbiased estimators of the regression coefficients B,, and ,& 
are 

P8 = {g 6:/%-m - PT g ww:N}/ g ~1/Jw31. D s 

Note that a large number of significant figures, say, six or more, should be carried 
in the intermediate results in the evaluation of these formulas, to ensure satis- 
factory accuracy of the final results to three or four figures. Alternate equivalent 
expressions are given in Step 7. 

Example. For the insulation life data 

Pi = 

. + (2.159)’ + (2.028)’ ___ 
0.1664 

= 4.05365. 

p =I[ 8 3.6381 3.2233 ___ ___ 
0.1167 + 0.1664 + 

$$$] - 4.05365[&$$ + %+%I} 

+ 0.1664 
-L-+-L- 

0.1664 
= -5.513. 

The heavy line shown on Arrhenius paper in Figure 2.4 has these coefhcient 
estimates, which may also be calculated by the equivalent matrix method in 
Steps 6 and 7. 

Step 6. By using simple matrix algebra methods one can obtain the pre- 
ceding estimates of the regression coefficients and, in addition, their standard 
errors. The latter may be used to obtain approximate confidence intervals for 
the coefficients. 

Develop the following matrices: 

V&T) 0 -** 0 
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Example. The necessary matrices are 

Using matrix algebra, carry out the following steps: 

Step 7. a. Obtain the estimates of the regression coefficients: 

= (x'v-'x)-'(x'v-l/.L*). 
Six figure accuracy is shown in the intermediate results in the example below, 
since six or more figures were carried throughout to ensure four figure accuracy 
in the final results. 

Example. 

a. 

1 1 1 
l/O.1167 0 0 

2.256 2.159 2.028 8 
l/O.1664 0 

0 l/O.1664 1 
20.5882 44.4939 
44.4939 1 96.3409 ’ 

[x’v-l;yl-l = (20.8582)(96.3409) J (44.4939)(44.4939) 

96.3409 -44.4939 

20.5882 1 25.4780 = 

-44.4939 [ - 11.7667 

- 11.7667 

5.44468 l- 
l/O.1167 0 0 -I 1 

2.028 0 l/O.1664 0 0 0 1 l/O.1664 
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f5* = (x’v-‘x)-l(x’v-l/L*) 

25.4780 = 

[ - 11.7667 :l::::][::i:::l:] = [it::] ’ 

i.e., & = -5.513 and /?P$ = 4.054 (as before). 

Step ?‘. b. Obtain the matrix of the estimated variances and covariances of the 
estimates of the regression coefficients 

@ = a%) 

[ 

cov@Z , P:) - (LT*)"(x'v-lx)-l. _ cov@: , a:> &w 1 
Example. 

$& = (&S)“(X~J,-X)-l = (0.2336)2 

i 

25’4780 -11*7667 . 

- 11.7667 5.44468 1 
Thus, 

~$3:) = [(0.2336)“(25.4780)]’ = 1.179, 

s@T) = [(0.2336)“(5.44468)]’ = 0.545. 

Step 7. c. Obtain two-sided approximate 100-&o confidence intervals for 
PO and PI as 

and 
P% f 40 + Y)/mm 

BT =t A(1 + r)mm, 

respectively, where z[(l + y)/2] is the lOO(1 + r)/2’th percentile of the standard 
normal distribution. 

Example. 

An approximate 90% confidence interval for &, is 

-5.513 f 1.645(1.179) = -5.513 =t 1.940. 

An approximate 90% confidence interval for p1 is 

4.054 f 1.645(0.545) = 4.054 zt 0.897. 

ESTIMATION AND PREDICTION AT A SPECIFIED x0 

Obtain the estimate and confidence interval for the location parameter and 
a prediction interval for a future observation corresponding to the value x0 of 
the independent variable as follows. 

Step 8. a. The linear estimator for the location parameter of the distribution 
of the dependent variable at x,, is 

P*(scJ = P? + PTs, . 

This estimator is unbiased, 
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Example. 

a. The estimate of the logarithmic mean life (i.e., location parameter) at the 
design temperature of 130°C (x0 = 1000/(130 + 273.2) = 2.480) is 

/~*(2.480) = -5.513 + 4.054(2.480) = 4.540. 

The antilogarithm of this value is 34,700 hours and is the estimate of the median 
life at 130°C. 

Step 8. b. The estimated standard error of p*(x,,) is 

s[P*(GJ>l = c-a, 

where 

Example. 

Var [p*(xJ] = [l x,]$$ * 

The estimated variance of ~~(2.480) is 

Var (~*(2.480)) = (0.2336)‘[1 2.4801 25*4780 -11*7667’ 
- 11.7667 5.44468 

= 0.03285. 

The estimate of the standard error of ~~(2.480) is thus 

&*(2.480)) = (0.03285)” = 0.181. 

Step 8. c. A two-sided approximate lOOr% confidence interval for the true 
value of the location parameter of the distribution of the dependent variable 
at x0 is 

P*(xo) =!= 40 + r>/214P*(~o>l 

where 40 + Y)PI is the lOO(1 + 7)/2’th percentile of the standard normal 
distribution. 

Example. 

An approximate 90% confidence interval for ~(2.480) is 

/**(2.480) f 1.645&*(2.480)) = 4.540 f 1.645(0.181) = 4.540 f 0.298. 

The antilogarithms of these limits are 17,500 and 68,900 hours and are the 
corresponding approximate limits for the median life at 130°C and differ from 
the estimate, 34,700 hours, by a factor of about 2. 

Corresponding estimates and approximate 90% confidence intervals for the 
logarithmic means are 

3.632 =t 0.120 for 17O”C, 

3.239 f 0.080 for 190°C, 

2.708 f 0.146 for 22O”C, 
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and the antilogarithms of these quantities give the corresponding estimates and 
confidence limits for the median lives at those temperatures, namely, 

4,280 hours (3,250 to 5,650 hours) 

1,730 hours (1,440 to 2,080 hours) 

510 hours (365 to 715 hours) 

Curves have been drawn through these limits in Figure 2.4. 

Step 8. d. If the underlying distribution of the dependent variable is normal or 
lognormal, an approximate lOO-& prediction interval on a single future observa- 
tion of the dependent variable at z. is 

P*(x,> A 40 + r)/2l(Var G*bo)l + (~*)~l~. 

where z[(l + -~)/a] is the lOO(1 + y)/2’th percentile of the standard normal 
distribution, 

Example. 

An approximate 90% prediction interval for a single future observation 
at 130°C (2, = 2.480) is 

~“(2.480) f 1.645[Var (~(*(2.480)) + (a*)‘]* 

= 4.540 f. 1.645CO.03285 + (0.2336)2]” = 4.540 f 0.485. 

The antilogarithms of these limits are 11,400 and 106,000 hours and are the 
corresponding approximate limits of an interval to contain the life of a single 
future unit at 13O’C. Similar prediction limits could be calculated at the other 
temperatures. 

Step 8. e. A linear estimate of the 100P’th percentile of the distribution of the 
dependent variable at x0 is 

Y*(p, 20) = PYXo> + mu* 

where z(P) is the 100P’th percent’ile of the standardized form of the assumed 
distribution, that is, the assumed distribution with the location parameter equal 
to zero and the scale parameter equal to one. This estimator is unbiased. 

Example. 

An estimate of the 10% point of the distribution of logarithmic life at the 
design temperature of 13O’C (z. = 2.480) is 

~*:(o.lo, 2.480) = 4.540 + (-1.2816)0.2336 = 4.241 

where ~(0.10) = - 1.2816 is the 10% point of the standard normal distribution. 
The antilogarithm of this is 17,400 hours and is the estimate of the 10% point 
of the insulation life distribution at the design temperature. The dependence 
of the 10th percentile on temperature is shown as a straight line in Figure 2.4. 
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D. Simpler Linear Unbiased Estimators (Using Unweighted Regression Analysis) 

The procedure in the previous section employed weighted regression analysis 
to obtain linear unbiased estimators for the coefficients of a linear regression 
model. Given in this section is a simpler procedure for obtaining linear unbiased 
estimators using a standard (unweighted) regression analysis. The first four steps 
are the same as those for t,he previous method. The discussion is limited to 
estimation procedures. The construction of confidence intervals and hypothesis 
tests is not simple computationally, and such methods are therefore discussed 
only in the Appendix in Part II. A comparison of the estimates from this simpler 
method for the example problem with those previously obtained using a weighted 
regression analysis shows very close correspondence. This is as expected, since 
the sample sizes are identical and the censoring schemes are similar at the three 
test conditions. 

THE SIMPLER ESTIMATION PROCEDURE 

Notation and Steps 1 to 4. These are identical to those for the simple estimation 
procedure. 

Example. 

For the insulation life example, one obtains as previously the estimates 

p; = 3.6381, 

p; = 3.2233, 

p; = 2.7142, 

u* = 0.2336. 

As before, 

x1 = 2.256, 

22 = 2.159, 

x3 = 2.028. 

Step 5. Using a -computer program foY simple regression analysis, enter 
the values x1 , . . . , xg of the independent variable and cc: , * * * , & of the e&i- 
mates of the location parameter of each distribution of the dependent variable, 
and obtain the resulting computer estimates & and p?” of the regression coefi- 
cients PO and ,& . If hand calculations are used, the expressions for the estimates 
are 
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Example. By hand calculation, 

/3Tu = ([3.6381(2.256) + 3.2233(2.159) + 2.7142(2.028)] 

- (1/3)[3.6381 + 3.2233 + 2.7142][2.256 + 2.159 + 2.02811 

/1[(2.256)’ + (2.159)* + (2.028)*] - (1/3)[2.256 + 2.159 + 2.028]‘} 

= 4.043, 

&& = {[3.6381 + 3.2233 + 2.71421 - (-4.043)[2.256 + 2.159 + 2.028]]/3 

= -5.491. 

These estimates of the coefficients would be given by a regression program. The 
corresponding estimates with the simple method using weighted regression 
analysis were p$ = -5.513 and ,f3T = 4.054. 

ESTIMATION AND PREDICTION AT A SPECIFIED x0 

Estimate the value of the location parameter and the 100P’th percentile of 
the distribution of the dependent variable at the value x0 of the independent 
variable as follows. 

Step 6. a. The linear estimator of the location parameter of the distribution 
of the dependent variable at x0 is 

&(x0) = Pi?” + 8?“XO * 

This estimator is unbiased. 

Example. 

a. The estimate of the logarithmic mean life (i.e., location parameter) at the 
design temperature of 13O’C (2, = 1000/(130 + 273.2) = 2.480) is 

&(2.480) = -5.491 + 4.043(2.480) = 4.536. 

The antilogarithm of this value is 34,400 hours and is the corresponding estimate 
of the median life. Similarly, the estimates for the logarithmic mean and median 
lives at the design temperature and the three test temperatures are: 

Estimate of the Estimate of the 
Temperature Logarithmic Mean Life Mean Life 

130°c 4.536 34,400 hours 
170°c 3.630 4,260 hours 
190°C 3.238 1,730 hours 
220°C 2.708 510 hours 

Step 6. b. The linear estimator for the 100P’th percentile of the distribution 
of the dependent variable at x0 is 

YW, x0> = /&x0) + zp>g* 

where z(P) is the 100P’th percentile of the standardized form of the assumed 
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distribution, that is, the assumed distribution with the location parameter equal 
to zero and the scale parameter equal to one. This estimator is unbiased. 

Example. 

The estimate of the 10% point of the logarithmic life distribution at the 
design temperature of 130°C (2, = 2.480) is 

y$(O.lO, 2.480) = 4.536 + (-1.2816)0.2336 = 4.237 

where ~(0.10) = - 1.2816 is the 10% point of the standard normal distribution. 
The antilogarithm of this value is 17,300 hours and is the estimate of the 10% 
point of the insulation life distribution at the design temperature. 

E. Further Comments 

As can be seen from the preceding discussion, the most laborious aspect of 
obtaining the simple linear unbiased estimators arises in fitting the regression 
relationship to the estimates pt of the location parameter at each test condition. 
For those with limited calculational capabilities, one possible compromise 
approach would be to obtain the estimates of PL: and possibly of ut at each test 
condition and then to resort to plotting techniques along the lines described 
by Hahn and Nelson (1970) to estimate the regression relationship. 

Also, it should be re-emphasized that the procedures described in this part 
of this paper are only special cases of the more general methods presented in 
the Appendix in Part II. Thus, the general methods are not restricted to regres- 
sion with a single independent variable, censoring only to the right and normally 
distributed random variation, as they have been in this part. 

The estimation methods are based on an assumed form for the distribution of 
the dependent variable and may give unsatisfactory results if the true distribu- 
tion differs appreciably from the assumed one. Nelson (1971) provides methods 
for analysis of residuals for checking the distributional assumption and also 
the adequacy of the assumed relationship and the validity of the data. 

F. Related Work 

Lieblein and Zelen (1956) present a method for linear unbiased estimation 
for the coefficients in a linear regression model, when the data are singly censored. 
The regression model (Palmgren’s equation) which they used for analysis of 
bearing life is based on an assumed underlying Weibull distribution of life. 
They express selected percentiles of the distribution as the product of powers 
of the independent variables where the powers are unknown parameters. By a 
logarithmic transformation of the data, they convert the underlying distribution 
into an extreme value distribution. Then a selected percentile is a linear function 
of the logarithms of the independent variables and of the unknown power 
parameters, which are the regression coefficients. The method they present for 
estimating the model regression coefficients from censored data is essentially 
equivalent to the simple method presented here. To obtain the estimates of the 
regression coefficients from the best linear unbiased estimates of a selected 
percentile for each combination of independent variables, they used a weighted 
regression where the weight for a particular estimate is proportional to the 
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corresponding sample size. This appears to be a satisfactory approximation to 
our exact simple method which uses as weights the reciprocals of the variances 
of the estimates of the location parameters. They also present approximate 
tests of hypotheses on the regression coefficients, where the tests employ the 
usual quadratic forms used for t,esting general linear hypotheses. However, 
they use a quadratic estimate of the mean square for error about the regression 
in contrast to the simple linear estimate presented here. While not as statistically 
efficient as the simple method, theirs appears to be robust and well suited to 
their practical problems. 

An application of regression analysis with linear estimation using order sta- 
tistics is given by Nelson (1970b). He uses the simple method for an analysis of 
complete data with the inverse power law and the Weibull Distribution. 
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