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Abstract

In neuroscience study, it is desirable to understand how the neuronal ac-
tivities are associated and how the association changes with time based on
multiple spike train recordings from multielectrode array. The term func-
tional connectivity is used to describe the association between neurons and
the change of association with task purpose. In this proposed thesis, I will
study the statistical details of functional connectivity inference. First, the pre-
liminary results show the effect of sample size, connection strength and basis
set on functional connectivity inference, I would like to explore further for
large networks so that I can estimate the sample size needed for functional
connectivity inference; secondly, I will explore the models and algorithms
being used for inference, and the current plan is to combine two families
of methods, i.e. point process-generalized linear model based methods and
graph theory based methods, to develop procedure that can be used to infer
functional connectivity network given limited amount of data; finally, I will
explore the possible information we can obtain when the sample size is too
small to infer functional connectivity reliably.

1 Introduction

The advance of multielectrode arrays make it possible that dozens or even hundreds
of neurons can be recorded at the same time, and it is expected that the number of
simultaneous recorded neuron will increase to thousands in the near future [1]. On
one hand, this advance in data recording technology makes it possible to study
one of the most interesting questions of neuroscience, i.e. how neurons interact
with each other to represent and process information. On the other hand, several
challenges exist [2]. First, the length of recording session is usually limited by the
animal conditions. This limit of the amount of available data makes the inference
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more difficult when the number of parameters increase. Secondly, the computa-
tional cost increases at fast pace with the increase of number of neurons recorded.
While the number of neurons being considered increase linearly with the number of
recorded neurons, the number of pairwise interaction terms increase quadratically.

In computational neuroscience, functional connectivity describes the correlated
behavior between neural elements of different levels, such as different cortex re-
gions, neuron populations or individual neurons [3]. It has been shown that neurons
work together to represent and transfer information, for example, a neuron in the
primary visual cortex (V1) will only respond to the stimulus in a specific region
of the visual field (known as receptive field), but at the same time, stimulus out-
side of the receptive field can modulate this response [4]. In addition, it has been
shown that the connectivity changes over different conditions [5]. In application,
when connectivity information was included in decoding, the decoding error can
be greatly reduced [6]. Because understanding functional connectivity is important
in both the appreciation of the mechanism of neural systems and the application of
neuroscience, a lot of research efforts have been devoted to functional connectivity
study.

In the past decade we observed fast progress in the study of functional con-
nectivity. In the early years, studies focused on descriptive measures such as cor-
relation or coherence measure [7], joint peristimulus time histogram (JPSTH) [8].
Recently, a family of methods based on point process-generalized linear model
(GLM) were developed to take into account the coupling between neurons [9, 10,
11]. In these models, a temporal coupling function between neurons is estimated,
and this function represents the connection between neurons. Point process-GLM
provided a principled framework for statistical estimation, such that we can under-
stand the details of how one neuron affects another.

We also observed the use of graph theoretical methods in the study of func-
tional connectivity [12, 13, 14]. Graphical models can not only provide a good
summary by visualization of the inferred functional connectivity network, but also
help us infer the functional connectivity network directly [13]. In the past years,
different methods have been developed for network and/or complex systems, which
can help us model network dynamics from network topology, understand the ro-
bustness of network information representation [12], and decode the neural signal
by identifying the important neurons in the network.

The above mentioned two families of methods have different advantages and
disadvantages. The point process-GLM methods provided details of interneuronal
connections that can be used to explain the spiking events of the target neuron, but
the connection may not be meaningful because there are other explanations for the
connection, such as common input [15]. On the other hand, graphical models can
provide good visualization of the connectivity pattern, can rule out the correlation
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caused by common input and indirect connection. In addition, some collective
behavior can be explained by the network as a whole only but not the individual
neurons [16]. However the detail of the connection is usually not available for the
graph theoretical models [14].

My goals in this proposed thesis include:

• Understand the factors affecting functional connectivity inference with point
process GLM methods, including sample size, coupling strength and basis
functions.

• Develop new methods for functional connectivity inference by combining
point process GLM methods with graph theoretical methods.

• Apply the newly developed method to real data. Several different sets of data
will be considered.

• Explore possible useful information about functional connectivity from data
with less than ideal sample size.

2 Literature Review

2.1 The concept of functional connectivity

2.1.1 Related concepts

It is well-known that in the brain, different neural units work together to pro-
cess and transfer information. The coordination between neural units has been
observed at different levels: different brain regions, different clusters of neurons
in one region, or different neurons in the local neural circuit [3]. One of the ba-
sic goal of neuroscience research is to infer how these neural units connect with
each other, how do they work together and how the relationship changes when the
task changes. To describe the connectivity between neural units, several different
concepts were used when the connectivity was viewed from different perspective
[17].

Anatomic connectivity describes the physical (synaptic) connection between
neurons, which is usually difficult to observe. The only organism with complete
neuron connection map is the nematode C. elegans [18] because it has only 302
neurons. A term connectome proposed by Olaf Sporns et.al. [19] to describe a long
term goal of obtaining connectivity information for human brain. In the paper the
authors acknowledged that it is nearly impossible to obtain the human neuron map
technically because there are about 1010 neurons and 1013 connections in the cortex
only. In addition, it is not necessary to obtain such a map because the connections
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may change rapidly (plasticity), and the change in single synapses usually has no
macroscopic effect.

Functional connectivity describes the statistical relationship between different
neural units. However, the exact meaning of functional connectivity was inter-
preted differently by different researchers. It was initially defined as temporal
coherence or correlation among the activity of different neural units [8, 17, 20].
Latterly another definition based on statistical dependency was proposed for the
neuroimaging community [21]. In more recent works on functional connectivity
study, usually the ability of one unit being used to predict another one was used,
for example, see [9, 15, 22].

Effective connectivity defines the cause and effect relationship between neural
units. Despite its seemingly obvious relationship with anatomic connectivity, ef-
fective connectivity is not a unique statement about anatomic connectivity because
the arrangement of neurons lead to the same overall behavior is not unique [23].
Instead a definition being accepted by many researchers is: effective connectivity is
the simplest neuron-like circuit that would produce the same temporal relationship
as observed experimentally between two neurons in a cell assembly [8, 20].

From the descriptions above, it is clear that the three different concepts are
closely related. For example, anatomical connectivity based on synaptic connec-
tion will lead to functional and causal connectivity; on the other hand, it is also pos-
sible that anatomical connectivity be modulated by functional connectivity [24]; if
the firing event of one neuron causes the firing event of another (effective connec-
tivity), we should expect to see functional connectivity between these two neurons;
and if two neurons are connected by synapse, it is likely to observe causal rela-
tionship between the two. The three concepts are being used at different levels of
neural system organization. In the following sections I will focus on the micro-
scopic level, i.e. the connectivity between neurons within a neuron circuit.

2.1.2 Sources of functional connectivity

It is commonly believed that the correlated activity between neurons may come
from three different sources [7]. First it is possible that two neurons have direct
(monosynaptic) connection; secondly, the two neurons may have indirect (polysy-
naptic) connection; and thirdly when two neurons share a common input or encode
the same information, correlated behavior can also be observed. The inference of
functional connectivity is made more complicated by the different sources. For ex-
ample, Vidne[15] et. al. showed that when common input was included explicitly
in the model, no interaction terms can be observed in the retinal ganglion cells.
One of the goals of functional connectivity study is to distinguish the different
situations.
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2.2 Functional connectivity and point process GLM framework

2.2.1 Parallel spike trains are modelled as interacting point processes

The neurons transfer information through action potentials, or spikes. An action
potential is a short lasting event (usually < 1 ms) during which the membrane
potential of a neuron rises and falls, usually follows a typical shape. It is believed
that the exact shape of an action potential contains no information, it is the time
when the action potential happens contains all the information. Thus a series of
spikes from one neuron, also known as spike train, can be represented by a list of
spike times (t1, t2, ..., tn).

The natural model for the spike train is point process [25]. Given an observa-
tion interval (0, T ], a point process records the event (spike) times. To characterize
a point process, usually the conditional intensity function λ(t|H(t)) is used, which
is defined as

λ(t|H(t)) = lim
∆→0

P [N(t+∆)−N(t) = 1|H(t)]

∆

where N(t) is a counting measure denotes the number of spikes in the interval
(0, t], and H(t) denotes the spiking history up to time t.

The conditional firing rate λ(t|H(t)) is usually represented as function of spik-
ing history, ensemble as well as the external stimuli [10], as shown below.

log λi(t|H(t)) = log λi0 + hi(t|H(t)) +
∑
j ̸=i

fji(t|H(t)) + si(x(t))

where λi0 is the base firing rate of unit i, hi is the contribution from the history of
unit i, fji is the contribution from unit j to unit i, and si is the contribution from
external stimulus x(t).

The log-likelihood function of a Poisson process can be written as [26, 27]

logL(t1, ..., tn) =

n∑
i=1

log λ(ti)−
∫ T

0
λ(t)dt

And the parameters can be fitted by maximizing the likelihood function [26, 9] or
by Bayesian methods [28].

2.2.2 Modelling of interaction between neurons in the point process GLM
framework

In the point process GLM framework, the interaction between neurons are de-
scribed by the ensemble terms fji as shown above, and the terms are usually called
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the coupling functions between units j and i. The coupling function can be im-
plemented as either step functions [29] or smooth functions [22] of time since last
spike. The use of step function requires less assumption, while the variance of
estimator can be reduced by applying the smoothness constraint.

Because the neuronal networks are sparse, even in the neighboring neurons in
the cerebral cortex, the probability of connection is only about ten percent ([30]
and references therein). Thus sparsity should be considered for the inference of
functional connectivity.

2.2.3 Predictability and causality

Point process GLM framework provides a natural measure for functional connec-
tivity between two neurons, i.e. whether one neuron’s spiking history can improve
the prediction of another neuron’s spiking event [10]. In these models, the log
firing rate was modelled as a linear combination of contributions from different
components, and fitted according to the point process GLM framework as will be
described in the next section. Receiver Operating Characteristic (ROC) curves is
commonly used to measure the how one process help predicting another [31]. The
Area under the ROC curve (AUC) is a most widely used one number summary
about ROC curve.

Because the synaptic connection between two neurons is directional, and the
information flow is also directional: the upstream neuron send out information
through synapses, and the downstream neuron acts according to the received in-
formation. It seems natural to interpret the association between neurons causally.
In statistics, Granger causality describes the prediction power of one time series
from others [32]. Despite its name, Granger causality does not represent the real
causality. The concept has been used extensively in econometrics or imaging data
of neuroscience, but its use in point processes models were limited. In one example
the multiple spike train data were modelled as multivariate autoregressive model
[32], and Granger causality was estimated.

2.3 Functional connectivity and graphical models

2.3.1 Graphical models and partial correlation

A graphical model is a probabilistic model for which a graph denotes the con-
ditional independence structure between random variables. Undirected graph en-
codes the conditional dependency relationship between two nodes ( nodes A|B|{others})
is equivalent to no edge between nodes A and B in the graph). A simple probabilis-
tic graphical model is multivariate Gaussian, where the conditional independence
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relationship is reflected in the zero value in the inversion covariance matrix (a.k.a
precision matrix).

Whereas traditionally correlation and coherence were used to describe the as-
sociation between the neurons, partial correlation or partial coherence are used to
describe the conditional association between two neurons, i.e. the association be-
tween two neurons when the effects of all other observed neurons are removed.
Partial correlation and partial coherence has been used to establish the connection
between neurons [33, 34, 35] nonparametrically.

2.3.2 Inference of functional connectivity with graphical model

Graphical models and Bayesian network methods provide an intuitive methods to
study functional connectivity between neurons [12]. The probabilistic graphical
models are widely used in the machine learning community, and the use of these
methods in neuronal network would be straight forward. It has been shown that the
inference of functional connectivity can be faster than point process GLM models
without much loss in reliability [14].

Shalizi proposed to infer a series of “hidden” states named causal states [36] to
represent each node, which was successfully used in specifying refractory period
and bursting behavior of neurons [37]. The method has been used to infer cluster of
functionally related neurons in oscillating hippocampus neurons [38]. The method
based on the causal state models may help us to decrease the computational cost
further as it is one type of hidden markov model with the number of hidden states
being minimal.

3 Data

The data used in this study was recorded from multielectrode array recordings of
extracellular signals from the V1 area of the cortex. It has been showed that the
quality of data from the arrays are comparable with single electrode thus can be
used for further analysis [39].

In the recording, the Cyberkinetics “Utah” array (Blackrock Microsystems,
Salt Lake City, Utah) was used. The device is a 10x10 grid of 1mm deep silicon
microelectrodes spaced at 0.4 mm. The whole array covers an area of 12.96 mm2.
The data was collected from anesthetized, paralyzed macaque monkeys (M fasci-
cularis). Eye movement of the animal was minimized by continuous intravenous
infusion of vecuronium bromide, and the pupils were dilated with topical atropine
and the corneas protected with gas-permeable hard contact lenses. Data were col-
lected while a short movies are played as stimuli. The stimuli include Gaussian
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white noise, grating patterns with various orientation, as well as a short natural
movie. The original recordings were processed by Kelly [40] for spike sorting.
After processing, 105-129 candidate neural units were obtained from the 3 array
implants, and roughly half of them are well isolated single units with quality com-
parable to single microelectrode recordings.

4 Methods

4.1 Simulating network of interacting neurons

Three-unit networks with different topologies are simulated and fitted. For each
topology, the following procedure was performed to simulate the spike trains based
on the coupling function.

1. Set the base firing rate, coupling strength, and coupling function shape.

2. Write out the conditional intensity function for each unit, where H(t) only
take the past 100 ms into consideration.

log λi(t|H(t)) = log λi0 + hi(t|H(t)) +
∑
j ̸=i

fji(t|H(t)) + si(x(t))

3. Loop through each time point t, and each unit i

• Obtain the firing rate λi(t) of each unit at time t.

• Generate spike with probability λi(t)∆, where ∆ is the time bin width.

• Update the firing rate after time t.

4.2 Model fitting

As described before, the spike trains were modelled as interacting point processes.
By assumption, the spiking of different neurons are conditionally independent
given the history of the ensemble. Thus the model can be fitted separately for
the spike train of each individual neuron as the dependent variable, and ensemble
history being used as the independent variable. Ensemble history terms were ob-
tained by convolution of the basis function sets with the spiking history of each
neuron in the last 100 ms.

Poisson regression was performed using the glmfit procedure in Matlab soft-
ware package based on iteratively reweighted least square algorithm. The fitted
parameters were obtained from the fitting results, and the coupling function can be
obtained by taking the product of basis functions and the fitted parameters.
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4.3 ROC curve and AUC calculation

The prediction of spike based on kinematics information can be considered as a
classification problem, e.g. given the kinematics information, whether the neuron
spikes or not. ROC curve is used to assess the sensitivity and specificity of a
classifier, but sometime we would like a one-number summary of the curve, and
area under curve (AUC) is usually chosen. The ROC curve from different models
were obtained using the standard method [31]. To get one point on the ROC , first
choose a threshold t ∈ (0, 1), and obtain prediction ŷi by setting the ŷi to 0 when
p̂i ≤ t and 1 when p̂i > t. Then the true positive rate (sensitivity) is:

TPR(t) =

∑
i ŷiyi∑
i yi

=
# bins with spikes predicted correctly

# bins with spikes in real data

and the false positive rate (1-specificity):

FPR(t) =

∑
i ŷi(1− yi)

N −
∑

i yi
=

# bins with spike predicted but not in real data
# bins with no spike in real data

4.4 Confidence band for the fitted coupling functions

Parametric bootstrap is used to obtain the confidence band of the fitted coupling
functions. After the model was fitted, the estimation of the coupling function can be
obtained from the basis set used for fitting and the estimated parameters. Bootstrap
samples of networks can be obtained by simulating new network data from the
estimated coupling functions, and fitted to obtain samples of coupling functions. A
95% confidence band of the coupling function is obtained by taking the pointwise
2.5% and 97.5% quantiles.

4.5 Significance of coupling by likelihood ratio test

When two models are nested, likelihood ratio test can be used to assess whether the
more complex model is significantly better than the other one or not. To perform
the test, the two models were both fitted and the corresponding likelihoods were
calculated based on the fitted optimal parameters. For two models M1 and M2

with number of parameters p2 < p2, and M1 is nested in M2, the likelihood ratio
test reject H0 when

L2/L1 > c

for some number c.
There are two different ways to obtain the right number c. First, the theoretical

distribution of log likelihood ratio is χ2 with degrees of freedom p2 − p1, thus we
can obtain the c value by the CDF of χ2 distribution.
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Another method uses parametric bootstrap. The data is first fitted with the
smaller model M1, and all parameters are being estimated. Then simulate boot-
strap network samples from the model, and fit for both M1 and M2, so that the
bootstrap samples of the log likelihood ratio are obtained. Then compare the orig-
inal estimate with the empirical CDF of the log likelihood ratio. In the test of
simulated data, there is almost no difference between the two methods of testing.

5 Results

Networks of three units are simulated to validate the methods used in the study. A
three-unit network can be viewed as minimal in validating the methods, because
it is the smallest possible network can be used to assess the indirect interaction,
and different kinds of dependency relationships can be modelled with this type of
network.

When direct feedback interaction (A->B and B->A exist at the same time) is
excluded, all possible topologies of three-unit networks include:

• {A,B,C}, i.e. all units are independent.

• {A->B,C}, i.e. one edge

• {A->B,A->C}, i.e. one unit to two units

• {A->B,B->C}

• {A->B,C->B}

• {A->B,B->C,C->A}

• {A->B,B->C,A->C}

All other configurations can be obtained by permutating the labels.
Simulation and fitting of all these topologies were performed with similar re-

sults, thus only results from one topology (A->B->C) are reported below.

5.1 The simulated components and fitting results

The model for the simulation of the topology A->B->C is:

log λA(t) = log λA0 +

∫ t

t−100
fAA(s)dNA(t− 100 + s)

log λB(t) = log λB0+

∫ t

t−100
fBB(s)dNB(t−100+s)+

∫ t

t−100
fAB(s)dNA(t−100+s)
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log λC(t) = log λC0+

∫ t

t−100
fCC(s)dNC(t−100+s)+

∫ t

t−100
fBC(s)dNB(t−100+s)

Where λA(t) represents the firing rate at time t, fAA represents the history
effect to the firing rate, and fAB represents the the functions describes effect of
spiking history of neuron A on neuron B. The spiking history and ensemble effects
diminish after 100 ms.
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Figure 1: Simulation of a three-unit network (units A->B->C). A: The ensemble ef-
fect term (coupling function) used in simulation; B: The raster plot of one 5-second
simulation; C: The fitted coupling function from A->B, and the 95% confidence
band of the fitted function; D: The ROC curve for the prediction of spikes of unit
B.

Figure 1 shows a simulated three-unit network and the fitting results. The base
firing rate used in the simulation is around 40 Hz, which is the typical firing rate of
an active neuron in the primary motor cortex (M1). The fitting process recovered
the true coupling function in this setting, and the fitting is significant as indicated
by the 95% confidence band obtained from parametric bootstrapping.

5.2 Sample size effects

Figure 2 shows the performance of the current inference method when the sample
size changes. To better illustrate the change, a lower base firing rate (10 Hz) was
used in the simulation. The distribution of the p-values was obtained by repeating
the simulation-fitting process for 100 times. If the connectivity term is significant,
the p-value should concentrate on the left (low) end of the x-axis. It is clear that
when the sample size is small, the connection is not statistically significant. When
the sample size become larger (10 seconds, corresponds to about 100 spikes here),
more than 80% of the samples have p-value less than 0.1. Same information can be
obtained from the confidence band on the bottom, when the sample size is small,
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Figure 2: Sample size effect on inference of connectivity. Top: the distribution of
p-values when the significance of the A->B connectivity was tested; Bottom: The
fitted coupling function with its 95% confidence band. The plots show the results
from 2s, 5s, 10s, 15s and 20s samples from left to right.

the horizontal line y = 1 is covered by the confidence band, which means that the
coupling effect is insignificant. When the sample size is more than 10 seconds, we
will see the significance of the connection.

Another way of looking at sample size effect on inference is the power. The
testing powers when using 0.05 as the significance criteria are 0.15, 0.38, 0.75, 0.86
and 0.99 respectively for the sample sizes 2, 5, 10, 15, and 20 seconds.

5.3 Coupling Strength

The effect of coupling strength on functional connectivity inference was assessed
by varying the amplitude of the coupling function α while keeping the shape of the
coupling function unchanged, the model is:

log λB(t) = log λB0+

∫ t

t−100
fBB(s)dNB(t−100+s)+

∫ t

t−100
αfAB(s)dNA(t−100+s)

Figure 3 shows that when the same sample size was used, the interaction term
became more significant when the coupling strength become stronger. This result
is expected, and it implies that much higher sample size is needed to infer the
functional connectivity correctly when the coupling between neurons is weak.

5.4 Basis

Two most commonly used models for the coupling functions are step functions
[29] and smooth function based on raised cosine basis [9, 22]. [9] proposed that a
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Figure 3: Effect of Coupling Strength on Inference. P value distribution from four
different coupling strength α being used in the simulation: A. 0.1, B. 0.2, C. 0.4
and D. 0.8.

raised cosine basis set that has the following advantages: (1) it can represent the
fine temporal structure near the time of spike, while constrained to be smooth in
longer time scale; (2) the basis vectors some to 1, such that the representation of
the functions is phase invariant. In Figure 4, the fitting results from raised cosine
basis and cosine basis are plotted. In both cases, five basis functions were used in
the fitting covering 100 ms time scale. It is clear that the fitting from the two basis
provided similar information and lead to same conclusion.

However there are still differences between the two fitting results. First, when
the raised cosine basis was used, the effect to the spiking rate was constrained to
diminish with time. While the step function did not impose such constraint. An-
other difference exists in the confidence band, the fitted smooth coupling function
has narrower band (smaller variance) than the step function.

6 Proposed Research

6.1 Statistical details of point process GLM framework in functional
connectivity inference

In the preliminary results, three-neuron networks were simulated and the effect
of sample size, coupling strength and basis function were studied. The following
work need to be done to finish the project.

First, I need to interpret the models and results both statistically and physio-

13



0 50 100
0

0.5

1

1.5

2

2.5

3

0 50 100
0

0.5

1

1.5

2

2.5

3

0 50 100
0

0.5

1

1.5

2

2.5

3

Figure 4: Inference with different basis functions. Left: the true coupling function;
middle: fitted coupling function with raised cosine basis; right: fitted coupling
function with step function. The fitting from step function basis is similar to the
raised cosine basis, but with higher variance.

logically. To be specific, the coupling strength between two neurons need to be
represented as how much the firing rate of one neuron being affected by another,
and how the coupling strength difference affects the power of significance of the
tests in my setting.

Secondly, since the number of neurons being recorded simultaneous will in-
crease at fast rate, it is desirable to study the effect of these factors when the net-
work is large. In the proposed work, large networks with dozens or more than
hundred neurons will be simulated with different settings. The simulated data will
be fitted and the effect of different settings will be assessed.

There are two challenges in this study. First the computational cost will be high
when parametric bootstrapping is used for test. The solution is to rewrite my code
using C++ and at the same time parallelize the process. The second challenge is
that sparsity need to be considered especially when the sample size is small. I plan
to implement the coordinate descent algorithm by Friedman et.al. [41] because it
has good performance and flexibility.

6.2 Inference of conditional dependency and graphical models

Partial correlation or partial coherence will be used as a measure for conditional
dependency. The proposed work include the following two steps.

First, study estimation and testing of partial correlation, including sample size
considerations for normal data and binary data with ordinary Pearson-type partial
correlation. Sparse estimation will be part of the project, but here the penalty will
be on variables that are being partialed out, rather than on variables of interest.

Second, for point process data, Brillinger [33] pointed out that for a n-dimensional
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multivariate point process (X1,X2, ...,Xn), if we have

dN1(t) =

 n∑
j=3

∫
aj(t− s)dNj(s)

+ dΓ1(t)

dN2(t) =

 n∑
j=3

∫
aj(t− s)dNj(s)

+ dΓ2(t)

where Γ1 and Γ2 being noise processes with zero conditional expected value, and

cov(dΓ1(s), dΓ2(t)) = 0

then the partial coherence of X1 and X2 will be zero.
Once I have a suitable measure for the conditional dependency, again I will

check the reliability of inference with regards to sample size, connection strength
and different basis sets.

If time allows, after one set of conditional dependency relationships being in-
ferred, some work will be done to infer a graph that is an Independence map for
the set of dependency relationships [42].

7 Proposed Timeline

My proposed timeline is:

• Feb 2011 to Apr 2011: Coding and result analysis for the three-network
simulation study.

• May 2011 to Jun 2011: Coding and result analysis for large network simu-
lation study.

• Jul 2011 to Oct 2011: Partial correlation analysis for normal data, binary
data and point process data. Apply the analysis to real data.

• Nov 2011 to Dec 2011: Writing the thesis.
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