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Abstract

Capture-recapture (CRC) is a way to estimate the size of a population by combining multiple incomplete
lists of population units. For the two-list scenario, the oldest and simplest estimator is the Petersen esti-
mator, which assumes that the event that a unit is captured on the first list is independent of the event that
a unit is captured on the second list. Because this assumption is usually false, the Petersen estimator is
biased for most applications.

Literature on overcoming the bias in the Petersen estimates tends to fall into one of two groups. The
first group of models expresses capture probabilities as functions of capture pattern in ways that allow
for complex interactions between lists in the aggregate – without explicitly modeling covariate effects.
The second group of models regresses capture probabilities conditional on covariates. Post-stratification
is a discrete way to condition on covariates. However, continuous generalizations (i.e., smooth post-
stratification models) typically assume a strong form of independence between lists which is not optimal
in the case of three or more lists.

We combine these two lines of work to produce an estimator that models complex list interactions locally.
Our procedure begins with estimating the conditional distribution of capture pattern as a smooth function
of the covariates. We extend this estimated conditional distribution to the unobserved capture pattern (no
captures) by applying a log-linear model locally. A Horvitz-Thompson style population estimator is then
immediate. We intend to demonstrate our method by combining a list of records from the 2010 Census,
the 2010 Census Coverage Measurement (CCM) survey, and the American Community Survey (ACS).
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1 Introduction

1.1 Problem Statement

Capture-recapture (CRC) is a way to estimate the size of the population by combining information from multiple
incomplete lists of population units. A list is a collection of units (i.e., people, or animals). We refer to the act of
generating a list as a capture. In the simplest CRC setting, we are given two lists of units, List 1 and List 2. Assuming
that units captured on both lists are perfectly matched across lists, it is possible to find the cross-classification of units
according to list membership as displayed in Table 1.

Table 1:

List 2
yes no

List 1 yes c11 c10
no c01 c00

Each term cij denotes the count of units that have capture pattern (i, j). For example, c10 is the number of units that
appear on List 1 but do not appear on List 2. The number of units that are not observed on either list, c00, is not
observable, so estimating the population size is the same as estimating c00. With three lists, the task is to estimate
c000. This problem becomes more interesting as the number of lists grows and as covariates for observed units become
available.

For the two-list scenario, the oldest estimator is the Petersen estimator, which assumes that the event that a unit is
captured on the first list is independent of the event that a unit is captured on the second list. Because this assumption
is usually false, the Petersen estimator is biased for most applications.

Literature on overcoming the bias in the Petersen estimates tends to fall into one of two groups. The first group of mod-
els expresses capture probabilities as functions of capture pattern in ways that allow for complex interactions between
lists in the aggregate – without explicitly modeling covariate effects. The second group of models regresses cap-
ture probabilities conditional on covariates. Post-stratification is a discrete way to condition on covariates. However,
continuous generalizations (i.e., smooth post-stratification models) typically assume a strong form of independence
between lists which is not optimal in the case of three or more lists.

We combine these two lines of work to produce an estimator that models complex list interactions locally. Our
procedure begins with estimating the conditional distribution of capture pattern as a smooth function of the covariates.
We extend this estimated conditional distribution to the unobserved capture pattern (no captures) by applying a log-
linear model locally. A Horvitz-Thompson style population estimator is then immediate. We intend to demonstrate
our method by combining a list of records from the 2010 Census, the 2010 Census Coverage Measurement (CCM)
survey, and the American Community Survey (ACS).

The remainder of this introduction discusses the importance of CRC for the U.S. Census, presents general notation,
defines some common assumptions, describes our high-level conceptualization of the problem, and concludes with a
simulation example to illustrate fundamental CRC concepts.

1.2 U.S. Census

Assessing the accuracy – or coverage – of the U.S. Census is an important application of CRC theory. The U.S.
Census Bureau conducted a formal census coverage evaluation after every decennial census starting in 1980. The
name of this formal evaluation changed with each new census; for the 2010 Census, it was called the Census Coverage
Measurement (CCM).

Several sources of error affect the accuracy of a census. Most of these error sources can be understood as a contribution
to either an overcount or an undercount. An example of an overcount is when a college student is counted both at
college and at the parents’ home. On the other hand, an undercount occurs when people are missed by the census.
Both the overcount and the undercount rates in the 2010 Census were estimated to be around 5%, and the CCM
program concluded that the 2010 census was in error by less than 0.1% overall, although the error rate was higher for
specific demographic subgroups [1].

1



Estimation of the undercount rate in the CCM (and in previous coverage evaluations) relied on CRC methods. In
particular, the CCM combined two lists using a CRC estimator to generate estimates of the population in a cluster
sample of census blocks. The undercount rate was taken as one minus the census count as a fraction of the CRC
population estimate.

The two lists used for the CRC estimator are called the E-sample and the P-sample. Within a geographic cluster sample
of census blocks, the collection of all census enumerations is analyzed to identify and remove erroneous enumerations
[2]. The resulting edited list of census enumerations is the E-sample. The post-enumeration survey, or P-sample, is a
fresh attempt at listing all people living in the same census blocks that were selected for the E-sample.

Individuals from the E-sample are matched to individuals from the P-sample, resulting in a table of counts of the
observable capture patterns as in Table 1. Many kinds of CRC estimators exist for imputing the missing cell c00,
and they all require making a strong assumption about the relationship between the two lists. A particularly desirable
condition is to have the two lists be independent, in the sense that the event that an individual appears in the E-sample
is independent of the event that the same individual appears in the P-sample.

Therefore, the P-sample is specifically designed to be independent from the E-sample. A small random selection of
Census block clusters defines the geographic area of the E-sample. Within these block clusters, a list of all housing
units is generated independently of the main Census housing unit list. Interviewers visit each listed housing unit in
the selected block clusters, generating the P-sample as an all-new census. The desire for independence between the
E-sample and P-sample means that the timing of the two samples is a sensitive matter. Collecting the P-sample too
soon risks introducing interaction effects between the E-sample and the P-sample. Waiting too long to collect the P-
sample increases the effects of an open population, as people migrate, reproduce, and die in between the two samples.
The 2010 Census targeted April 1 as the E-sample survey date, and the 2010 P-sample survey took place some months
afterwards, from August to October.

A major shift in the Census’ methodology for coverage evaluation occurred between 2000 and 2010. Prior to 2010, the
primary tool was the Petersen estimator in conjunction with post-stratification (Sections 1.5 and 2.3). The 2010 CCM
was the first formal coverage evaluation to apply logistic regression, a smooth generalization of post-stratification
(Sections 2.3 and 2.4).

Coverage evaluations in 2020 and beyond may incorporate more than two lists. A key reason for including a third list
is to reduce bias resulting from the assumption of independence between the E-sample and P-sample. (Despite the
emphasis on independence in generating the P-sample, it is generally not possible to verify that independence between
the lists is achieved.) The Census Bureau conducted a “dress-rehearsal” study in St. Louis in 1988 to prepare for the
1990 Census coverage evaluation. In this study, the P-sample was supplemented with an A-sample, a compilation of
records based on Employment Security, driver’s license, Internal Revenue Service, Selective Service, and Veteran’s
Administration registrants [3]. Although the A-sample was originally viewed only as a supplement to the P-sample,
several authors throughout the 1990’s explored triple system estimation, viewing the A-sample as a list in its own right
[4] [5] [6].

Much CRC theory began in the context of estimating animal populations in biological studies. For application to
human populations, CRC is often referred to as dual system estimation (DSE) or triple system estimation in the case
of three lists.

1.3 Notation

1.3.1 Data

A CRC experiment produces k different lists L1, ..., Lk of units from a population of size n. Let i = 1, ..., nc index
the set of units that are captured at least one time, ∪jLj . Let N = {1, ..., n}. For each i ∈ N , let mi := I(i ∈ ∪jLj)
so that nc =

∑n
i=1mi. We do not distinguish units from their indices when discussing the lists; the ith unit is in list

Lj if and only if i ∈ Lj .
For each unit i and list Lj , let yij = I(i ∈ Lj). Then yi· = (yi1, ..., yik) , and y·· is the n× k matrix with ith row yi·.
The vector yi· is called the capture pattern of the ith unit. Let xi· denote a 1 × q vector of covariates associated with
the ith unit, and x·· is the n× q matrix with ith row xi·. For each i > nc, the pair (xi·, yi·) is not observed. If xc·· is the
matrix formed by the first nc rows of x··, and yc·· is the matrix formed by the first nc rows of y··, then the [observable]
data consists of the pair of matrices (xc··, y

c
··). We will refer to the pair (x··, y··) as the extended data.

Let Yk denote the set of binary row vectors of length k. For example, Y2 = {(1, 1), (1, 0), (0, 1), (0, 0)}. Note that
each yi· is an element of Yk. For every y ∈ Yk, define cy := |{i : yi· = y}|. Then the array c := {cy}y∈Yk

is the
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contingency table of counts of units in the lists L1, ..., Lk. In particular, c0 = n− nc, the number of units that are not
observed, and any estimate n̂ of n implies a prediction ĉ0 of c0 such that n̂ = ĉ0 + nc.

1.3.2 Subscripting by ω

Let K = {1, ..., k}. Let Ωk denote the power set of K, excluding the empty set. For example, Ω3 =
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Let ω ∈ Ωk, and suppose |ω| denotes the size of ω. Let (ω(1), ..., ω(|ω|)) denote the vector of elements of ω arranged
in increasing order. Pick arbitrary i ∈ {1, ..., n} and ω ∈ Ωk. Define yiω := (yiω(1)

, ..., yiω(|ω|)). To be clear, yiω is a
vector with elements taken from the ith row of the matrix y·· as specified by ω.

More generally, for any vector y = (y1, ...,yk) ∈ Yk, let yω := (yω(1)
, ...,yω(|ω|)). For the special case in which

ω is a singleton {j}, we write yi{j} = yij and y{j} = yj . Take ωc to be the complement of ω. For example, let
y = (1, 1, 0) ∈ Yk. Then y{2,3} = (1, 0), y1 = y{1} = y{2,3}c = 1, and y{1,2,3} = y.

1.3.3 Probability

Each capture pattern yi· may be assumed to be a realization of a random vector Yi·. Then, the matrix y·· is a realization
of a random matrix Y··. The corresponding statistics c and mi are realizations of the implied random quantities C and
Mi. Subscripting for each of the random quantities works exactly analogously to subscripting for the fixed realizations.
For the remainder of this section, fix k > 1, and let j ∈ K, i ∈ N , y ∈ Yk, and ω ∈ Ωk be arbitrary.

Let p(i,y) = P (Yi· = y), the probability that unit i has capture pattern y. Then p(i, yi·) = P (Yi· = yi·). Similarly,
let pω(i,y) = P (Yiω = yω). Define p(i,Yk) := {p(i,y)}y∈Yk

.

Let pω(y) = n−1
∑
i∈N pω(i,y). If ω = K, then we have pω(y) = p(y), the average probability that a unit has the

capture pattern y. Define p(Yk) := {p(y)}y∈Yk
.

Let 0ω denote the zero vector of length |ω|. Let φω(i) = 1 − P (Yiω = 0ω), the probability that the ith unit is on at
least one of the list indexed by ω. For brevity, define φ(i) := φK(i), and note that φ(i) = E(Mi), the probability that
the ith unit appears on at least one list. Finally, if ω = {j} is a singleton, we have φj(i) := φ{j}(i), the probability
that the ith unit appears on the jth list, and φj = n−1

∑
i∈N φj(i).

1.3.4 Regression

Let X denote the covariate space, and let x ∈ X be arbitrary. A function r(y,x) is called a regression model for
(x··, y··) if it is assumed that p(i, yi·) = r(yi·, xi·) holds for all i ∈ N . For any function r(y,x), define rω(y,x) :=∑

z∈Yk:zω=yω
r(z,x).

Given a function r(y,x), define the detection function ψω(x) = 1 − rω(0,x), which can be interpreted as the
probability that an individual with covariates x will appear in at least one of the lists indexed by ω. Notice that ψ is to
φ as r is to p. In particular, if r(y,x) is a regression model, then ψ(xi·) = φ(i), ψω(xi·) = φω(i), and ψj(xi·) = φj(i).

1.4 Assumptions

We describe some common assumptions that are employed in the CRC literature.

(Closed population) We assume that the population is fixed during the generation of the lists L1, ..., Lk. This
excludes births, deaths, and migration.

(Perfect matching) It is often unclear whether a record on one list refers to the same unit as a record on another list,
due to typographical errors or other anomalies. The field of record linkage addresses the problem of matching
units between lists (see Fellegi and Sunter [7]). We proceed with the assumption that the lists are linked perfectly,
so that the cross-classification counts c are all observable except for c0.

(Homogeneity) A CRC experiment is called homogeneous if the capture probabilities are constant across units. To
be precise, the experiment is homogeneous if p(i1,y) = p(i2,y) for every pair of units i1, i2 and every y ∈ Yk.
Heterogeneity [in general] is taken to mean the absence of this specific kind of homogeneity.

(Independence) Several kinds of independence assumptions are commonly used. Let y ∈ Yk, and ω ∈ Ωk \ {K}.
The lists are independent if

p(y) = pω(y)pωc(y) (1)
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Let i ∈ {1, ..., n}. The lists independent at the individual level if

p(i,y) = pω(i,y)pωc(i,y). (2)

Marginally, list independence at the individual level implies that the event that unit i is on a specific list is
independent of the event that unit i is on any other list. In the context of a regression model r(y,x), list
independence at the individual level is equivalent to conditional independence:

r(y,x) = rω(y,x)rωc(y,x) (3)

For example, if k = 2 with y = (y1,y2) and ω = {1}, then ωc = {2} and conditional independence implies

r((y1,y2),x) =
[
ψ1(x)y1(1− ψ1(x))1−y1

] [
ψ2(x)y2(1− ψ2(x))1−y2

]
. (4)

Finally, independence of units (or independence between individuals) means that P (Yi1· = y) = P (Yi1· =
y|Yi2· = z) for all i1, i2 ∈ N , y, z ∈ Yk. That is, the units are independent if the capture pattern of a unit does
not depend on the capture pattern of other units. This assumption appears to be universal in the CRC literature.

(Sampling Model M1) Early CRC models tend to assume homogeneity (at least formally) and independence be-
tween units to get a multinomial sampling distribution:

P (C = c) =
n!∏

y∈Yk
cy!

∏
y∈Yk

p(y)cy . (5)

(Sampling Model M2) Relatively recent CRC models occasionally incorporate a regression model to get a sampling
distribution that is multinomial at the individual level:

P (Y·· = y··|x··) =
∏
i∈N

r(yi·, xi·). (6)

The sampling models M1 and M2 implicitly assume some things about the independence structure of the units and
lists. Both models fail if, for example, the inclusion of a child on a list depends on the inclusion of that child’s
caretaker. However, it could be argued that the model M2 implicitly accounts for this child-parent dependence if the
regression model accounts for Age.

1.5 The Petersen Estimator

In the 1890’s, Petersen re-discovered and popularized an estimator that remains a fundamental building block for
modern models [8]. We illustrate the Petersen estimator with an initial capture list L1 and a single recapture list L2.
Let c1+ = c10 + c11 and c+1 = c01 + c11. The Petersen estimator takes the form n̂ = c1+c+1

c11
and relies on the

assumption of independence between lists as in equation 1. A consequence of this independence assumption is that
p((1, 1)) = φ1φ2, and it is hypothesized that

n̂ :=
c1+c+1

c11
≈=

E(C1+)E(C+1)

E(C11)
=

nφ1nφ1
np((1, 1))

= n
φ1φ1

p((1, 1))
= n.

Heterogeneity typically implies failure of the independence assumption, so the Petersen estimate is rarely optimal.
In applications with more than two data sets, individual Petersen estimates that are computed from selected pairs of
lists may produce estimates that are drastically less than nc, the number of observed units [9]. Most modern CRC
estimators are adaptations of the Petersen estimator that account either for heterogeneity, conditional dependence, or
both. For specific applications, including the CCM, models may account for open population effects and imperfect
matching.

1.6 A Dogmatic Bifurcation

It is intuitively appealing to view a CRC estimator as the sum of two conceptual pieces. Each of these pieces is (or
should be) an active area of research, and so we think of CRC has having two distinct frontiers. Having little external
justification, this bifurcation constitutes a dogma that motivates our research objectives.

Researchers on the first – and oldest – frontier start with the cross-classification table c and make various assumptions
to derive an estimator for p(Yk). Note that p(Yk) = {p(y)}y∈Yk

is merely a collection of 2k probabilities; covariates
are ignored. When k = 2, researchers almost universally assume list independence as in Equation 1. As we increase
the number of lists, the number of possible relationships among the lists grows. Log-linear models (Section 2.2) may
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represent the completion of this research frontier in terms of achieving generality, but the surface of the essential
problem of model selection has scarcely been scratched.

The second frontier uses covariates xc··, such as Age and Race, to model the relative probabilities of the observable
capture patterns. Post-stratification, applied in all Census coverage evaluations prior to 2010, was the earliest strategy
to represent c as a function of covariates. Dividing observations according to S different post-strata {xc··(s)}Ss=1 leads
to S partial cross-classifications {c(s)}Ss=1. Applying a first-frontier estimator on each partial cross-classification c(s)
leads to S estimates, one for each post-stratum, which can be summed to get a population estimate n̂. Continuous
generalizations of post-stratification have been prominent in the literature since the mid 1980s.

Starting with Section 2.3, every CRC method that we review combines an idea from the first frontier with an idea
from the second frontier, although the distinction between frontiers seems to have previously never been emphasized.
Indeed, most proposed estimators that incorporate xc·· were derived only for the two-list scenario, and these estimators
tend to rely on the conditional independence assumption, a rather trivial product of the first frontier.

Remarkably, the CRC literature has proposed little that combines cutting edge methods on both frontiers. This gap in
the literature is most evident when there are more than two lists. Triple system estimators that combine an advanced
first-frontier method such as log-linear modeling (Section 2.2) with an advanced second-frontier method such as
logistic regression (Section 2.4) have been considered only recently (Section 2.6).

In terms of our bifurcation of CRC methods into two frontiers, our thesis has three parts. The first part is to advance
the first frontier by providing a regression approach that readily generalizes to three or more lists. The second part
is to pioneer a local log-linear modeling framework for imputing multinomial capture probabilities at the individual
level rather than only at the population level. The third part is to “marry” an advanced method from the first frontier
with an advanced method from the second frontier in a way that leads to unprecedented accuracy in CRC estimation.
Section 3 makes these goals more concrete and provides initial results.

1.7 Simulation Example

We use a simulation experiment to illustrate two kinds of list dependence. A population of 2000 individuals has ages
assigned through a random process that is consistent with a baby-boomer generation and decreasing numbers of in-
dividuals as Age increases (see the first panel in Figure 1). Three lists of individuals are drawn from the population
sequentially. The probability of an individual appearing on each list is a function of Age and capture history; an indi-
vidual that is captured on one list becomes less likely to be captured on subsequent lists, consistent with a “respondent
fatigue” effect.
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Figure 1: These panels illustrate a simulation with three lists and complex list dependence. The first panel shows the
distribution of the simulated population over Age. The second panel shows the capture probabilities that were used
to generate the first list. The zig-zag pattern was chosen rather arbitrarily for the purpose of creating a population
with heterogeneous capture probabilities. The third panel shows the capture probabilities used to generate the second
list. These probabilities are a function of both Age and capture history, and capture probabilities follow two separate
curves. Points on the lower curve represent individuals that were captured on List 1. These points are about 0.1 lower
than the points on the upper curve, and this difference can be thought of as a “respondent fatigue” effect. Finally, the
capture probabilities for the third list have a different kind of dependence on Age in addition to a respondent fatigue
effect.
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Figure 2 displays box plot summaries for a hundred replicates of each of the three pairwise Petersen estimates. For
each pair of lists, the Petersen estimator significantly overestimates the population size. The fact the the Petersen
estimator is biased upwards (and not downwards) in this example is not obvious merely from looking at Figure 1, even
for an experienced researcher, because the simulation involves two kinds of list dependence that affect the Petersen
estimates in conflicting ways.

We will discuss this conflict for the first and second capture events (see the second and third panels in Figure 1). The
first form of list dependence is the respondent-fatigue effect, which says that P (Yi2 = 1|Yi1 = 1) < P (Yi2 = 1). The
Petersen estimator can be rewritten as n̂ = c1+c+1

c11
= c11 + c10 + c01 + c10c01

c11
, and simple reasoning on this expanded

expression shows that the respondent fatigue effect induces an upward bias in the Petersen estimator, consistent with
the simulation results summarized by the first box plot in Figure 2.

The second form of list dependence results from the structure of the heterogeneity in List 1 and List 2. When capture
probabilities are variable and positively correlated between lists, the Petersen estimator is typically biased downwards.
Indeed, if this simulation is repeated, removing the respondent fatigue effect but preserving the basic heterogeneity
structure between List 1 and List 2, the corresponding Petersen estimator becomes biased downwards.
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Figure 2: Petersen estimates are typically biased in the presence of list interactions. The vertical axis measures the
ratio n̂/n; when this ratio is greater than one, n̂ is an overestimate of n.

2 Literature Review

More than a century of CRC research has produced many approaches to the problem. The R package Rcapture by
Baillargian and Rivest fits some of the models discussed below [10].

2.1 Removal Methods, the Jackknife, and Chao’s Lower Bound

Removal methods differ from Petersen estimates by assuming that the probability of capture for each unit is constant
across lists. The basic removal method, introduced by Moran, requires that captured units are either literally removed,
or are returned to the population after being identified such that they do not get counted in subsequent captures. Given
a finite population, the sequence of counts of “new” units identified in each capture should converge towards zero in
a roughly geometric fashion. Removal methods attempt to fit parameters to the observed terms of the sequence, and
consequently infer the population size [11].

Burnham and Overton derive an estimator based on the generalized jackknife method [12]. In an experiment with k
captures, let fj denote the number of units captured exactly j times, j = 1, ..., k. The idea of the jackknife estimator
is to generate a population size estimate n̂ as a linear combination of the quantities fj . Note that nc =

∑
j fj . For

some constant α1, the first order jackknife estimator is n̂ = nc + α1f1, the second order estimator takes the form
n̂ = nc +α1f1 +α2f2, and so on. The model allows for heterogeneity, but assumes that for each unit, the probability
of capture on each list is constant.
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Chao derived the “Chao’s lower bound” population estimator, which is closely related to the jackknife estimator
for populations with heterogeneous capture probabilities. Chao showed that her estimator may perform better than
the jackknife estimator when the number of capture events k is large and the capture probabilities are “severely”
heterogeneous such that many units are captured substantially less frequently than the rest of the population [13].

2.2 Log-linear Models

Fienberg applied log-linear models to the CRC setting in 1972, offering maximal flexibility [14]. Building off of
Sampling Model M1 (Equation 5), Fienberg’s approach assumes only that the highest-order interaction between lists
is negligible.

Given any function f : Yk → R with
∑

y exp f(y) = 1, one can use a log-linear model to reparameterize the
multinomial capture probabilities as a function of capture pattern: log p(y) = f(y). The form of f is completely
arbitrary, and a log-linear parameterization always exists to exactly fit any multinomial probability array p(Yk).

However, given that the c0 cell of c is not observed, any saturated parameterization for p(Yk) is not identifiable.
Indeed, the number of free parameters in the full multinomial model p(Yk) is 2k − 1, with the “−1” due to the
restriction that

∑
y p(y) = 1 . Meanwhile, the number of known values in c is 2k − 1, and the constraint is that∑

y 6=0 cy = nc.

Therefore, given the missingness in the data, the saturated model has 2k−2 free parameters, providing a perfect fit for
the probabilities p(Yk \{0}). Fitting models with even fewer than 2k−2 free parameters provides degrees of freedom
for testing model fit, adds bias, and reduces the variance of the corresponding population size estimate n̂. That is,
minimizing prediction risk involves (as usual!) a bias-variance trade-off, and selection of an appropriate model is not
straightforward. Fienberg outlined a model selection strategy based on likelihood-ratio tests, restricting attention to
hierarchical log models [14].

We emphasize that hierarchical modeling requires the assumption that the highest-order interaction is negligible. This
assumption fails even in basic simulation scenarios (see Appendix A). Therefore, even a hierarchical log-linear model
with many degrees of freedom and the appearance of excellent model fit may lead to disastrously incorrect predictions.

2.3 Smooth Post-Stratification via Horvitz-Thompson

While many of the models discussed above allow for significant flexibility in the structure of the multinomial capture
probabilities p(Yk) as in Equation 5, none of these models explicitly use individual-level characteristics as in Equa-
tion 6. An elementary way to incorporate covariate information is to fit a model separately on each of a collection
of post-strata. Petersen estimates based on each of several hundred post-strata formed the basis for official census
coverage evaluations for the 1980, 1990, and 2000 censuses [15]. As a simple example of post-stratification, consider
partitioning the E-sample and P-sample census coverage evaluation data into four categories: white and under 40 years
old; white and over 40 years old; non-white and under 40 years old; and non-white and over 40 years old. Each of
these four post-strata gives a separate cross-classification table c(Age,Race) = c(xc··) like the one displayed in Table
1. The four Petersen estimates corresponding to the four post-strata may be summed to provide an estimate of the
population:

n̂ =
∑

Age,Race

n̂(Age,Race) (7)

Suppose that r(y,x) is a regression model for (x··, y··), and ψ(x) is the implied detection function. Hence φi =
ψ(xi·) = P (Mi = 1). Post-stratification implies a discrete approximation r̂ of the regression function r, while
a smooth approximation may be preferable. The Horvitz-Thompson estimator generalizes post-stratification to a
[optionally] smooth analogue:

Ñ =
∑

i:Mi=1

Mi

ψ(xi)
=

∑
i:Mi=1

1

ψ(xi)
(8)

It is easy to verify that EÑ = n. Alho showed that Ñ is consistent and asymptotically normal if φi is uniformly
bounded away from 0 and 1 for all i ∈ N [16].

Now, any detection function estimator ψ̂(x) implies a Horvitz-Thompson estimator. For example, consider the
post-stratification example of Equation 7. Let nc(Age,Race) denote the number of individuals observed in a par-
ticular stratum and n(Age,Race) denote the corresponding true number of individuals, and let ψ̂(Age,Race) =
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nc(Age,Race)/n̂(Age,Race). Then

n̂ =
∑

Age,Race

n̂(Age,Race) =
∑

Age,Race

nc(Age,Race)
nc(Age,Race)
n̂(Age,Race)

=
∑

Age,Race

nc(Age,Race)

ψ̂(Age,Race)
=

∑
i:mi=1

1

ψ̂(xi)
(9)

Hence, Equation 8 is more general than Equation 7, giving us the option of replacing the discrete estimator ψ̂ with
a smooth one. We refer to every Horvitz-Thompson estimator that on relies on a smooth estimate ψ̂ of the detection
function as a smooth post-stratification method.

Just as the Petersen estimates rely on the assumption of list independence within each post-strata, most of the smooth
estimators of the detection function that have been proposed in the literature for the two-list scenario make the condi-
tional independence assumption as in equations 3 and 4, and few of these proposed estimators have been generalized
for a three-list scenario.

2.4 Logistic Regression

Logistic regression was perhaps the earliest smooth estimator of the detection function. Pollock, Hines, and Nichols
in 1984 were the first to apply logistic regression in the CRC context [17]. Alho made additional contributions and
applied logistic regression for a Census coverage evaluation in the 1990’s [16] [18]. The CCM was the first official
Census coverage evaluation to rely on logistic regression instead of post-stratification. (For more details on the 2010
CCM, see Section 2.7.)

Alho proceeded approximately as follows with k = 2. For j = 1, 2, let θj be a q × 1 vector of parameters, and
θ := (θ1, θ2). Define

r(y,x) :=
[
logit−1(xθ1y1)y1(1− logit−1(xθ1y1))1−y1

] [
logit−1(xθ2y2)y2(1− logit−1(xθ2y2))1−y2

]
,

and assume that r(y,x) is a regression model. Then ψj(x) = logit−1(xθj), for j = 1, 2, and conditional indepen-
dence holds. In particular, r((1, 1),x) = ψ1(x)ψ2(x), so that

ψ(x) = ψ1(x) + ψ2(x)− ψ1(x)ψ2(x) (10)

Therefore, any estimate θ̂ implies an estimate of the detection function ψ̂. In turn, ψ̂ can be used to generate a
Horvitz-Thompson estimate as in Equation 8.

Alho estimated θ by maximizing a conditional likelihood function. Recall that yij is the indicator that the ith individual
appears on the jth list. A few lines of algebra shows that

P (Yi· = yi·|xi·, θ,Mi = 1) =
e(xi·θ1yi1+xi·θ2yi2)

exi·θ1 + exi·θ2 + e(xi·θ1+xi·θ2)
(11)

The conditional likelihood function is then
∏
mi=1 P (Yi· = yi·|xi·, θ,Mi = 1).

2.5 Kernel Density Estimation

The logistic regression method of Alho may require high polynomial orders in the covariates to fit the data. For
example, as a function of Age, capture probabilities for the Census tend to be very nonlinear, with a dip around ages
18 to 29 as children leave their parents’ residences for school or work [19]. In such cases, a nonparametric approach
might be more fitting [sic].

Chen and Lloyd [20] developed a two-list nonparametric estimation framework centered around estimating the “depen-
dence parameter” α satisfying αφ1φ2 = p((1, 1)). Note that taking α = 1 is the same as assuming list independence
(1), and α > 1 is consistent with positive list dependence. If α is known, a simple maximum likelihood estimation
leads directly to a population estimate. Specifically, with c0 = n−nc, the multinomial likelihood implied by Equation
5 can be re-parameterized as

L(φ1, φ2, n|c, α) ∝ n!

(n− nc)!
(1− φ1 − φ2 + αφ1φ2)

n−nc (αφ1φ2)c11(φ1 − αφ1φ2)c10(φ2 − αφ1φ2)c01 .

Chen and Lloyd estimated α externally (prior to performing maximum likelihood for the remaining parameters) us-
ing a rather bulky nonparametric kernel density estimation framework that relied on the assumption of conditional
independence.
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Chen and Lloyd [21] proposed a far simpler nonparametric approach using two lists. Suppose that r(y,x) is a regres-
sion model for (x··, y··), and let ψ(x) be the detection function. Let ω(j) = K\{j}. Assume conditional independence
(Equation 3). Then ψj(xi·) = P (Yij = 1|xi·) = P (Yij = 1|Yiω(j), xi·). In particular, if I(−j) = ∪`=1,...,k:` 6=jL` is
the set of units that appear on at least one list excluding the jth list, then ψj(xi·) = E(Yij |i ∈ I(−j), xi·). Therefore,
regressing Yij on xi· for only the observed units i ∈ I(−j) provides an estimate ψ̂j(x) for j = 1, 2. Finally, conditional
independence implies an estimate ψ̂(x) as in equation 10, and a Horvitz-Thompson estimator is immediate.

2.6 Joint Estimation of Covariate Effects and List Interactions

A relatively small and recent body of work deals with the problem of simultaneously modeling covariate effects and
list interactions. In terms of our dogmatic bifurcation (Section 1.6), these methods provide a link between the first and
second frontier.

In 1990, Baker introduced a method for fitting a log-linear model jointly across a collection of post-strata in a two-list
scenario [22]. In 2000, Pledger presented a logistic-linear approach that admits more than two lists and allows capture
probabilities to depend on time, capture histories, and post-strata in a unified way (i.e., not fitting a separate model for
each post-strata) [23].

In 2001, Yip, Wan, and Chan applied logistic regression in a way that admits more than two lists and allows capture
probabilities to depend continuously on covariates, time, and capture history. To our knowledge, this is the first
instance of Horvitz-Thompson estimation using more than two lists [24].

2.7 CRC in the 2010 CCM

An internal Census memorandum discusses the modeling process used in the CCM [25]. The Census estimates several
adjustment factors for each observed individual. Denote these adjustments collectively as Ai. For each observed
individual, a logistic regression model is used to produce an estimate ψ̂1(x) of ψ1(x), the probability that an individual
with covariates x is enumerated in the Census. Let D denote an estimation domain. For example, D could denote the
set of individuals in the state of Pennsylvania. Then the CCM estimate for n(D), the population in domain D, is given
as an adjusted Horvitz-Thompson style estimator:

n̂(D) =
∑

i∈D:yi1=1

Ai

ψ̂j(xi·)
. (12)

Note that Equation 12 differs from the standard Horvitz-Thompson estimator by including using ψ̂1 instead of ψ̂ in
the denominator. The reason for this difference is that if D is a domain that does not overlap with the P-sample, then
the probability of detection is equal to the probability of enumeration in the Census.

3 Research Proposal and Initial Results

3.1 A List of Goals

Our research goals are strongly motivated by the “dogmatic bifurcation” introduced in Section 1.6. Broadly, we see
the field of CRC as having two distinct frontiers, and we aim to advance each frontier separately with an eye towards
combining the most advanced methods from each frontier into a single algorithm. To achieve this, we intend to pursue
the following research objectives:

G1: Derive a simple framework that subsumes every post-stratification and smooth post-stratification approach,
including logistic regression as in Alho [16] and non-parametric regression as in Chen and Lloyd [21]. The
new framework should incorporate three or more lists in a way that does not impose any specific assumptions
regarding the structure of the multinomial probabilities p(Yk). This is done in Section 3.2.

G2: Develop a local log-linear modeling strategy that performs model selection for each observed unit based on
smooth post stratification with more than two lists, and use the fitted models to estimate detection probabilities
for Horvitz-Thompson style estimation. Section 3.5 will demonstrate how to apply a saturated log-linear model
for every unit. However, a non-saturated model may be more appropriate. Explore selecting a separate log-linear
model for each unit or group of units.

G3: Hierarchical log-linear models may introduce significant bias by requiring that the highest-order list interaction
ρ is zero. Such an assumption is fundamentally unavoidable, but using ρ = 0 is not necessarily the most natural
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choice. In particular, the population estimate is some function of ρ. Rather than setting ρ = 0, use a moderately
informative prior distribution for ρ to propagate uncertainty into the population size confidence [or credible]
intervals.

G4: Write a simulation package for testing CRC estimators in R, and use this package to compare our proposed
methods against existing methods. Since validation data typically does not exist in applications, empirical risk
estimation is not feasible. Simulation may represent the best way to assess the sensitivity of CRC estimators to
the model assumptions (see Section 4.1).

G5: Evaluate the accuracy of the 2010 Census by combining the ACS with the E- and P-samples which were used
in the CCM. Because the overlap between the geographic domains of the ACS and the CCM is small, the
triple-system data set will likely be too small to make use of many covariates. Therefore, we may estimate
the Census capture probability function ψc(x) in a way that incorporates information from both the ACS/E-
sample/P-sample triple-system and the E-sample/P-sample dual system. An intuitive starting point is to produce
a hybrid estimator ψ̂c(x) = (1− α(x))ψ̂cd(x) + α(x)ψ̂ct(x), where ψ̂cd(x) is a dual system estimator, ψ̂ct(x)
is a separate triple system estimator, and 0 < α(x) < 1 is a weighting function that depends on the variance of
ψ̂ct(x).

G6: Our algorithm (see Section 4.3) strings together three separate estimation techniques. Regression is used to esti-
mate the relative frequencies of observable capture patterns, log-linear models are used to estimate the relative
frequency of the missing cell, and the result is plugged into a Horvitz-Thompson estimator. Explore how these
techniques relate to each other, and develop a more unified estimation approach.

Throughout, the scope of our study is restricted by the following assumptions unless explicitly stated otherwise.

A1: Records are perfectly matched between lists.

A2: The population is closed.

A3: Given x·,·, the sampling distribution of Y·· is multinomial as in Equation 6. In particular, assume that r(y,x) is
a regression model for (x··, y··) such that smooth estimators ψ̂(x) converge to ψ(x).

A4: For each xi·, the array of local multinomial probabilities {r(y, xi·)}y∈Yk
can be parameterized by a hierarchical

log-linear model using only 2k − 2 free parameters.

3.2 A New Smooth Post-Stratification Framework

We begin by deriving an estimator of the detection function for two or three lists that relies on the assumption of
conditional independence (3). Observe that

ψj(xi·) = P (Yij = 1|xi·) = P (Yij = 1|Mi = 1, xi·)ψ(xi·) + P (Yij = 1|Mi = 0, xi·)(1− ψ(xi·))

= P (Yij = 1|Mi = 1, xi·)ψ(xi·)

Combining this result with conditional independence gives

ψ(xi·) = 1− P (Mi = 0|xi·)
= 1−

∏
j

(1− P (Yij = 1|xi·))

= 1−
∏
j

(1− P (Yij = 1|Mi = 1, xi·)ψ(xi·))

Suppose there exist functions {π(j,x)}j∈K that are smooth in x with π(j, xi·) = P (Yij = 1|Mi = 1, xi·) for
i = 1, ..., nc, j ∈ K. Note that each π(j,x) is conditioned on observability (i.e., Mi = 1), so π(j,x), can be estimated
directly from the data (xc··, y

c
··) using any kind of binary regression. The expression above becomes

ψ(xi·) = 1−
∏
j

(1− π(j, xi·)ψ(xi·)) (13)

Now, for each i = 1, ..., nc, the detection probability ψ(xi·) can be estimated numerically. If k = 2,

ψ(xi·) =
π(1, xi·) + π(2, xi·)− 1

π(1, xi·)π(2, xi·)
(14)
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Suppose k > 2. Fix i for brevity, and let πj := π(j, xi·). It is not immediately clear whether Equation 13 admits a
unique feasible root ψ(xi·) for all possible combinations of values π1, ..., πk that satisfy the necessary constraints

1 ≥ πj ≥ 0; (15)∑
j

πj ≥ 1. (16)

If k = 3, Equation (13) gives

ψ(xi·) = (π1 + π2 + π3)ψ(xi·)− (π1π2 + π1π3 + π2π3)ψ(xi·)
2 + π1π2π3ψ(xi·)

3 (17)

We are interested only in solutions in the interval (0, 1). After excluding the trivial solution, ψ(xi·) = 0, two quadratic
roots remain. If exactly one of these two roots is feasible for all individuals, the solutions can be applied in a Horvitz-
Thompson estimator. However, finding a feasible root of Equation 17 is of dubious value when k > 2 because
this equation rests on the conditional independence assumption, whereas a more complex relationship between the
multinomial probabilities may be appropriate, as discussed in 3.4. On the other hand, the assumption of conditional
independence between three or more lists is not unprecedented (see the grade-of-membership model of Manrique and
Fienberg [26]). Implementing the Horvitz-Thompson estimator based on Equation 17 could lead to insightful contrasts
with existing estimators.

We now derive a more general framework for smooth post-stratification that subsumes both equations (14 and 17).
Define functions Π := {π(y,x)}y∈Yk

via

π(y,x) :=
r(y,x)∑
z6=0 r(z,x)

=
r(y,x)

ψ(x)
. (18)

Hence r(y,x) = ψ(x)π(y,x), and

ψ(x) =

∑
y 6=0 r(y,x)∑
y r(y,x)

=

∑
y 6=0 ψ(x)π(y,x)∑
y ψ(x)π(y,x)

=

∑
y 6=0 π(y,x)

π(0,x) +
∑

y 6=0 π(y,x)
(19)

(Clearly,
∑

y 6=0 π(y,x) = 1, so the final expression reduces to 1
π(0,x)+1 . However, the form of Equation 19 turns out

to be convenient.)

Observe that π(y, xi·) = P (Yi· = y|Mi = 1, xi·) for each y 6= 0. That is, π(y, xi·) represents the probability that
the ith unit has capture pattern y conditional on the ith unit being observed in at least one of the lists. Therefore,
each π(y, xi·), y 6= 0, can be estimated directly from the data using any binary regression method including logistic
regression, nonparametric generalized additive models, or conditional density estimation (see Section 3.3).

Let Π∗ := {π(y,x)}y 6=0. Any set of estimates Π̂∗ = {π̂j(x)}j 6=0 can subsequently be used to impute the function
π(y,x) using any method. If there are only two lists, one example of an imputation strategy is to assume conditional
independence, which implies π((0, 0),x) = π((1,0),x)π((0,1),x)

π((1,1),x) . For three lists, note that πj(x) =
∑

y:yj=1 πy(x) for

j = 1, 2, 3. Then Equation 17 can be applied to Π̂∗ to provide an estimate for ψ(x), which in turn implies an estimate
of π(y,x) as π(0,x) = 1

ψ(x) − 1. Alternatively, one can discard conditional independence and apply a saturated
hierarchical log-linear model as demonstrated in Section 3.5. For the most general case, we propose deriving a local
log-linear fitting procedure for imputing π(0,x) with any number of lists in Section 3.4.

We emphasize that Equation 19 provides the primary motivation for breaking CRC estimation into a two step process
as outlined in Section 1.6. The first step is to generate the estimates Π̂∗ := {π̂(y,x)}y 6=0, while the second step is to
impute π(0,x). This bifurcated approach is not necessarily optimal; we see it as a platform which may give rise to a
unified estimation framework as suggested in goal G6.

Returning to the two-list scenario, it is easy to verify that Equation 14 is a special case of Equation 19. Moreover,
in the logistic regression framework of Alho (see Section 2.4), we have π(y, xi·) = P (Yi· = y|xi·, θ,Mi = 1), and
substituting ψj(x) = logit−1(xθj) into Equation 10 gives exactly the same expression obtained by using Equation 11
to substitute into Equation 19. Hence, Alho’s logistic regression framework is a special case of our framework. Kernel
regression as in Chen and Lloyd [21] fits into our framework using similar reasoning.

3.3 Conditional Frequency Estimation

In this section we review a tool for estimating the functions Π∗, discuss a slight generalization of Equation 19, and use
a simulation to demonstrate this generalization.
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Suppose that each vector xi· is a realization of some random variable X. Suppose fM (x) is a function that satisfies
fM (xi·) = P (X = xi·|Mi = 1), and let gM (y,x) := π(y,x)fM (x). Then, for all i ∈ N ,

gM (yi·, xi·) = P (Yi· = yi·|X = xi·,Mi = 1)P (X = xi·|Mi = 1) = P (yi·, xi·|Mi = 1).

Note that gM and fM each can be estimated directly from the observable data (i.e., units with Mi = 1), and from the
definition of gM we can express the conditional density of capture pattern y given X = x as

π(y,x) =
gM (y,x)

fM (x)
.

Hall, Racine, and Li propose a nonparametric conditional density estimator that selects bandwidths by cross-validation
[27]. At present, the implementation of their algorithm in R is too slow to use for data sets near the scale of Census
applications, but the existence of at least a slow solution suggests that conditional density estimation is not a dead-end
for the CRC context.

As an alternative to conditional density estimation, one could fit a separate binary regression to estimate each function
in Π∗. A reason not to take this alternative approach is that fitting each π separately may lead to

∑
y 6=0 π(y,x) 6= 1 due

to local estimation error. However, a convenient feature of the final expression in Equation 19 is that this fraction does
not change if we scale all the π’s by a constant. To be precise, suppose that the imputation model for π(0,x) is of the
form π(0,x) = fimp(Π∗) for some function fimp. We say that fimp is scale-invariant if fimp(tΠ∗) = tfimp(Π∗)

for all t > 0. For example, imputation under conditional independence is scale-invariant, since

tfimp(Π∗) = t
π((1, 0),x)π((0, 1),x)

π((1, 1),x)
=
tπ((1, 0),x)tπ((0, 1),x)

tπ((1, 1),x)
= fimp(tΠ∗).

Therefore, with any scale-invariant imputation method, Equation 19 may still lead to a valid estimator for the detection
function ψ(x) even if we replace all the π’s with estimates that break the constraint

∑
y 6=0 π(y,x) ≡ 1.

We illustrate estimating Π∗ using three separate regressions in a simulation example with two lists. Each replication
involves a population of 1000 individuals with selection probabilities a function of Age as shown in the first panel of
Figure 3. The selection probabilities are the same for both lists.
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Figure 3: This figure illustrates the simulation described in Section 3.3. First panel: Capture probabilities as a function
of Age. Second panel: Stacked estimates π̂j are illustrated as solid curves, and the imputation π̂(0,x) that is implied
by conditional independence is added on top as the dashed curve. Third panel: normalized π’s. Fourth panel: A
thousand replicates of Petersen estimates (left) and regression estimates (right).

We estimated π((1, 1), x) by estimating E(I(Yi· = (1, 1))|Mi = 1, Age = x) using the gam function with the logit
link function via the mgcv package in R. This algorithm fits a nonparametric logistic kernel regression on Age. We
estimated the other two π’s in Π∗ analogously. The solid black curves in the second panel of Figure 3 illustrate the
three regression curves stacked on top of each other. That is, the bottom curve is π̂((1, 1), x); the second curve is
π̂((1, 1), x) + π̂((1, 0), x), and the third (bold) curve is π̂((1, 1), x) + π̂((1, 0), x) + π̂((0, 1), x).

Since this simulation does not incorporate a respondent fatigue effect, unlike the simulation in Section 1.7, the only
cause for list dependence is heterogeneity. Therefore, the simulated lists are independent conditional on Age, and we
use the conditional independence assumption to impute an estimate π̂((0, 0), x), plotted on top of the other curves in
the second panel of Figure 3 as the dashed curve. The fact that the bold solid curve is not identically equal to unity
reveals error in the estimates Π̂∗, but normalizing those estimates prior to imputing π̂((0, 0), x) will have no effect on
the resulting detection function estimate ψ̂(x) because our imputation method is scale-invariant.
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The π’s in the second panel of Figure 3 are normalized and re-plotted in the third panel. Here, the bold curve represents
an estimate ψ̂(x) according to Equation 19, and this curve corresponds to a single Horvitz-Thompson estimate of the
population size. A thousand replicates of this regression estimator are summarized in the second box-plot in the fourth
panel of Figure 3. For comparison, the first box-plot summarizes a thousand replicates of a Petersen estimator.

The Petersen estimator tends to be biased downward because it does not account for the heterogeneity of capture
probabilities. By comparison, the regression estimator tends to have a small positive bias. Based on the 1000 replica-
tions, a 95% asymptotic normal C.I. for the mean estimate is approximately (1003, 1007.6). This upward bias in the
regression estimator has at least two likely causes. The first cause is bias in the detection probability estimates ψ̂(x),
particularly at the end points, where Age = 0 or 100. The second cause is that variance in the estimator ψ̂ tends to
induce an upward bias in the Horvitz-Thompson estimator, even if ψ̂(x) is unbiased.

While the Petersen estimator has a larger bias, the regression estimator has a larger variance. This can be understood
in terms of the bias-variance trade-off in model fitting: The Petersen model uses only three parameters, whereas the
[nonparametric] regression model uses up a large number of [effective] degrees of freedom in accounting for Age. A
related point is that the present simulation does not address the question of whether post-stratification in combination
with the Petersen estimator could potentially outperform the regression estimator. In fact, we do not anticipate an
appreciable difference between the two approaches in a two-list scenario for most applications; we expect the benefits
of our smooth post-stratification approach to become more pronounced with three or more lists.

3.4 Local Log-linear Models

With three lists, the saturated hierarchical log-linear model for the multinomial cross-classification Y can be parame-
terized as

logP (Yi· = y) = u+ u1y1 + u2y2 + u3y3 + u12y1y2 + u13y1y3 + u23y2y3. (20)

As discussed in Section 2.2, including a coefficient ρ for the highest-order interaction y1y2y3 would make the model
not identifiable. The subject of goal G3 is to explore the level of bias caused by excluding ρ.

Fienberg [14] stated a maximum likelihood solution for the saturated model as

ĉ000 = eû =
c111c001c010c100
c011c110c101

. (21)

Setting π̂(y) = cy/nc for all y and substituting into Equation 21, every nc cancels to give

π̂((0, 0, 0)) =
π̂((1, 1, 1))π̂((0, 0, 1))π̂((0, 1, 0))π̂((1, 0, 0))

π̂((0, 1, 1))π̂((1, 1, 0))π̂((1, 0, 1))
. (22)

One can view Equation 22 as an imputation method that is applicable in the context of Equation 19. This log-linear
imputation method provides our first example of a local log-linear model solution if we simply replace each π̂(y) by
an estimate that is allowed to depend on covariates:

π̂((0, 0, 0),x) =
π̂((1, 1, 1),x)π̂((0, 0, 1),x)π̂((0, 1, 0),x)π̂((1, 0, 0),x)

π̂((0, 1, 1),x)π̂((1, 1, 0),x)π̂((1, 0, 1),x)
. (23)

In fact, Equation 20 can be rewritten in local form as a model for the relative frequency of each capture pattern with a
[optionally] separate model for each unit:

log π(y, xi·) = u(xi·) + u1(xi·)y1 + u2(xi·)y2 + · · ·+ u23(xi·)y2y3. (24)

To avoid overfitting, we wish to test the importance of each coefficient in search of an adequate submodel, and this is
the subject of goal G2. At least two popular model select strategies exist. Fienberg demonstrated how to use a sequence
of likelihood ratio test statistics to include or exclude model terms in a stepwise fashion [14]. Another criteria for a
stepwise model search is to optimize the AIC score, as implemented in the glm function in R.

Local log-linear modeling involves several closely related issues. The first issue is that trying to avoid over-fitting by
selecting a separate log-linear sub-model for each unit appears to introduce overfitting in its own right. The second
issue is that the collection of locally-fitted log-linear models will necessarily be highly correlated across units due to
the smoothed nature of the functions Π̂∗ which determine the log-linear models. Hence, log-linear models for “units”
are actually models for groups of units, even though it is not clear how to think about membership (or degree-of-
membership) of each unit to each group. While a vague concept of group membership may be acceptable, it is at
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least necessary to define and bound an effective count of units underlying each set of relative frequency estimates
Π̂∗i := {π(y, xi·)}y 6=0 to facilitate variance estimation.

Finally, we have no reason to expect that locally-selected log-linear models are consistent with a smooth imputation
function π(0,x). Discontinuity may result from the discrete nature of the standard approach to model selection: each
coefficient is either included in the model or it is not. We will reserve smooth generalizations of model selection for
future work.

3.5 Estimation for Three Lists: Simulation Example

We continue with the simulation illustrated in Figure 1. Using Bernoulli draws according to the capture probabilities
illustrated in Figure 1, we generate the extended data (y··, x··). Next, we use the np package in R (see Hall and
Racine [27]) to estimate the conditional probability functions Π∗. These conditional probability functions are stacked
in Figure 4 as the curved black lines.
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Figure 4: Stacked conditional probability functions. For example, the curve labeled “100” represents the
sum π̂((1, 0, 0), Age) + π̂((1, 0, 1), Age) + π̂((1, 1, 1), Age). The dashed curve represents the imputed value of
π̂((0, 0, 0), Age). The curves are normalized in the right panel so that the bold solid curve represents the estimated
detection probability.

For each i = 1, ..., nc, we fit a log-linear model to the set of values Π̂∗i as in Equation 24. The optimal choice of
parameters to include in the log-linear model is complex (see Section 3.4); for our example we simply apply the
saturated hierarchical log-linear model’s maximum likelihood estimate as in Equation 23. This imputation is plotted
as the dashed curve in Figure 4, stacked on top of the other conditional probabilities. The bold curve in the right panel
of Figure 4 represents the estimate of the detection function ψ̂(Age) implied by Equation 19, and a Horvitz-Thompson
estimate is immediate.

Our result in the simulation above is substantially biased. In 25 replications, population size estimates ranged from
2005 to 2204 with a median of 2101 (recall that the true population size is 2000). We suggest that a primary reason
for the bias is that the saturated hierarchical log-linear model is not adequate. In particular, the log-linear model does
not include the highest-order interaction coefficient ρ, which is significant. The problem of how to incorporate our
uncertainty regarding ρ into our estimates of population size is the subject of goal G3.

One way to reduce the role of highest-order interaction in our simulation setting is to remove the respondent fatigue
effects, so that the third and fourth panels in Figure 1 contain only the upper curve. We apply this simplification and
generate 25 replications of our Horvitz-Thompson estimator. This time, the median was exactly 2000 (!), the minimum
was 1927, and the maximum was 2056. We provide a more thorough examination of model performance in Appendix
A.
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4 Discussion and Next Steps

4.1 Model Validation

In a textbook regression problem, a fixed set of covariates and a single response with many replicates make possible
cross-validation and clear measures of predictive power under only mild assumptions. By contrast, CRC methods push
the limits of what can be accomplished by principled inference. CRC requires extremely strong assumptions, offers
nothing particularly compelling in the way of model checking (it’s hard to quantify the likelihood of a vast school of
“wily trout”), and, even under favorable conditions, the prediction intervals may be too wide to be of much value. 1

The CRC problem is fundamentally a missing data problem. The missing quantity of interest is n, the population
size, but, perhaps more relevantly, the covariate values x(nc+i)· are missing for i = 1, ..., n − nc. The nature of this
missingness is arguably of the worst possible kind, because it is reasonable to suppose that the units which are not
observed are not observed precisely because they are different from the observed units. While differences between
the training data and the test data are always a concern in prediction problems, it is not generally the case that the
prediction data is different from the training data a priori.

The absence of validation data (the missing data) makes simulation an especially important tool for CRC modeling.
However, the possibilities for simulation are endless. The variability of simulation settings means that finding the
“best” CRC estimator is like shooting at a moving target. In particular, comparisons between different CRC algorithms
do not typically provide a clear winner. Rather than seek an optimal estimator, our goal is more vague: to generate
reasonable estimators and understand their behavior across a spectrum of simulation scenarios.

4.2 A Multi-level Bias-Variance Tradeoff

Our estimator involves three distinct estimation steps, each of which has its own bias-variance tradeoff. The first
step is estimating the functions Π∗, and this involves a variable selection and/or bandwidth selection problem. The
second bias-variance tradeoff occurs in the local selection of log-linear models, which may emphasize parsimony to
a greater or lesser degree. Finally, biasing the estimated detection function ψ̂(x) upwards may reduce the variance of
the resulting Horvitz-Thompson estimator.

In our present approach, each of these three bias-variance tradeoffs is optimized separately, whereas a joint optimiza-
tion could lead to very different results. For example, it could conceiveably be optimal to undersmooth the conditional
density estimates, overfit the log-linear models, and restrict the variance only in the final step by imposing an upward
bias in the detection probabity estimates. This kind of joint optimization is the subject of our research goal G6.

Notably, Yip et. al. made significant progress towards unifying the first two steps – estimating Π∗ and imputing π(0,x)
[24]. However, Yip’s fundamental approach is different than ours, relying on a conditional maximum likelihood
approach that fits all list interactions and covariate effects jointly only on the observed portion of the data. In effect,
Yip fits list interactions using only the relative frequencies for observable capture patterns Π∗. By contrast, we fit
the list-interaction (i.e., log-linear modeling) component to the full set of functions Π locally, acknowledging that one
function is missing.

4.3 Proposed Algorithm Overview

Here is a high-level review of our proposed CRC program:

1. Preprocess: The inputs are the lists L1, ..., Lk and associated covariates xc··(Lj) that come with the jth list,
j = 1, ..., k. The first pre-processing step is to generate the cross-classification table c of counts of each
observable capture pattern. The second pre-processing step is to identify covariates that are common across all
k covariates xc··(Lj) and merge them into a single set of covariates xc··.

2. Model the relative capture pattern frequencies as a function of the covariate space: Use a conditional
density estimation or regression technique to estimate the functions in Π∗. Evaluate these functions at each xi·
for all observed units i = 1, ..., nc to generate nc sets Π̂∗i .

3. Impute the missing cell: Fit parsimonious log-linear modelsMi to the estimates Π̂∗i . Use the fitted models to
impute the relative frequencies of the unobserved capture pattern {π(0, xi·)}i. Note that the log-linear model
selection may involve estimating the effective counts ni underlying each Π∗i .

1These obstacles make CRC an ideal topic for a Ph.D. dissertation: No matter how much progress we make, we will never arrive
at a tidy solution, leaving endless avenues of marginal utility for future work.
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4. Horvitz-Thompson population estimation: Estimate the detection function as in Equation 19 and compute
the Horvitz-Thompson estimator.

4.4 Timeline for Next Steps

Section 3.1 presented a list of research goals. The foundational result proposed by G1 was essentially completed in
Section 3.2. Goals G2 and G3 were more fully introduced in Sections 3.4 and 3.5. Our simulation examples throughout
provided a starting point for goal G4. We have not yet deeply explored goal G5, as we do not expect access to the data
for at least several months. Finally, goal G6 was discussed in Section 4.2.

We propose the following timeline for completion of tasks related to each of the goals:

Tomorrow: Replicate the log-linear model selection approach of Fienberg [14] for a simple three-list simulation
example. Modify the simulation so that no highest-order interaction exists – while including a respondent
fatigue effect – and verify that the proposed algorithm (Section 4.3) produces reasonable results (goals G2, G4).

Early September 2012: Implement a pseudo-hierarchical log-linear model by including a moderately informative
prior for the highest-level interaction term as discussed in Section 3.4 (goal G3). Test the accuracy of the new
confidence intervals by using simulations that involve second-order list interaction (goal G4).

October 2012: For a particular smoother Π̂∗, find a lower bound for the local effective counts (see Section 4.3) and
apply a pseudo-hierarchical log-linear model locally, using simulation to test the accuracy (goals G2, G3, G4).

January 2013: Complete goal G4.

April 2013: In terms of bias and variance, compare our estimator against existing approaches.

July 2013: Demonstrate our methods by combining a list of records from the 2010 Census, the 2010 Census Coverage
Measurement (CCM) survey, and the American Community Survey (ACS) (goal G5).

October 2013: Pursue goal G6 as far as possible.

December 2013: Dissertation defense.
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A Continuation of Section 3.5

To compare the performance of our algorithm performs is to compare it with the performance of an existing method,
we consider estimating the population size using a log-linear model globally, without taking Age into account. We
apply a saturated log-linear model globally for the simulation illustrated in Figure 1, as well as the variation on this
simulation that excludes the respondent fatigue effects. Figure 5 describes the results.
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Figure 5: The log-linear model applied globally behaves in a way that is remarkably similar to the performance of
our local log-linear approach near n = 2000. In the left panel, estimates are biased upwards by about 5%. After
eliminating respondent fatigue, the estimates are essentially unbiased (right panel). In addition, the mean and variance
of the estimates at N = 2000 do not differ dramatically from the local log-linear approach.
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