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Abstract

Phylogeny provides important information for evolutionary relationships and is use-
ful in applications. Bayesian phylogenetic inference developed quickly because of its
computational feasibility. However, the vague priors usually used in Bayesian phylo-
genetics do not capture knowledge available from non-genetic sources such as studies
of physiology and development. This thesis gives a practical way to elicit a biologist’s
prior beliefs about phylogeny.



1 Introduction

1.1 Phylogeny

A phylogeny, sometimes called evolutionary tree, “is a branching tree diagram showing the
course of evolution in a group of organisms” (Felsenstein, 1983, p. 246). It studies the
species relationships by analyzing and finding the time the species split from their most
recent common ancestors.

Phylogeny is of importance to many fundamental biological questions such as the evo-
lutionary history, the epidemiology of diseases (Huelsenbeck et al., 2001), the prediction of
gene functions (Olken, 2002), etc. Phylogenetic analysis is possibly the first step in any
DNA sequence study (Huelsenbeck et al., 2001). In practice, it has been used to determine
viral transmission events in a legal case (Metzker et al., 2002), and to identify the origins
of wildlife products and to monitor and protect wildlife (Baker and Palumbi, 1994; Baker
et al., 2000).

1.2 Notation

The following are copied from (Gascuel, 2005):

A graph is a pair G = (V, E), where V is a set of objects called vertices or nodes, and
E is a set of edges, that is, pairs of vertices. A path is a sequence (v0, v1, ..., vk) such that
for all i, (vi, vi+1) ∈ E. A cycle is a path as above with k > 2, v0 = vk and vi 6= vj for
0 ≤ i < k. A graph is connected if each pair of vertices, x, y ∈ V is connected by a path,
denoted pxy. A connected graph containing no cycles is a tree.

The degree of a vertex v, deg(v), is defined to be the number of edges containing v. In
a tree, any vertex v with deg(v) = 1 is called a leaf. Other vertices are called internal. In
phylogenetic trees, internal nodes have degree 3 or more.

A metric is a function with certain properties on unordered pairs from a set. Suppose
X is a set. The function d : X ∗X � R (the set of real numbers) is a metric if it satisfies:
1. d(x, y) ≥ 0 for all x, y, with equality if and only if x = y.
2. d(x, y) = d(y, x) for all x, y.
3. For all x, y and z, d(x, z) ≤ d(x, y) + d(y, z).

For the remainder of the proposal, I shall use xy in place of d(x, y).

Phylogenies usually have lengths assigned to each edge. Such lengths are referred to as
branch length.

For my purposes, I shall reserve the word topology to describe the shape of a tree con-
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sidering the leaf labels without regard to edge lengths. Different from that in mathematics,
topology includes the information not only the shape but also the leaf labels. Different leaf
labels on the same “shape” of a tree result different topologies. As shown in Figure 1, the
three trees have the same tree “shape” yet different tree topologies.

Figure 1: Three tree topologies with the same “shape”.

On the other hand, two trees that differ only on left-right order branching are counted
as the same tree. For example, the two trees in Figure 2 are considered the same, though
the left-right branchings of B and C are different.

Figure 2: Two trees that differ only on left-right order branching are counted as the same.

In evolutionary studies, phylogenies are drawn as branching trees deriving from a single
ancestral species. This species is known as the root of the tree (Gascuel, 2005). A tree with
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such a root is called a rooted tree and that without a root is called an unrooted tree. A
group of species that have a common ancestor is called a clade. A tree such that the degree
of each vertex is no more than 3 is a binary tree.

In phylogenetic trees, the directly observed species are the leaves; the internal nodes are
the common ancestors of the observed species and are not directly observed. Trees in most
of the current phylogeny studies are binary trees because the speciation happens when one
species splits into two and the simultaneous arising of several species is quite unlikely. Some
examples of phylogenetic trees can be found in Larget and Simon (1999) and Larget et al.
(2002).

1.3 Statistical Methods in Phylogeny

Many statistical methods have been used to study evolutionary relationships. Both the
neighbor joining (NJ) method (Saitou and Nei, 1987) and the unweighted pair grouping
method using arithmetic averages (UPGMA) (Sneath and Sokal, 1973, p 230-240) find the
best tree by iteratively combining pairs of neighbors. UPGMA assumes that the distance
matrix makes the tree a rooted one and combines the pair with minimum single branch
length. The NJ does not assume a rooted tree and combines the pair that minimizes the
total tree length (Gascuel, 2005). Both NJ and UPGMA are fast and feasible, yet tend to
have large errors when the divergence between species is large (Holder and Lewis, 2003). This
is because NJ and UPGMA require a distance matrix calculated from the sequences of the
species. This distance matrix is supposed to represent the evolutionary distances between
the species but that is hard to remain so when many changes occur on the sequences (Holder
and Lewis, 2003).

Tree searches in phylogenetics are performed using criteria such as minimum evolution,
parsimony and maximum likelihood (Holder and Lewis, 2003). First used by Kidd and
Sgaramalla-Zonta (Kidd and Sgaramella-Zonta, 1971), Minimum evolution (ME) methods
find the tree with shortest total branch length as the best phylogeny (Felsenstein, 2004).
Like NJ, it starts with a distance matrix and thus works well when the sequence divergence
is low (Holder and Lewis, 2003). In parsimony methods, an algorithm finds the tree with the
minimum number of mutations on gene sequences (Holder and Lewis, 2003; Larget et al.,
2005). Different from minimum evolution methods, which are distance-based, parsimony
methods put gene sequences onto a tree and count the number of mutations needed for
that tree. It is fast for data sets with hundreds of species yet “performs poorly if there is
substantial variation in branch lengths” (Holder and Lewis, 2003). Maximum likelihood (ML)
phylogeny is widely used and is very “appealing” (Holder and Lewis, 2003). First introduced
to phylogeny by Edwards and Cavalli-Sforza (1964), maximum likelihood was first applied
to molecular sequences by Neyman (1971). Later Felsenstein (1981) made it practical for
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“moderate numbers of sequences” (Felsenstein, 2004, p. 248). It is statistically consistent,
which means that as the number of characters calculated in the likelihood function increases,
the maximum likelihood estimator converges in probability to the true parameter (Gascuel,
2005). Yet it is also computationally intensive (Alfaro and Holder, 2006). Problems with
more than 100 species are “tedious” with ML (Holder and Lewis, 2003). The basic idea of ML
is to find the parameters θ̂ in the likelihood function L(θ) = P (D|θ) so that the likelihood
function is maximized. In ML phylogeny, the parameters θ are the tree topology, the branch
lengths, the sequence evolution model, and so on (Gascuel, 2005); the data are the molecular
information about the species, such as the DNA sequence. In a DNA sequence, there are
many different sites. In calculating the likelihood function, the ML makes an assumption that
different sites on a sequence evolve independently. This means that the likelihood function
of sequence A evolving to sequence B equals the product of the probability of all sites in A
evolving to the corresponding sites in B. This independence assumption effectively simplifies
the problem, but is not realistic (Gascuel, 2005). Another problem with ML phylogeny
is that defining a confidence interval for the tree picked by the ML is very difficult if not
impossible.

Starting in the last century, Bayesian inference of phylogeny (Sinsheimer et al., 1996;
Larget and Simon, 1999; Rannala and Yang, 1996) quickly developed (Alfaro and Holder,
2006; Huelsenbeck et al., 2001). The posterior sampling obtained with Bayesian phylogenet-
ics gives ways to characterize the uncertainties of topologies and branch lengths (Alfaro and
Holder, 2006).

As the two problems in the Bayesian analysis, the explanation of the posterior distribu-
tions and the use of proper prior distributions are the foci of Bayesian Phylogenetics (Alfaro
and Holder, 2006). The former concerns the biological explanation of the tree samplings
obtained from the posterior and the characterization of the uncertainties. The latter focuses
on finding a way to express and to use proper priors in the Bayesian phylogeny. This thesis
studies both problems.

1.4 Priors in Bayesian Phylogenetic

Priors used in Bayesian phylogenetic inference include the priors for the topology, for the
branch lengths, and for any other related parameters (Alfaro and Holder, 2006).

In most of the applications of Bayesian phylogenetics, the priors on topology are set to
be uniform, which means all trees are equally likely (Huelsenbeck et al., 2001). This vague
prior obviously does not reflect knowledge about species relationships as almost all species
have been studied by biologists. A lot of information is lost in using the vague prior.

Some initial efforts have been made using informative priors on the topologies. The idea
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of using the posterior probability of a first study as the prior for a second study is “not
practical” due to the computer memory limit and the lack of precise probability density
(Alfaro and Holder, 2006). Putting a prior distribution on a subset of possible tree topologies
instead of all tree topologies is another option. For example, Larget et al. (2005) tried to put
a uniform prior on a group of “biologically plausible trees” instead of on all possible trees
(Larget et al., 2002) and got better results.

Though not the primary focus of phylogenetic analysis, branch lengths are closely related
to the topology (Yang and Rannala, 2005; Alfaro and Holder, 2006). Like maximum likeli-
hood methods, nearly all Bayesian approaches “treat each branch length as an independent
parameter” (Alfaro and Holder, 2006). This is problematical. For example, a set of branch
lengths treated as independent might not meet the requirement of a rooted tree, where the
distances of all leaves to the root are equal (Alfaro and Holder, 2006).

The focus of this thesis is to find a way to express effectively a biologist’s opinion on
the evolutionary history of the species involved in a study. This means having a proper
informative joint prior on the topology and branch lengths.

2 Proposed Work

2.1 Elicitation

“Elicitation is the process of formulating a person’s knowledge and beliefs about one or more
uncertain quantities into a (joint) probability distribution for those quantities” (Garthwaite
et al., 2005, p680). Coming in different formats, elicitation has been applied to medicine,
the nuclear industry, agriculture, and business, etc. (O’Hagan et al., 2006). Dealing with
tree spaces, the main aim of this thesis is to elicit an expert’s knowledge on phylogeny to
provide better priors in order to improve Bayesian inference of phylogeny.

2.2 Tree Topology

2.2.1 Four Point Condition

The four Point Condition is the condition that for every four (not necessarily distinct)
elements w, x, y, z ∈ T , where T is the leaf set, two of the three terms in the following list
are equal and greater than or equal to the third: wx + yz, wy + xz, wz + xy, where wx
represents the total length of the unique path between w and z in T and similarly with yz,
xz and xy (Gascuel, 2005). Buneman (1971) proved that the four point condition is the
necessary and sufficient condition for a metric to be realized by a (unrooted) tree.
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2.2.2 Ultrametrics and Three Point Condition

A metric (X,d) is said to satisfy the Three Point Condition (3PC) if for any three leaves
x, y and z in X, two of xy, xz and yz are equal and no less than the third. The three
point condition is also called the ultrametric inequality. It is a necessary and sufficient
condition for a metric to be realized by a rooted tree (Barthelemy and Guenoche, 1991;
Gascuel, 2005). In other words, for any tree metric that satisfies the 3PC, there is a unique
tree (with specific branch lengths) and vice versa. Such a metric is called an ultrametric.

2.3 Distribution Over Tree Space

2.3.1 Joint Distribution and Conditional Distribution

As we are interested in the evolutionary relationship in a time scale, our work uses rooted
trees to represent phylogenies. So at any time, the tree we have should meet the three
point condition (3PC). The 3PC gives the unique correspondence between a rooted tree
and an ultrametric. The unweighted pair grouping method using arithmetic averages (UP-
GMA) (Sneath and Sokal, 1973) can be easily applied to reconstruct a rooted tree from
an ultrametric. So to describe the distribution on tree space, with characters of both the
tree topology and the branch lengths, all we care about is the joint distribution of all the
distances between all species. A set of distances satisfying the three point condition specifies
a unique tree topology with specific branch lengths. Those sets of distances not satisfying
the three point condition have probability of 0 in the tree space.

The joint distribution of the distances between species can be factored into conditional
distributions. For example, suppose we have a set of leaves named A, B, C, D and E and
the tree is recorded as Tree ABCDE. The distance between species A and B is recorded as
AB and similarly with any pair of species. Then,

P (TreeABCDE) (1)

= P (AB, AC, BC, AD,BD, CD, AE, BE,CE, DE) (2)

= P (AB)P (AC, BC|AB)P (AD, BD, CD|AB, AC, BC)

P (AE, BE, CE, DE|AB, AC, BC, AD, BD, CD) (3)

= P (AB)P (AC, BC|TreeAB)P (AD, BD, CD|TreeABC)

P (AE, BE, CE, DE|TreeABCD) (4)

In general, starting with a probability distribution on trees with n species (satisfying the
3PC), one must specify the joint distribution of the distance between a (n + 1)st species and
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each of the original n (satisfying the 3PC) in order to get a probability distribution on trees
with (n+1) species.

2.3.2 Introducing a New Species

The distribution of new trees can be obtained by expanding the distribution of existing
trees. For example, for any species A, B and C, if the distribution of the branch length of
AB is known and we want to add a new species called C. Let’s say that AC is no bigger
than BC. So there are only two possibilities: AC < BC and AC = BC. If AC < BC,
then by 3PC, BC = AB, then P (AC, BC|AB) = P (AC|AB); if AC = BC, obviously
P (AC, BC|AB) = P (AC|AB). Overall, we have

P (AB, AC, BC) (5)

= P (AC, BC|AB)P (AB) (6)

= P (min(AC, BC)|AB)P (AB) (7)

= P (AC|AB)P (AB) (8)

In general, with the requirements of the three point condition, when the distribution of
an n-species tree (with species A1, A2, ..., Ai, ..., An ) is known and we would like to add a
new species An+1, the distribution of the minimum distance among the branches of AiAn+1,
where i ∈ 1...n, would define the distribution of the new tree. For example, if the expert
gives the minimum as a path between As and An+1, then for any other species j (As 6= Aj),
we know the distance of AsAj from the previous n-species tree, and the distance of AsAn+1 as
new information. By the three point condition, AjAn+1 equals to AsAj. So the distribution
of the minimum of the newly added branches specifies the distribution of the whole tree.

P (TreeA1A2...An+1) (9)

= P (A1A2, A1A3, ..., A1An, A2A3, ...An−1An, A1An+1, A2An+1, ..., AnAn+1) (10)

= P (A1An+1, A2An+1, ..., AnAn+1|A1A2, A1A3, ..., A1An, A2A3, ...An−1An)

P (A1A2, A1A3, ..., A1An, A2A3, ...An−1An) (11)

= P (min(A1An+1, A2An+1, ..., AnAn+1)|A1A2, A1A3, ..., A1An, A2A3, ...An−1An)

P (A1A2, A1A3, ..., A1An, A2A3, ...An−1An) (12)

= P (AsAn+1|TreeA1A2A3...An)P (TreeA1A2...An) (13)

7



2.4 Distribution of A Single Branch Length

An expert would have a possible range for the time at which two species have a most recent
common ancestor. So using a Beta distribution to represent the probability of such an event
is a good choice. This requires the expert give a range plus two quantiles. I recommend
using the 33% quantile and 67% quantile plus the lower and the upper bound of the range
to specify a shifted and scaled Beta distribution.

The elicitation is done by asking about the possible range, and two quantiles of the
distance between A and B. For example, a biologist might think that the time A and B
split falls into the range of 40 - 90 million years ago, with a 33% quantile as 50 and 67%
quantile as 70. This information gives us a shifted and scaled Beta distribution as P (AB) ∼
40 + 50 ∗ Beta(0.57, 0.82). Parameters of α and β used in the Beta(α, β) distribution are
solved numerically.

In many other cases, an expert would have an idea of the relationship based on the
current tree topology regardless of the branch length. For example, conditional on the
current topology of ABC as shown in Figure 3, an expert thinks that the new species D
relates most closely to the most recent common ancestor of A and C. As shown in Figure
3, the length of the branch on which AC are not separate is a-b. Consider the time D splits
from AC has a lower and upper bound of 1

4
(a− b) and 4

5
(a− b) with 33% and 67% quantiles

as 1
3
(a− b) and 2

3
(a− b). This gives a tree ABCD as shown in Figure 4.

Figure 3: An example of Tree ABC: dAB = a, dAC = b.
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Figure 4: An example of Tree ABCD: dAB = a, dAC = b, dAD = c.

2.5 Proposed Elicitation

2.5.1 New Species Relates to a Single Species

When adding more species, always consider the question that “Among the previous species,
is there one which is the closest to the new incoming one?” If that question can be answered
with a particular one species, then this defines a specific topology. As mentioned in Equation
13, if the distribution of the length of the new shortest distance is set, the distribution of
the new tree is set as well.

2.5.2 New Species Relates to a Group of Species

If the question “Among the previous species, is there one which is the closest to the new
incoming one?” can be answered as “several of those previous species are equally related to
the incoming species as a clade”, say, As1 , As2 and As3 . Then we know that An+1 has a most
recent common ancestor with the most recent common ancestor of As1 , As2 and As3 . For
any Aj 6= As1 , As2 , As3 , by the three point condition, AjAn+1 = As1Aj = As2Aj = As3Aj.
Equation 13 still applies.

When the species As1 , As2 and As3 are considered equally related to the incoming species,
yet these species do not compose a clade, the species As1 , As2 and As3 can be treated as if
they are several groups, as in section 2.5.3.
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2.5.3 New Species Relates to Several Groups of Species with Different Proba-
bilities

Much of the time, an expert wouldn’t be able to specify a single species or a single group of
species for a new species to connect to. More often, she would say something like “I believe
there is a 20% chance the new species is connected to group ABD, and 50% of the chance it
is directly related to group AB, and 30% chance it’s most closely related to the species E”.
In that case, the elicitation will be done in a hierarchical manner: each possibility will be
handled separately and each gives a distribution, and the overall distribution is the mixture
of these distributions with corresponding probabilities.

2.5.4 Elicit the Branch Length

The question “Among the previous species, is there one which is the closest to the new
incoming one?” elicits knowledge about the topology. Questions like “Condition on the
current topology and consider the length of the branch to which the new species can be added
is of length “l”, please give us the possible range of the time you think the split happens.”
together with questions like “What’s the 33% and 67% of the quantile the time of the split
happens.” will specify the parameters α and β used in the Beta distribution Beta(α, β) to
describe the distribution of the branch lengths. The distribution will be shifted and scaled
by the previous branch lengths. The joint distribution of these previous lengths can be found
in the distributions of the existing trees, as explained in Section 3.

3 Example and Preliminary Results

3.1 Trees Involving Only Two Species

Consider starting from a relationship involving only two species: A and B. If the expert tells
us that the time that A and B separate from each other falls into the range of 80-100 million
years ago, the 33% quantile of that time is 90 million years ago and the 67% quantile is 95
million years ago, then we know that P (AB) ∼ 80+20 ∗Beta(1.94, 1.26), which means that

P (treeAB) = P (AB = a)

=
1

B(1.94, 1.26)

(
a− 80

20

)0.94 (
1− a− 80

20

)0.26

(14)

where 80 < a < 100. This gives the topology in Figure 5.
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Figure 5: An example of Tree AB: dAB = a.

3.2 Adding the Third Species

For the question “Among the previous species, is there one which is the closest to the new
incoming one?”, let’s say the expert chooses species A. And the range is given as a

4
to 4a

5
with

a 33% quantile as a
3

and 67% as a
2
. Then the topology would be the one in Figure 3. The

conditional distribution P (AC, BC|AB = a) = P (AC|AB = a) = a
4
+ 11a

20
∗Beta(0.65, 1.25).

So P (AC = b|AB = a) = 1
B(0.65,1.25)

(
b−a

4
11a
20

)−0.35 (
1− b−a

4
11a
20

)0.25

, where a
4

< b < 4a
5
. The

distribution for the tree ABC is

P (treeABC) = P (AC, BC|AB = a)P (AB = a)

= P (AC = b|AB = a)P (AB = a)

=
1

B(0.65, 1.25)

(
b− a

4
11a
20

)−0.35 (
1−

b− a
4

11a
20

)0.25

∗ 1

B(1.94, 1.26)

(
a− 80

20

)0.94 (
1− a− 80

20

)0.26

where 80 < a < 100 and a
4

< b < 4a
5
.
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3.3 Adding the Fourth Species

Condition on the current tree of A, B and C, the expert thinks that species D has a 50%
chance being most closely related to group AC with a range of b+ (a−b)

4
to b+ a−b

2
and a 33%

and 67% quantiles of b + a−b
3

and b + 5(a−b)
12

, plus a 50% chance of being most closely related
to B directly with a range of a

2
to 7a

8
and 33% and 67% quantiles of 5a

8
and 6a

8
. The former

gives a a−b
4

+ a−b
4
∗Beta(0.91, 0.91) and a topology in Figure 4.

P (AD = c|treeABC) =
1

B(0.91, 0.91)

(
c− b− a−b

4
a−b
4

)−0.19 (
1−

c− b− a−b
4

a−b
4

)−0.19

(15)

where b + (a−b)
4

< c < b + (a−b)
2

.

The latter gives a b
2

+ 3∗b
8

Beta(1.14, 1.14) and a topology in Figure 6.

P (BD = d|treeABC) =
1

B(1.14, 1.14)

(
d− a

2
3a
8

)0.14 (
1−

d− a
2

3a
8

)0.14

(16)

where a
2

< d < 7a
8

Figure 6: An example of Tree ABCD: dAB = a, dAC = b, dBD = d.

The overall conditional distribution is

P (AD, BD, CD|AB, AC, BC) = 0.5 ∗ P (AD|AB, AC, BC) + 0.5 ∗ P (BD|AB, AC, BC)
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The distribution of tree ABCD is:

P (treeABCD) = 0.5P (AD|treeABC)P (treeABC) + 0.5P (BD|treeABC)P (treeABC)

= 0.5 ∗ (
1

B(0.91, 0.91)

(
c− b− a−b

4
a−b
4

)−0.19 (
1−

c− b− a−b
4

a−b
4

)−0.19

+
1

B(1.14, 1.14)

(
d− a

2
3a
8

)0.14

∗
(

1−
d− a

2
3a
8

)0.14

)

∗ 1

B(0.65, 1.25)

(
b− a

4
11a
20

)−0.35 (
1−

b− a
4

11a
20

)0.25

∗ 1

B(1.94, 1.26)

(
a− 80

20

)0.94 (
1− a− 80

20

)0.26

where 80 < a < 100, a
4

< b < 4a
5
, b + (a−b)

4
< c < b + (a−b)

2
, and a

2
< d < 7a

8
.

4 Discussion and Future Work

4.1 Discussion

This elicitation is based on conditional distribution of previous trees. The size of tree space
increases exponentially when the number of species increase. With n species, the number of
binary rooted trees is (2n− 3)!! = (2n− 3) ∗ (2n− 5) ∗ ... ∗ ∗3 ∗ 1 (Schroder, 1870). So the
elicitation proposed here works well when many trees have a probability of 0 and thus only
a small number of trees need to be studied. When the number of the trees to be studied is
large, the system becomes unwieldy.

The zero probability priors put on many tree topologies makes it impossible for any
of those topologies to show in the posterior. So the choice of which topologies have zero
probability is vital in the elicitation and its application in Bayesian phylogeny.

If the biologist is very sure that some species should exist as a clade, we can use this fact
to help to handle a larger number of species. For example, for a study on species A, B, C,
D, E, and F, if the biologist thinks that species A, B and C exist as a clade, we can call
the clade including A, B and C “Cl”. Do elicitation on Cl, D, E, and F as if Cl is a general
species. Let’s say this 4 species elicitation gives a tree shown on the left of Figure 7. The
clade “Cl” splits with species D at time “s”. Then focus on the species within the clade and
do an elicitation involving the three species A, B, and C. The length from the root to the
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present time “r” is no bigger than the length of “s”. Overall, the whole tree on the six species
is shown on the right of Figure 7. Similarly, if two or more clades exist, each of the clade
can be considered as a group in the first level elicitation and more detailed elicitation can
be made within each clade on the second level elicitation. This iterative elicitation reduces
the complexity of the elicitation and makes it possible to handle larger number of species.

Figure 7: When some species exist as a clade, the iterative elicitation can help to handle
larger number of species.

The branch length of the very first pair of species plays an important role in the whole
elicitation. As can be seen in section 3, once the distribution of the first branch length
is set, all other branch lengths are considered proportional to it. In our example, once the
distribution of branch length AB, a, is set, other branch lengths, b, c and d, are considered
to be proportional to a.

4.2 Future Work

A program needs to be written to help form a quick realization of the elicitation. It will be
done in R because of the convenience of the many existing statistical packages in R.

The program will be tested on a biologist. A feasible maximal number of species will be
explored. As mentioned before, the system complexity increases greatly as the number of
species increases. In practice, when the number of species to study is too big, the elicitation
method proposed here would be very hard to carry out. I am interested in gaining experience
about how many species can practically be used in an elicitation.

Also as presented, this elicitation method depends on the order in which species are
introduced. To what extent do the answers vary depending on this order? One way to check
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this is to generate trees from the distributions obtained from the elicitation and then check
with the biologist to see which distribution represent the best of his belief.

The elicitation results will be incorporated into MCMC and Bayesian phylogeny.

What’s more, it would be interesting to use this method to summarize the output from
an MCMC. As we can get probability information on topology and branch length from a
biologist, we can find out these from the posterior sample. Thus the elicitation made with
the help of a biologist can be used in the same way to summarize the information in the
posterior. For example, we can get the range and quantiles of the time that species A and B
separate from the MCMC sampling. This gives us the shifted and scaled Beta distribution
for tree AB, as described in section 3.1.

In modern phylogeny, the molecular information about the species are the data used in
the analysis. The likelihood implied by the data can be studied by comparing the frequencies
of the same clades in the prior and the posterior.

“Multidivtime” (Thorne, 2003) and “BEAST” (Drummond and Rambaut, 2006) are two
programs focusing on getting the branch length when the topologies are known. For example,
“BEAST” takes uniform, normal, lognormal, exponential, or gamma priors (Drummond
et al., 2007) and then gives the posterior distribution. Using the elicitation proposed in
this proposal, we can get the elicited priors on the branch length conditioned on a specific
topology. The prior in “BEAST” (or “Multidivtime”) and that obtained through elicitation
lead to different branch length posteriors. It will be interesting to see the differences in real
data settings and check the effect of elicited priors on the posteriors.

Finally, the elicitation discussed above is based on a time scale. How to relax the molecu-
lar clock assumption and get trees with edge lengths on the expected number of substitutions
scale is another problem to study.
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