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1 Introduction/Summary

In this thesis, I am going to investigate the properties of the short time Fourier transform
(STFT) with overlapping windows and its uses in detecting local (in time) signals. The
STFT applies the Fourier transform within a sliding window and is useful for analyzing local
features of time series data. Applied to a white noise time series, the STFT results in a
multivariate complex-valued stationary time series with cross-covariance functions derived
here. This series can be well approximated by autoregressive models with a small order.
Using such STFT properties, I aim to develop methods to detect local signals.

2 Previous Work

A large number of the Fourier transform applications can be found with partitioned, non-
overlapping windows which can be seen as partitioned discrete Fourier transform (DFT).
Some authors call this the STFT (Shumway and Stoffer 2006). Percival and Walden (1993)
mention a variety of methods to smooth neighboring DFT coefficients, for example.

However, I have not found any research paper that deals with the STFT with an over-
lapping window that moves one data point at a time.

The wavelet transform, which does not segment data, is also widely used for studying
local signals, but is currently beyond the scope of this thesis.

3 DFT and STFT

Throughout this document, suppose we have a univariate (possibly complex-valued) time
series {Xt}M−1

t=0 of length M .
The discrete Fourier transform (DFT) is given by

Ak =
1√
M

M−1
∑

j=0

Xjω
−jk
M , k = 0, 1, . . . , M − 1

where
ωM = exp(i2π/M).
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When the time series is real-valued, we focus on the range k = 0, . . . , bM/2c because the
ignored range is just the complex conjugate of the focused range. We can recover the original
time series by applying the inverse DFT to the DFT coefficients, where the inverse DFT is
given by

Xj =
1√
M

M−1
∑

k=0

Akω
jk
M , j = 0, 1, . . . , M − 1

The short time Fourier transform (STFT) is computed by applying the DFT to a con-
tinuous subset of the data with N ≤ M data points. We call this range the window. Then
we move the starting position of the window over the appropriate index range;

At
k =

1√
N

N−1
∑

j=0

Xj+t−N+1ω
−jk
N , k = 0, 1, . . . , N − 1;

t = N − 1, . . . , M − 1.

Now we have a complex-valued array A of size N -by-(M − N + 1). {At} can be seen as
an N -dimensional complex-valued time series of length (M − N + 1). We think of the time
index t in the horizontal direction and k in the vertical direction of the array A.

3.1 STFT on a White Noise Time Series

When the original time series Xt is a white noise time series, its STFT will form a multivariate
time series of interest. A real-valued time series Xt is called white noise, if

E[Xt] = 0 ∀t, Var[Xt] = σ2 (constant) ∀t, and Cov[Xi, Xj] = 0 ∀i 6= j.

Since I have not found any universally accepted definition of complex-valued white noise,
I just define it here. We assume E[Re(Xt)] = E[Im(Xt)] = 0 and denote Var[Re(Xt)] = σRR,
Var[Im(Xt)] = σII , E[Re(Xt)Im(Xt)] = σRI , E[(Re(Xt))

2(Im(Xt))
2] = µR2I2,

E[(Re(Xt))
4] = µR4 , E[(Im(Xt))

4] = µI4 ∀t and Cov[Xi, Xj] = 0 ∀i 6= j, which means
Cov[Re(Xi),Re(Xj)] = Cov[Im(Xi),Im(Xj)] = Cov[Re(Xi),Im(Xj)] = Cov[Im(Xi),Re(Xj)] =
0.

There are four ways of looking at one k (one row) of the STFT.
(1) complex-valued {At

k}t,
(2) the real part {Re(At

k)}t,
(3) the imaginary part {Im(At

k)}t, and
(4) the squared modulus {|At

k|2}t.
Note that each of these time series is stationary. We have found the autocovariance

function, cross-covariance function (between different k’s), and the spectrum for each of the
four time series. We note (1) is a univariate complex-valued moving average process; (2)
and (3) are the widely-used univariate real-valued moving average processes (Brockwell and
Davis 1991) with order N − 1; and (4) is the sum of the squared real part and the squared
imaginary part, and therefore is univariate real-valued. It does not have a universal name.
We will refer to it as the squared modulus time series.

Another time series is the phase of At
k, or the angle between the positive real-axis of the

complex plane and the complex value, angle(At
k) = Arg(At

k) = atan2(Im(At
k),Re(At

k)). This
is a nonlinear time series. Known properties are: 1) the marginal distribution is uniform on
[−π, π] when Xt is Gaussian; and 2) the cross-covariance (between two different k’s) functions
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are zero at lags greater than or equal to the window size N . The bivariate probability
density function of (angle(At

k), angle(At+h
` )) is hard to find analytically, because it involves

transforming 4 random variables with non-independence structure. Later we will look at
one example of simulated data and its STFT angle time series in Figure 2, where we clearly
see nonlinearity. In such a case, the cross-covariance functions are no longer appropriate
measures for the dependence of nonlinear time series (Fan and Yao 2003). One problem is
that the time series angle(At

k) “jumps” near the boundaries. For example, if At
k = −1 +

0.01i and At+1
k = −1 − 0.01i, then angle(At

k) = 3.131593 and angle(At+1
k ) = −3.131593 6=

Arg(1+0.01i)+π = 3.151592 = −3.131593+2π. This phenomenon makes it hard to utilize
this angle time series for detecting local signals, while other series (1)-(4) can do the task,
as shown later.

3.2 Theoretical Properties

Let CCFX,Y (h) denote the cross-covariance function of two time series Xt and Yt at lag h.
For each of the four types of time series, CCFX,Y (h) = 0 for |h| ≥ N . Also, E[At

k] = 0 and
E[|At

k|2] = σRR + σII ∀t and k. The autocovariance function of a time series is the CCF of
itself, so we only compute the CCF. For 0 ≤ h < N , where ∗ denotes the complex conjugate,

with letting ck(m) = cos

(

2πkm

N

)

and sk(m) = sin

(

2πkm

N

)

CCFAk,A`
(h) = E[(At+h

k − E[At+h
k ])(At

` − E[At
`])

∗] =
σRR + σII

N

N−h−1
∑

m=0

ω
−km+`(m+h)
N

CCFRe(Ak),Re(A`)(h) =
1

N

[

σRR

N−h−1
∑

m=0

ck(m)c`(m + h) + σII

N−h−1
∑

m=0

sk(m)s`(m + h)

+ σRI

N−h−1
∑

m=0

ck(m)s`(m + h) + σRI

N−h−1
∑

m=0

sk(m)c`(m + h)

]

CCFIm(Ak),Im(A`)(h) =
1

N

[

σRR

N−h−1
∑

m=0

sk(m)s`(m + h) + σII

N−h−1
∑

m=0

ck(m)c`(m + h)

−σRI

N−h−1
∑

m=0

ck(m)s`(m + h) − σRI

N−h−1
∑

m=0

sk(m)c`(m + h)

]

CCFRe(Ak),Im(A`)(h) =
1

N

[

−σRR

N−h−1
∑

m=0

ck(m)s`(m + h) + σII

N−h−1
∑

m=0

sk(m)c`(m + h)

+σRI

N−h−1
∑

m=0

ck(m)c`(m + h) − σRI

N−h−1
∑

m=0

sk(m)s`(m + h)

]

CCFIm(Ak),Re(A`)(h) =
1

N

[

−σRR

N−h−1
∑

m=0

sk(m)c`(m + h) + σII

N−h−1
∑

m=0

ck(m)s`(m + h)

+σRI

N−h−1
∑

m=0

ck(m)c`(m + h) − σRI

N−h−1
∑

m=0

sk(m)s`(m + h)

]
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CCF|Ak|2,|A`|2(h) = −(σRR + σII)
2 +

1

N2
[(N − h)(µR4 + µI4 + 2µR2I2)

+(N2 − N + h)((σRR)2 + (σII)
2 + 2σRRσII)

+4(σRI)
2

N−h−1
∑

p=0

N−h−1
∑

q=0

sk(p − q)s`(q − p)

+4µR2I2

N−h−1
∑

p=0

N−h−1
∑

q=0

sk(p − q)s`(p − q)

+2((σRR)2 + (σII)
2 + 2(σRI)

2)
N−h−1
∑

p=0,p6=q

N−h−1
∑

q=0

ck(p − q)c`(p − q)

]

These hold for both k ≤ ` and k ≥ ` and for any Gaussian or non-Gaussian input, as
long as the moments up to the fourth are the same. For a real-valued time series, we can let
σII = σRI = µI4 = µR2I2 = 0. We can also compute the spectral density of a univariate time
series Xt with f(ν) =

∑∞
h=−∞ CCFx,x(h)e−i2πνh, and the cross spectrum between two series

Xt and Yt, fxy(ν) =
∑∞

h=−∞ CCFx,y(h)e−i2πνh for −0.5 ≤ ν ≤ 0.5.

3.3 Approximation by Autoregressive Models

When we know the theoretical autocovariance function of a stationary time series, we can also
compute the partial autocorrelation function (PACF) with the Durbin-Levinson algorithm.
It is known that an autoregressive process with order p (AR(p)) has PACF exactly equal to
zero at lags greater than p. It can be shown that each of the three real-valued time series
{Re(At

k)}t, {Im(At
k)}t, and {|At

k|2}t has PACF very close to zero after a few lags for any k
and for any window size N . This indicates that we can approximate these time series with
AR(p) with relatively small p, possibly p=1.

As mentioned earlier, the two time series {Re(At
k)}t and {Im(At

k)}t are moving average
processes with order N − 1. It can be shown that each time series is equivalent to a seasonal
autoregressive moving average model SARMA(1, 0)×(0, 1). The conditions under which
such model equivalence holds are under investigation as well.

3.4 An Example

Here we look at the STFT of a generated Gaussian white noise time series. Figure 1 shows a
complex-valued Gaussian white noise time series of length 50 (with E[Re(Xt)] = E[Im(Xt)] =
0, V ar[Re(Xt)] = V ar[Im(Xt)] = 1, and E[Re(Xt)Im(Xt)] = 0.5), and the squared modulus,
the real and imaginary parts of the resulting STFT with window size N = 10 (and thus
k = 0, . . . , 9). As expected, it is hard to visually see any pattern in the STFT, except that
neighboring values are often similar.

Figure 2 shows two time series angle(At
2) and angle(At

3) and their one- and two-step
functions. The two time series are bounded on [−π, π] and show “jumps” as we discussed
earlier. The four scatter plots are 1) angle(At−1

2 ) against angle(At
2), 2) angle(At−2

2 ) against
angle(At

2), 3) angle(At−1
3 ) against angle(At

2), and 4) angle(At−1
3 ) against angle(At

2). They
clearly show nonlinearity and indicate that the cross-covariance functions are not appropriate
measures for the dependence of these nonlinear time series.
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4 STFT on a Simple Local Signal

In this section, we examine the STFT of data that contains a sinusoidal function and discuss
the detection of such functions. The traditional DFT may not detect the presence of local
signals while the STFT can carry out the task better.

4.1 On A Simple Global Signal Without Noise

Suppose we have a complex-valued time series Yt of length M with real-valued amplitudes
A and B, the number of cycles K (not necessarily an integer) and real-valued phases φA and
φB, where

Yt = A cos

(

2πKt

M
+ φA

)

+ iB cos

(

2πKt

M
+ φB

)

for t = 0, 1, . . . , M − 1.

Let us call such signal with the same sinusoidal form throughout the time a global signal,
(global in time) as opposed to a local signal (local in time) that will be seen in the next
section. Letting k∗ = the number of cycles within the STFT window (suppose this is an
integer and k∗ ≤ N/2), we have explicit forms of the resulting STFT, denoted by Gt

k instead
of At

k, for t = N − 1, . . . , M − 1,

Gt
k∗ =

A
√

N

2
exp

(

i

(

φA +
2πk∗

N
(t − N + 1)

))

+
iB

√
N

2
exp

(

i

(

φB +
2πk∗

N
(t − N + 1)

))

=

[

A
√

N

2
cos

(

φA +
2πk∗

N
(t − N + 1)

)

+
−B

√
N

2
sin

(

φB +
2πk∗

N
(t − N + 1)

)

]

+i

[

A
√

N

2
sin

(

φA +
2πk∗

N
(t − N + 1)

)

+
B
√

N

2
cos

(

φB +
2πk∗

N
(t − N + 1)

)

]

|Gt
k∗|2 =

N(A2 + B2)

4
+

ABN

2
sin(φA − φB)

Gt
k∗∗ =

[

A
√

N

2
cos

(

φA +
2πk∗

N
(t − N + 1)

)

+
B
√

N

2
sin

(

φB +
2πk∗

N
(t − N + 1)

)

]

+i

[

−A
√

N

2
sin

(

φA +
2πk∗

N
(t − N + 1)

)

+
B
√

N

2
cos

(

φB +
2πk∗

N
(t − N + 1)

)

]

|Gt
k∗∗|2 =

N(A2 + B2)

4
+

−ABN

2
sin(φA − φB)

Gt
k equals to 0 for all t at any k other than k∗ and k∗∗ = N − k∗. If k∗ is not an integer, we

will have a phenomenon called “leakage” from difference between the signal’s frequency and
the sampling frequency, which results in non-zero STFT at other k’s than k∗ and k∗∗ (Cristi
2004).

Sliding the window is the same as applying the DFT to the same signal with the phases
φA and φB changing. Perhaps the two squared modulus time series staying constant as a
function of time is intuitive because the squared modulus of the DFT measures the amplitude
of the signal and ignores the phases. In contrast, the real-part and imaginary part time series
at each of k∗ and k∗∗ form sinusoidal signal outputs as the STFT window moves along.
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4.2 On A Simple Local Signal Without Noise

Unlike global signals, local signals appear only at parts of the data between the starting point
S and the ending point E (0 < S < E < M − 1). We assume the signal value to be zero
where the signal is not present. Such a signal can be obtained by applying an appropriate
indicator function to the above global signal Yt for t = 0, 1, . . . , M − 1;

Xt = I(S≤t≤E) · Yt = I(S≤t≤E) ·
[

A cos

(

2πKt

M
+ φA

)

+ iB cos

(

2πKt

M
+ φB

)]

This representation of a simple local function Xt has seven parameters; amplitudes A
and B, the number of cycles K, phases φA and φB, starting point S, and ending point E.

When applied to the zero-valued region at the beginning, the resulting STFT is zero at
all the k’s for t = N − 1, . . . , S − 1, and also at the ending; for t = E + N, . . . , M − 1.

When the STFT window is only on the local signal, for S∗ ≤ t ≤ E, where S∗ = S+N−1,
the STFT At

k is exactly equal to the STFT Gt
k applied to the global signal Yt; sinusoidal

signal outputs at k = k∗ and k∗∗, and zero at any other k.
Now, the STFT gets more complicated when the window covers both the zero-valued

region at the beginning and the local signal; for S ≤ t < S∗. The STFT results in non-zero at
other k’s as well. This phenomenon is called “ringing” (Percival and Walden 1993). Ringing
occurs when the DFT is applied to a region with discontinuity, which in this particular case
is the change from the zero constant to the periodic function. For any k and 1 ≤ d ≤ N − 1,

AS∗−d
k = GS∗−d

k − 1√
N

d−1
∑

j=0

YS−d+jω
−jk
N

Similarly, when the window covers both the end of the local signal and the following zero-
valued region (for E < t ≤ E + N − 1),

AE+d
k = GE+d

k − 1√
N

d−1
∑

j=0

YE+d−jω
−(N−1−j)k
N

When N/k∗ is an integer, simpler expressions exist at k∗ (and k∗∗) and various time
points. For j = 0, 1, . . . , k∗,

A
S∗−(N/k∗)j
k∗ =

(

1 − j

k∗

)

AS∗

k∗ =

(

1 − j

k∗

)

GS∗

k∗

A
E+(N/k∗)j
k∗ =

(

1 − j

k∗

)

AE
k∗ =

(

1 − j

k∗

)

GE
k∗

4.3 An Example

We provide a simple example to illustrate how the STFT works on a local signal. The time
series {Xt}49

t=0 in Figure 3 consists of zeros at the beginning and at the end, and a cosine
function of length 20 with periodicity 4 and amplitude 5 in the middle from t = 15 to t = 34.
This local signal can be described with the representation in Section 4.1 with M = 50, A = 5,
B = 0, K = 10, φA = φB = 0, S = 15, and E = 34.

We use a window size N = 10 that results in k = 0, . . . , 9. The k that matches the
signal’s frequency is k∗ = 2 (and thus k∗∗ = 8). We examine the STFT in three paragraphs
below.
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When the STFT window is on the zero valued region at the beginning and at the end
(for t = 9, . . . , 14, 44, . . . , 49), the complex-valued STFT is zero at all the k’s.

When the STFT window is only on the cosine function (for t = 24, . . . , 34), the STFT
behaves exactly the same way as it does for a global signal: the squared modulus STFT is con-
stant at k = 2 and 8 zero at all other k’s over the region |At|2 = (0, 0, 62.5, 0, 0, 0, 0, 0, 62.5, 0),
and the real and imaginary STFT produce sinusoidal signal outputs at k = 2 and 8, and
equal to zero at all other k’s.

When the STFT window is on both a zero-valued region and the local cosine function
(for t = 15, . . . , 23, 35, . . . , 43), we have 0 ≤ |At

2| ≤ 62.5, and the more the window covers
the cosine function, the higher the squared modulus is. As given by the simple expressions,
A19

2 = 3.952847 − 0i = A24
2 /2 = (7.905694 − 0i)/2 and A39

2 = 3.952847 − 0i = A34
2 /2 =

(7.905694 − 0i)/2. In general, the expression for the resulting STFT in these regions does
not simplify because of the ringing phenomenon.

4.4 The Linearity of DFT and STFT

Here we mention an important property of the DFT and STFT, that is, they are a linear
function which means that the sum of the DFT (or STFT) of data Xt and the DFT (or
STFT) of data Yt equals to the DFT (or STFT) of Xt + Yt. This holds for the complex-
valued time series {At

k}t (and therefore also for {Re(At
k)}t and {Im(At

k)}t), but not for the
squared modulus time series {|At

k|2}t. By this property, we would know how the STFT
behaves when a cosine function exists in the middle of the white noise time series, because
the resulting STFT would be the sum of the first STFT and the STFT of the white noise, as
in the previous example, The subsequent examples are to illustrate how the STFT changes
as the noise level increases.

4.5 With White Noise in the Background

Here we look at some examples of how STFT results when a local signal exists with a
Gaussian white noise background with noise levels, 0.5, 2, 4 and 10 standard deviations .
The data displayed on the top panel of Figures 4 through 7 were generated by adding the
simple cosine function from the earlier example to IID Gaussian white noise with zero mean
and each standard deviation for the real and imaginary parts. The correlation between the
real and imaginary parts is 0.5 for each case. The STFT of the data are shown in the other
plots. When the noise level is low, we can clearly see the local signal and the resulting STFT
is not very different from Figure 3 of the simple cosine example. As the noise level increases
(relative to the amplitude of the cosine function), the pattern becomes less obvious.

5 STFT on a General Local Signal

Here we consider more general cases. By the (inverse) Fourier representation, each of the
global signal {gt}M−1

t=0 with length M and the local signal {`t}E
t=S with length P (= S−E +1)

can be described as a linear sum of periodic functions with different frequencies. (The above
example consisted of only two non-zero Fourier coefficients.)
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Global Signal: gt =
1√
M

M−1
∑

a=0

Gaω
at
M for t = 0, 1, . . . , M − 1.

Local Signal: `t =

{

1√
P

∑P−1
b=0 Lbω

bt
P for t = S, . . . , E

0 otherwise

This representation allows the local signal `t to be an arbitrary function. For N ≤ P and
S ≤ t ≤ E − N + 1 where the STFT window is completely inside the local signal,

At
k =

1√
MN

M−1
∑

a=1
aN/M /∈Z

Gaω
a(t−N+1)
M

N−1
∑

j=0

ω
j( N

M
a−k)

N +
1√
NP

P−1
∑

b=1
bN/P /∈Z

Lbω
b(t−N+1)
P

N−1
∑

j=0

ω
j( N

P
b−k)

N

As before, if M and N have no common positive factor other than 1, we will have leakage.
Now,

1) when the window is crossing S (S ≤ t ≤ S + N − 1),
2) when the window is crossing E (E ≤ t ≤ E + N − 1), or
3) N < P and the local signal is completely inside the window (S + N − 1 ≤ t ≤ E),

At
k =

1√
MN

M−1
∑

a=1
aN/M /∈N

Gaω
a(t−N+1)
M

N−1
∑

j=0

ω
j( N

M
a−k)

N +
1√
NP

P−1
∑

b=0

Lbω
bt
P

min{N−1,E−t+N−1}
∑

j=max{0,S−t+N−1}
ω

j( N

P
b−k)

N

Cases 1) and 2) will result in the phenomenon called “ringing” as we saw in the simple
example without noise.

6 Proposed Work

6.1 Generalizations to More Complicated Signals

I would like to show how the STFT behaves when the local signal is more complicated. One
obvious extensions of the above example would be a case where the window size does not
match the frequency of the local signal, thus resulting in “leakage.” We can also consider a
case where multiple local signals exist with different starting and ending points. So far the
uses of DFT and STFT have had something to do with sinusoidal functions. We can further
consider a case where the local signal is not a sinusoidal function. Lastly, we can complicate
the background noise, where the background noise is not a white noise time series but some
stationary time series such as AR(1). Its STFT would be stationary and we can find ACF,
CCF, and spectrum, since the STFT is a linear filter, whereas the (squared or non-squared)
modulus STFT is not.

6.2 Detection

Now that we know how the STFT behaves, we can construct ways to detect such local
signals. One way is to simply look for a cluster where |At

k|2 observations are considerably
high. Another is to regress {|At

k|2}t with AR(p) with the appropriate coefficient and look for
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a cluster of unusual residuals where a local cosine function is present and the window covers
it partially. As can be seen in Figure 3, the real and imaginary parts of the STFT of a local
signal are characteristic. Regressing them with AR(p) results in unusually volatile residuals
when the noise level is small.

One time domain approach is to find the MLE of a local signal with eight parameters:
1-2) amplitudes A and B, 3-4) phases φA and φB, 5) starting point S, 5) ending point E,
and 6-8) background noise covariance matrix, although this does not utilize STFT.

I aim to develop methods to quantify the likelihood of the local signal existence such as
p-values with the frequentist and Bayesian approaches.

6.3 Application to Biomedical Engineering

Although Magnetoencephalography (MEG) data is most likely to be too noisy, it is worth
trying, because of its power, sampling frequency (can be set at more than 1 kHz), and wide-
ranging applications. One advantage of using MEG is that it is relatively easy to obtain
hundreds, or even thousands, of trials of one simple experiment. Another advantage is that
an MEG has 306 channels with neighboring channels measuring the same signal source, so
we will have a multi-dimensional original time series with which to work. Often brain signals
are assumed sinusoidal, so the use of the STFT may be sensible.
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Figure 1: STFT of a Gaussian white noise time series. No visually obvious pattern exists,
except neighboring points are often similar.
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Figure 2: Two time series of angle(At
2) and angle(At

3) from the example in Figure 1. The
scatter plots of one- and two-step functions indicate that the cross-covariance functions are
not appropriate measures for the dependence of these nonlinear time series.
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Figure 3: A simple example: there is a consine function in the middle and the squared
modulus, real and imaginary parts of the resulting complex-valued STFT are shown.
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Figure 4: A local signal with a white noise series in background. As the noise level increases,
the time series plot becomes noisier and the STFT less similar to Figure 3.
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Figure 5: A local signal with a white noise series in background. As the noise level increases,
the time series plot becomes noisier and the STFT less similar to Figure 3.
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Figure 6: A local signal with a white noise series in background. As the noise level increases,
the time series plot becomes noisier and the STFT less similar to Figure 3.
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Figure 7: A local signal with a white noise series in background. As the noise level increases,
the time series plot becomes noisier and the STFT less similar to Figure 3.
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