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Abstract

ACT-R cognitive models are examples of complex hidden Markov processes with a large state space
and a sparse transition matrix with absorbing states. While these models are designed to be theoretically
interpretable as the thought processes generating observable data, mathematical model estimation and
evaluation methods are based on simulation and prediction. There is little methodology applied to ACT-
R that addresses questions of model complexity, identifiability and generalizability – all topics that can
be addressed through study of the likelihood. In this paper I develop likelihood-based estimation using
MCMC methods for a class of ACT-R models. I compare selection of ACT-R models for scatterplot
generation using current predictive methods and using likelihood-based estimation and Bayes Factors. I
propose extending this methodology to include a larger range of ACT-R models and to incorporate other
model selection criteria (BIC, MDL, etc.) and decision theoretic approaches, with applications to ACT-R
models including individual differences, and general hidden Markov processes.
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1 Introduction

In this proposal I outline likelihood-based estimation for a constrained class of ACT-R cognitive models –
models built to mimic the thought processes and serialized actions of human subjects in goal-oriented tasks.
One goal of this research is to apply formal model selection criteria such as BIC, MDL and Bayes factors
to ACT-R model selection problems and to evaluate the utility of such criteria in light of ACT-R modeling
goals. In a broader context, however, the ACT-R architecture is an application of hidden Markov processes
(Baum and Petrie, 1966) where the underlying Markov regime, posited by the model as the progression of
human thought, has a large state space and a sparse transition matrix with absorbing states. In practice only
a few states or a few variables from the state space can be observed. Also, the distributions of observable
responses such as latency of recall and reaction times depend upon the underlying Markov process. In
addition to the adaptation of model selection criteria for this framework, other questions of interest for
the ACT-R applications include parameter estimation (including estimating transition probabilities for the
Markov regime), efficient imputation of missing data within an MCMC framework, assessing identifiability,
and measuring complexity.

Section 2 provides an overview of ACT-R history, uses and evaluation methodology, while Section 3
develops a constrained class of ACT-R models as Markov models with a large number of completely hidden
states. Section 4 provides an example of model comparison as a proof of concept, and Section 5 discusses
future avenues of research for the dissertation.

2 The ACT-R Cognitive Architecture

2.1 History and Use

In the middle part of the 20th century, research in cognitive psychology was conducted via “divide and con-
quer” techniques (Anderson and Lebiere, 1998; Introduction). In order to understand the rules and processes
that comprise human thought and action, researchers focused on highly specific aspects of cognition and at-
tempted to understand all of the details of these aspects. This methodology allowed for the study of human
cognition through a series of simple experiments, and led to the discovery of many thousands of quantitative
rules of human performance such as Fitt’s Law 1 and the power law of practice 2.

At the 1972 Carnegie Symposium, Allen Newell began a new direction for the field of cognitive psy-
chology. In his noted talk, “You can’t play 20 questions with nature and win” (Newell, 1973a), he pushed the
need for unified theories that would tie together the disparate threads of the science and, eventually, address
all facets of cognition – problem solving, action, perception, motor, language, motivation, emotion, etc. –
simultaneously (Newell, 1990; Introduction). Any such unified theory of cognition would provide a body of
underlying mechanisms that, through compilation and interaction, could re-produce and expand upon pre-
viously known quantitative rules. Far more than “black boxes”, these mechanisms would have theoretical
interpretations. They would produce not only predictions and simulations, but also explanations, designs,
and controls, providing a theoretical explanation for a phenomenon based on the functionality of the brain,
in a way that a simple statistical model, like the linear model describing Fitt’s Law, cannot.

In a companion paper (Newell, 1973b), Newell proposed such a system – the first production system
theory of cognition – which eventually became the Soar system (Newell, 1990; Chapter 4). During the
1970’s and early 1980’s, Newell noted other “harbingers” of unified theories of cognition, among them the

1MT ∝ − log(2D/S): the time MT to move to a target varies as the logarithm of the ratio of the distance D to the target and
the size S of the target.

2RT ∝ N−α: the reaction time RT for performing a task decreases as a power of the number N of times the task is practiced.
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design of the Model Human Processor (MHP; Newell, 1990, pp 29-36), and the development of ACT*
(Anderson, 1983) – which eventually evolved into ACT-R.

The MHP was designed to be a “virtual user” for programmers interested in testing human-computer
interactions during software development. Its goals were far less ambitious than describing all of human
cognition; instead, the model describes in detail the goal-oriented actions of a typical computer user, based
on a small set of guiding principles and a few quantitative rules governing reaction time. Because the MHP
is used in place of human subjects, it is important to obtain all parameter values a priori. Newell describes
this technique as a “zero-parameter fit,” but in reality, parameters are set to average values based on prior
quantitative rule studies, for example Salthouse’s studies on transcription typing (Salthouse, 1986). 3

ACT* had a broader scope than the MHP, with the goal of defining a virtual human subject for a variety
of experimental situations. ACT-R evolved to incorporate the rational analysis of Anderson (Anderson,
1990), and a later extension, ACT-R/PM, added auditory, visual and motor modules. With these components,
ACT-R is a tool that can not only reproduce a model like the MHP, but can also generalize to the modeling
of countless other goal-oriented tasks.

ACT-R models are now widely used in cognitive psychology, for more purposes than developing user
simulations when data is hard to come by. ACT-R has been used in the development of cognitive tutors
(Anderson, Corbett, Koedinger and Pelletier, 1995) that trace a student’s knowledge of skills and strategies
across a set of tasks. Moreover, ACT-R is a compelling tool for testing different symbolic representations
of thought progression, each encoding the use of different strategies or skills (for example Taatgen and An-
derson, 2002; Koedinger and MacLaren, 2002). Or, the underlying mechanisms themselves are estimated,
as for example with terminal models (Salvucci and Anderson, 1998) and models incorporating individual
differences (for instance Daily, Lovett and Reder, 2001). In these situations, experimental data is often avail-
able, and an ACT-R model is developed as a theoretical explanation of the observed data for the experiment.
This is a shift in perspective; rather than a tool for producing precise simulations like the MHP, the ACT-R
model is posited as directly modeling the observed human behavioral data.

2.2 Technical Overview

A basic technical overview of ACT-R follows in this section; a comprehensive overview of ACT-R can be
found in Anderson and Lebiere (1998), chapters 1 through 4.

An ACT-R model consists of a symbolic level and a sub-symbolic level. At the symbolic level are a set
of declarative facts, called chunks, each having a certain set of attributes, together with a set of procedural
IF-THEN statements, called productions, that are used in sequence to modify chunk attributes. Figure 1
describes the flow of information within an ACT-R model. Declarative memory contains chunks that can
be modified by the productions contained in procedural memory. However, a chunk can be modified only
if it is in one of two retrieval buffers for the declarative memory module. The first buffer holds a chunk
specifically designated as the “goal” of the task, while the second retrieval buffer can hold any chunk from
declarative memory. Collectively the retrieval buffers are known as working memory. The IF statements in
each production are conditions on the state of working memory. The system is serialized by allowing only
one production to fire at any one time.

The sub-symbolic level consists of the rules of conflict resolution, recall and learning for a model. If the
IF conditions for more than one production are matched, the system chooses one production to fire based
on a noisy utility value for each production. Within the conflict resolution process, the model can also
learn to favor certain productions over others, depending on how efficient each production is in successfully
completing a goal. When no productions match the state of working memory, the model has reached an

3Perhaps to a Bayesian statistician these would be better named “zero-data” fits, as parameters take on well-defined prior
distributions with no need for updating in light of new users, given how the model is used in practice.
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Figure 1: The flow of information in ACT-R models. Modified from Anderson and Lebiere Figure 1.2
(1998) and Byrne (2001).

end state and terminates. Productions can request retrievals from declarative memory into either the goal
buffer or the retrieval buffer, and when there is more than one chunk in declarative memory that matches a
production retrieval call, one chunk is chosen for retrieval based on a noisy activation value for each chunk.
Information in declarative memory can also be compiled into new production rules, a form of learning.

This serialized sequence of goals, facts and IF-THEN statements is very versatile. ACT-R systems
have been very successful in predicting and simulating a wide variety of human behavior. But the core of
any ACT-R model can be re-envisioned as a finite state machine with an associated set of probabilities for
moving from state to state defined by the rules of conflict resolution.

2.3 Current Methods

In many applications, an ACT-R model provides the specific and complicated functional form of probability
for each cell in a table, where cells may refer to repeated measures across a single population (for instance,
Anderson and Lebiere, 1998, chapter 4), or to a multivariate measure taken across independent populations
(for instance, Baker, Corbett and Koedinger,2003). Testing theories of cognition with ACT-R involves build-
ing a model using the cognitive architecture, estimating model parameters, and comparing simulated data
from the model to empirical data, often in the form of difference measures of percentages across experimen-
tal conditions. A model is selected whose percentages in each experimental condition most closely match
the observed population percentages. Cell probabilities are difficult to calculate analytically, and are more
often estimated via simulation.

Comparing competing explanations in ACT-R involves model estimation, evaluation and selection. The
main focus in evaluation and estimation is on two distinct samples (human data and simulated). There is no
direct link between the model and the human data, such as for example the likelihood of each observed data
point in a generalized linear model (McCullagh and Nelder, 1989) or a generalized additive model (Buja,
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Hastie and Tibshirani, 1989). ACT-R models can incorporate individual differences in parameters (eg Daily,
Lovett and Reder, 2001), but in many cases the ACT-R model is used as an example of average behavior,
with differences in response attributable solely to the noise in the production cycle.

2.3.1 Evaluation Criteria

Schunn and Wallach (2001) survey a number of fit statistics for cognitive and other psychological models.
For K experimental conditions, all of these measures involve comparing dk, the k-th observed percentage,
and mk, the k-th percentage as predicted by the model. The most widely used measure for evaluating the
fit of the model to the trend in the data are the Pearson correlation coefficient r and the related r2. The
correlation coefficient r measures the strength of the linear relationship in the pairs (mk, dk), while r2 is
the proportion of variation explained by this linear relationship, assuming it to be true. These measures do
not take into account the variability within groups or the uncertainty in any estimated model parameters.
They can be high even when the regression line between observed and predicted values does not have slope
equal to 1 and intercept 0. Also, correlation is sensitive to outliers. A condition with a very large or very
small effect relative to the other conditions can have a very large effect on the correlation; the least squares
line fitted through highly influential points in a regression can completely mis-represent smaller trends and
still yield high r and r2 values. Finally, for cross-classified data, different representations of the data (for
example, marginal percentages and conditional probabilities vs. joint probabilities) may possibly produce
different values of r or r2.

For evaluating deviations of the model percentages mk from the exact data percentages dk, the root mean
square deviation (RMSD), root mean square scaled deviation (RMSSD), mean absolute deviation (MAD)
or mean absolute scaled deviation (MASD) are popular measures (see also Myung, 2000). Schunn and
Wallach eschew traditional statistical goodness-of-fit hypothesis tests based on χ2 statistics, noting that the
null-hypothesis framework is ill-equipped for model selection, as it relies on a model being posited as true
and can only provide evidence rejecting that model. Hypothesis testing for multivariate means, such as in
profile analysis (Johnson and Wichern, 1998; pp.343-349), is not discussed.

ACT-R models are also evaluated on the governing principles of ACT-R theory, such as maintaining an
atomic functionality of productions (Anderson and Lebiere, 1998: pp 12–13), and having components of a
model (productions and chunks) also be learn-able by the model through experience (Anderson and Lebiere,
1998: p 16). These principles are more important for models that seek to explain cognitive phenomena
explicitly with ACT-R architecture than for models employed as useful predictive or simulation tools.

2.3.2 Estimation, Identifiability and Complexity

ACT-R models have a number of parameters that can be estimated, though in practice only a few parameters
are estimated in any one model. Usually, parameters that are estimated are global parameters such as noise
parameters or threshold values (see section 3.4). Estimation methods are based upon the same objective
function used to evaluate the fit of the model. Techniques such as iterated gradient descent (see Hastie,
Tibshirani and Friedman, 2001; pp. 353–354) are used in some cases to find the parameters that maximize
the objective function, but in many cases data-based parameter estimation is not done at all. Rather, global
parameters are set to reasonable, interpretable values, and the conflict resolution parameters are learned by
the model over time (Petrov, 2001).

ACT-R theory approaches identifiability by constraining existing parameters to principled, neurally plau-
sible default values (Anderson and Lebiere, 1998, p. 17). While this is reasonable for models that produce
simulations for generic experimental subjects, when the models are being used to predict the behavior of
sub-populations or individuals, or when the particular interest is in the behavior of a certain parameter – for
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example, exploring whether or not there are individual differences in activations or thresholds for a popu-
lation – it is advantageous to make use of new observations when they are available. Furthermore, there is
no quantitative theory to guarantee that parameter values selected a priori are the most likely values for the
observed experimental data.

Though model comparison using only measures of fit is discouraged in the psychological community
(Roberts and Pashler, 2000; Pitt, Myung and Zhang, 2002), there is little discussion of complexity in the
ACT-R literature beyond the gold standard of the zero-parameter fit. Many statistical model selection criteria
use the number of parameters as a guide, but it is still debatable what counts as a parameter in ACT-R. In
practice, better zero-parameter fits are achieved by increasing the number of productions in the model (for
example Byrne, 2001). But Baker Corbett and Koedinger (2003) suggest that productions should count
as parameters, even when their utility values are not estimated. It is clear that adding productions to a
model increases its flexibility, and with ACT-R models the functional form may be more important to model
complexity than the freely varying parameters.

To the statistician, a natural place to start exploring identifiability, complexity and generalizability is
with the likelihood. Likelihood-based statistical model selection criteria such as AIC (Akaike, 1973), BIC
(Schwarz, 1978), and MDL (Barron, Rissanen and Yu,1998), as well as Bayesian methods like DIC (Spiegel-
halter, Best, Carlin and Van der Linde, 2000) and Bayes Factors (Kass and Raftery, 1995), provide a starting
point for addressing complexity in terms of the dimension of the model space and the model’s functional
form, identifiability in terms of the uniqueness of the likelihood surface, and generalizability in terms of
uncertainty about parameter estimates and avoiding over-fitting. Using Bayesian estimation also yields pos-
terior distributions that can be used to explore other more general utility functions.

3 Methodology for a Constrained Class of ACT-R Models

In deriving methodology for estimation for ACT-R models, I start by considering a class of ACT-R models
for predicting or explaining an observable data vector X such that the conditions in Table 1 apply.

(i) Each model has a fixed set of productions P .
(ii) Each model has a fixed set of chunks C containing a single goal chunk.
(iii) All chunk attributes in a model take on a finite number of discrete values
(iv) No learning occurs (either by compiling new productions or by updating stochastic prefer-

ences).
(v) when a model terminates, the observed data X is completely obtained from the current

values of chunk attributes.

Table 1: Conditions for a constrained class of ACT-R models.

This is a highly constrained class of non-learning or “terminal” models (Salvucci and Anderson, 1998), but
it provides a good starting point for discussing the statistical framework of ACT-R models.

Let c ∈ C be a chunk with a corresponding set of attributes Ac. From (iii) above, each chunk attribute
a ∈ Ac can be envisioned as a discrete-valued categorical variable. At any time point t during the running
of the model, define the current state ηt of the machine as the set of features in Table 2.

From (i) and (ii) in Table 1, the state vector ηt does not grow in dimensionality with t. From (iii) in
Table 1, the space of states that the model can visit is finite, and thus ηt can be represented by a numerical
value s between 1 and S, where S is the cardinality of the state space. In theory S can be very large, but in
practice, the number of possible visitable states for an ACT-R model may be only a small subset of the total
number of denumerable states. Models assume only a few starting states, and there are strict theoretical rules
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1. The set of all chunks and values of all chunk attributes in declarative memory.
2. An indicator of the current chunk (ie, set of attributes) in the goal buffer.
3. An indicator of the current chunk (ie, set of attributes) in the retrieval buffer
4. An indicator of the most recent production that was fired.

Table 2: The elements of the current state

that limit the functions that can be encoded into productions. Using productions as the “atoms of cognition”
often requires a chain of productions to fire serially (with no ability for branching) to achieve a complicated
strategy or goal. Both of these properties reduce the number of visitable states.

Given a discrete time frame t that records the state ηt after each serial production cycle, the vector
{ηt : t = 0, 1, ...} is a random sequence of values over the space {1, 2, ...S}. Using the fixed set of
productions P and conflict resolution functions, it is possible to compute the probability distribution

P (ηt+1 = s|η0, ...., ηt), s = 1, 2, ...S. (1)

This distribution depends on the production cycle and typically contains few non-zero probabilities. The
production cycle consists of two steps:

I) determining the set of matching productions and selecting a production to fire;

II) if the matching production calls for a retrieval, determining the set of matching chunks and selecting
one to retrieve into the declarative memory buffer.

Step (I) depends only on the chunk attributes in working memory in the most recent state ηt, and step (II)
depends on the chunks and chunk attributes in declarative memory in the most recent state ηt. So for any
state s,

P (ηt+1 = s|η0, ...., ηt) = P (ηt+1 = s|ηt). (2)

Thus {ηt : t = 0, 1, ...} is a Markov chain with state space {1, 2, ...S} and transition probabilities deter-
mined by the equations governing steps (I) and (II) in the production cycle. The Markov property is achieved
by the inclusion of components 1, 2 and 3 from Table 2 in the current state. The fourth component in Table 2,
an indicator for the production that fired in order to reach the current state, is needed in order to achieve a
one to one map between transitions of state and production cycles.

End states in the ACT-R model correspond to absorbing states in the Markov chain. Call the set of
end/absorbing states E. Suppose the model has a denumerable set of allowable starting states B. For subject
i, define a path through the model as a vector of states ηi = (ηi0, ηi1, ...ηik) that trace a valid progression of
production cycle transitions from ηi0 ∈ B to the value k such that ηik ∈ E is the first encountered end state.
From condition (v), the data X that is observed for this path is a subset of the chunk attributes in η ik, and
the states (ηi0, ..., ηik−1) are latent variables representing the progression of thought leading to X . Defining
the set of states in B is a modeling decision. Starting states should be interpretable as baseline knowledge
states before attempting the modeled task. A simple decision is to allow only one starting state η0.

Let MX be the collection of paths ηi such that ηik produces observed data X . The probability of any
response vector X can then be written as

P (X) =
∑

ηi∈MX

P (ηi). (3)

The summation over all paths makes estimation of overall response probabilities unwieldy; in estimation I
will focus on calculating transition probabilities from state to state.
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3.1 Calculating Transition Probabilities

The state space can be explored thoroughly by starting with the common starting state η0 and using a
deterministic search algorithm, such as a depth-first search, to explore all possible states that can be reached
from this initial state.

The transition probabilities are based on the components of the sub-symbolic architecture; a utility for
each production and an activation for each chunk. Following Anderson and Lebiere (1998), chapters 2 and
3, the utility of a production j is given as,

Uj = ρjG − Cj, (4)

where G is a global expected gain parameter, Cj is the cost in seconds for production j to fire, and ρj is
the expected probability of achieving the goal given that production j fires. The parameter ρ can further be
decomposed into ρ = qr, where q is the probability of the production firing correctly and r is the probability
of a successful goal given that the production has fired. In many models, G and Cj are set to default values.
In terminal models, it is of interest to estimate ρ or r (see Salvucci and Anderson, 1998).

Chunk activations function in much the same way for selecting a chunk when more than one chunk
matches a current retrieval request. The activation equation for chunk ` takes the form

A`(s) = b` + F (`, s) + M(`, s), (5)

where b` is a baseline activation for the chunk, F (`, s) encodes a fan effect (Anderson and Lebiere, 1998, pp.
82-87) calculated from the state of the retrieval buffers, and M(`, s) implements partial matching (Anderson
and Lebiere, 1998, pp. 76-80). The functions F (`, s) and M(`, s) contain global parameters that are usually
set to default values, but any one of the parameters could also be estimated. I restrict attention here to
estimating b`.

Conflict resolution in ACT-R is performed by adding noise values ξj ∼ logistic(0, σu) to the utility val-
ues of the productions in competition and choosing the highest production to fire, with an analogous scheme
for chunks, adding ν` ∼logistic(0, σa) to activation values. The logistic distribution is used for computa-
tional efficiency during simulation in running ACT-R models, as the logistic CDF has a simple closed form.
But the probability that production j fires in a set of M matching productions involves calculating M − 1
probability statements of the form P (X > Y ) when X and Y have logistic distributions. An approximate
closed-form solution is

Pj(s) = Pr(production j fires from state s) =
eUj/

√
2σu

∑M
m=1 eUm/

√
2σu

. (6)

Similarly, when a production requests a retrieval, an approximate closed-form solution for the probability
that chunk ` will be recalled in a set of N matching chunks for a current state is

P`(s, j) = Pr(chunk ` recalled from state s by production j) =
eA`(s)/

√
2σa

∑N
n=1 eAn(s)/

√
2σa

. (7)

See Anderson and Lebiere (1998; Appendix A, pp. 89–92) for details on these approximations.
Each transition of state is achieved by selecting a production using the rule defined by equation 6, and

if a retrieval is called, selecting a chunk using the rule defined by equation 7. Including an indicator in the
current state for the most recent production that fired creates a one-to-one map between state transitions and
production cycles. Specifically, for any two non-identical states s1, s2 ∈ 1, ..., S , there exists at most one
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distinct production cycle that transitions s1 directly to s2. In this case, transition probabilities all have the
general form

Pj(s) × [P`(s, j)]
z , (8)

for some production j and retrieval chunk `, where Pj(s) and P`(s, j) are defined in Equations 6 and 7 and
z is equal to 0 if production j does not request a retrieval, and 1 otherwise.

3.2 Functional form of the Likelihood

The joint likelihood of an observed response X together with the subject’s path through S is the product of
transition probabilities leading to the end state. Formally, suppose there exist I independent subjects and an
ACT-R model whose state space consists of S states, with L chunks and corresponding vector b of baseline
activation parameters, and J productions with corresponding vector ρ of utility parameters. Define

ηi: a vector of length Ki representing subject i’s path, where each ηik is a numerical value between 1
and S.

ε: a J × S indicator matrix where εjs is 1 if production j matches state s and 0 otherwise.

δ: a L × J × S indicator matrix where δljs is 1 if chunk l can be recalled by production j in state s,
and 0 otherwise.

Yi: a J × Ki indicator matrix where Yijk is 1 if production j fired on the k-th step of subject i’s path,
and 0 otherwise.

Zi: a L × Ki indicator matrix where Zilk is 1 if chunk l was recalled on the k-th step of subject i’s
path, and 0 otherwise.

Note that δ and ε are determined solely by the structure of the ACT-R model and are not estimated parame-
ters. Also by condition (iv) in the class of ACT-R models, the observed data Xi for subject i is a subset of
the information in state ηiKi

. The likelihood can be written as

L(X,Y,Z,η|ρ,b, σa, σu) =
I
∏

i=1

Ki
∏

k=1

J
∏

j=1

[

exp(Uj/
√

2σu)
∑J

m=1 εmηik
exp(Um/

√
2σu)

]Yijk

×
L
∏

l=1

[

exp(Al(ηik)/
√

2σa)
∑L

n=1 δnjηik
exp(An(ηik)/

√
2σa)

]Zilk

, (9)

The ε and δ coefficients select the relevant productions or chunks to include in the denominator for each
production cycle, producing the transition probabilities Pj(ηik) × [Pl(j, ηik)]z as described in section 3.1.
Due to the one-to-one mapping between production cycles and state to state transitions, the indicators Y

and Z can be completely reconstructed from the information in the path vectors ηi for each subject. From
now on I will suppress Y and Z in joint and conditional expressions.

It is advantageous to think of the entire path vector ηi as a latent indicator in a mixture model (Gelman,
Carlin, Stern and Rubin, 1995; chapter 16), where the mixing distribution describes the prior distribution
over paths (uniform as described by Equation 3), and the functional form of the likelihood changes from
path to path according to the indicator matrices ε and δ, while relying on subsets of the same collection
of utility and activation parameters. Posterior inference on utility, activation and noise parameters will be
obtained by data augmentation (Tanner and Wong, 1987) within a Gibbs sampler (Gelman, Carlin, Stern
and Rubin, 1998, chapter 11; Tanner, 1996, chapter 6).

9



3.3 An MCMC Algorithm for Estimation

For ACT-R models, a Gibbs sampler using data augmentation alternates between (i) sampling a path vec-
tor for each subject conditional on the observed data for that subject and the current values of the model
parameters and (ii) updating model parameters conditional on the path for each subject.

3.3.1 Sampling Paths

The likelihood of a path ηi for subject i is given by

L(Xi,η|ρ,b, σa, σu) =
Ki
∏

k=1

J
∏

j=1

[

exp(Uj/
√

2σu)
∑J

m=1 εmηik
exp(Um/

√
2σu)

]Yijk

×
L
∏

l=1

[

exp(Al(ηik)/
√

2σa)
∑L

n=1 δnjηik
exp(An(ηik)/

√
2σa)

]Zilk

. (10)

Assuming a uniform prior on paths, the conditional distribution of paths given the set of model parameters is
proportional to this likelihood when it is non-zero. The observed data X restricts the set of paths with non-
zero probability to those in the set MX , but selecting a candidate path directly from MX by enumerating all
paths can be combinatorially difficult. One can employ ACT-R simulation in a form of rejection sampling
(Gelman, Carlin, Stern and Rubin; 1995). In this situation the target distribution p(η|X) is the distribution
normalized over paths in MX with zero probability elsewhere, and the proposals are drawn from the joint
distribution q(η,X) of all possible paths and responses. This method can be easily implemented with
existing ACT-R software, however depending on the size of MX with respect to the set of all paths, and the
relative likelihood of the observed data, it could be very inefficient.

To avoid enumerating the set MX explicitly, it is sufficient to find the subset EX of states in the set of
end states E that match the response vector. Once a viable end state is chosen from EX , an entire path can
be sampled using the transpose of the transition matrix to obtain valid next-state candidates, and completed
when the common starting state ηi0 is reached.

Another alternative is to sample an entire path backward from an end state using a simple discrete
proposal distribution, and then to perform a Metropolis step. Let θt be the set of model parameters at
iteration t, ηi

t the path at iteration t, and suppose Jt is the proposal (or “jumping”) distribution used to
sample a path. The Metropolis step accepts a candidate path ηi

∗ with probability,

r = min

(

L(ηi
∗|X, θt)Jt(ηi

t|ηi
∗, θt)

L(ηi
t|X, θt)Jt(ηi

∗|ηi
t, θt)

, 1

)

.

The simplest form for Jt is a conditional uniform distribution; at each branching point a candidate state is
chosen uniformly out of all possible candidates. This proposal distribution is independent of the current
path and the model parameters, and so the Metropolis calculation reduces to

r =
L(ηi

∗|X, θt)Jt(ηi
t)

L(ηi
t|X, θt)Jt(ηi

∗)
. (11)

This is not the most efficient form of proposal, but it is easy to calculate within the Gibbs sampler. However
for sets MX with a very large number of possible paths or with sets of very unlikely end states, it could be
inefficient.
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3.3.2 Updating Model parameters

Let π(ρ), π(b), π(σu) and π(σa) be independent prior distributions on utility, activation and noise parame-
ters. The posterior p(ρ,b, σa, σu|X,η) is proportional to

p(ρ,b, σa, σu|X,η) α L(X,η|ρ,b, σa, σu)π(ρ)π(b)π(σu)π(σa) (12)

For a utility parameter ρj , the complete conditional distribution is proportional to

p(ρj |X,η,ρ−j ,b, σa, σu) ∝
I
∏

i=1

Ki
∏

k=1

[

exp(Uj/
√

2σu)
∑J

m=1 εmηik
exp(Um/

√
2σu)

]Yijk

× π(ρj).

(13)

For an activation parameter bl, the complete conditional distribution is proportional to

p(bl|X,η,ρ,b−l, σa, σu) ∝
I
∏

i=1

Ki
∏

k=1

J
∏

j=1

[

exp(Al(ηik)/
√

2σa)
∑L

n=1 δnjηik
exp(An(ηik)/

√
2σa)

]Zilk

× π(bl)

(14)

For the utility noise parameter σu, the complete conditional is proportional to

p(σu|X,η,ρ,b, σa, ) ∝
I
∏

i=1

Ki
∏

k=1

J
∏

j=1

[

exp(Uj/
√

2σu)
∑J

m=1 εmηik
exp(Um/

√
2σu)

]Yijk

× π(σu),

(15)

and for the activation noise parameter σa, the complete conditional is proportional to

p(σa|X,η,ρ,b, σu) α
I
∏

i=1

Ki
∏

k=1

J
∏

j=1

L
∏

l=1

[

exp(Al(ηik)/
√

2σa)
∑L

n=1 δnjηik
exp(An(ηik)/

√
2σa)

]Zilk

× π(σa).

(16)

Distributions of noise parameters are similar to those of their associated utility (or activation) parameters,
except since noise parameters are the same across all productions (or chunks) the product in the likelihood
is taken across all productions (or across all chunks).

The conditional distribution of a model parameter is always proportional to the product of the prior
and the terms in the likelihood containing that parameter. Although the conditional distributions of model
parameters do not have a closed form, it is relatively straightforward to use a Metropolis step within the
Gibbs sampler to obtain draws from these distributions.

3.4 Utility and Retrieval Thresholds

In most ACT-R models, productions compete not only among each other but also against a utility threshold
value, τu. A production j selected from a set of competing productions fires only if

Uj + ξj > τu,

otherwise the model terminates. Similarly for activation, chunks compete against an activation threshold,
τa. A chunk ` selected from a set of competing chunks fires only if

A`(η) + ν` > τa,

11



otherwise the model terminates. In these extensions, even productions and chunks that have no competitors
(and otherwise would fire with certainty), are compared against threshold values. The utility threshold
behaves exactly like an extra, virtual production that matches every state. I will designate this production as
production 0, such that

U0 = τu.

Similarly, the activation threshold behaves like an extra, virtual chunk, that matches every state. I will
designate this chunk as chunk 0, with activation

A0(η) = τa,

for all states η. Complete conditional distributions for τu and τa have the form of Equations 13 and 14.
To incorporate thresholds in path sampling, every state in the space is included in the set E of possible

end states. If a state ηiKi
for subject i has a non-null set of matching productions, an extra term is added to

the path likelihood to account for a threshold failure. With the increased number of possible end states for
each subject, it is advantageous to incorporate the current state of the model parameters into the proposal
distribution for paths. Let η be a candidate end state chosen for subject i. Suppose at iteration t in the Gibbs
sampler, Nη out of the I total subject paths end in this state. An estimate of P (η) is

P̂ (η|θ) =
Nη

I
.

In practice there are many more end states than subjects in a study. It is advantageous to instead calculate

P̃ (η|θ) =
Nη + ι

I + S · ι ,

where ι acts like a variance tuning parameter for a proposal distribution. Let T (η) be the event that the
model terminates in state η. Define the proposal probability of state η as

Jt(η|θ) =
P̃ (η|θ)P (T (η)|η, θ)

∑

ν∈EX
[P̃ (ν|θ)P (T (ν)|η, θ)]

where θ is the vector of model parameters. The term P (T (η)|η, θ) sums the probabilities of utility threshold
failure and activation threshold failure conditional on state η, and has the form

P (T (η)|η, θ) = 1{
∑J

j=1
εjη=0} + 1{

∑J

j=1
εjη>0}

exp(U0/
√

2σu)
∑J

j=0 εjη exp(Uj/
√

2σu)

+
J
∑

j=1

(

εjη1{
∑L

l=1
δljη>0}

[

exp(Uj/
√

2σu)
∑J

j=0 εjη exp(Uj/
√

2σu)

] [

exp[A0(η)/
√

2σa]
∑L

l=0 δljη exp[Al(η)/
√

2σa]

])

.

(17)

The specific failure event F can be chosen conditional on the end state η with probability

P (F |η, θ)

P (T (η)|η, θ)
.
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Let r be the ratio using uniform jumping paths as described in Equation 11. At time t with proposal path
ηi

∗, current path ηi
t and model parameters θt, the acceptance ratio rf incorporating threshold failures is

rf =
L(ηi

∗|Xi, θt)P (F ∗|η∗iKi
, θt)

|EXi
|Jt(ηi

∗)
P̃ (η∗

iKi
)P (T (η∗

iKi
)|η∗

iKi
,θt)

∑

ν∈EXi

[P̃ (ν)P (T (ν)|ν,θt)]
× P (F ∗|η∗

iKi
,θt)

P (T (η∗

iKi
)|η∗

iKi
,θt)

×
|EXi

|Jt(ηi
t)

P̃ (ηt
iKi

)P (T (ηiKi
)t|ηt

iKi
,θt)

∑

ν∈EXi

[P̃ (ν)P (T (ν)|ν,θt)]
× P (F t|ηt

iKi
,θt)

P (T (ηiKi
)t|ηt

iKi
,θt)

L(ηi
t|Xi, θt)P (F t|ηt

iKi
, θt)

.

This expression reduces to

rf = r ×
P̃ (ηt

iKi
)

P̃ (η∗iKi
)

3.5 Experimental Conditions

Chunk attributes can be classified as either system variables – attributes for which there exists at least one
production in the ACT-R model that is able to modify the attribute’s value, or experimental conditions –
attributes pre-set before running the model, whose values cannot be modified by ACT-R productions, but
may be called as conditions in IF statements. Both the outcome X and the attributes making up the experi-
mental conditions can be considered observable. While X can be calculated as a subset of the attributes in
the terminating state of the ACT-R model, the experimental conditions are set at the starting state and fixed
throughout any subject’s path. This expands the set of starting states for the model. The smallest set B of
starting states can be enumerated {η1

0 , ...ηC
0 }, where C is the number of experimental conditions.

Because the experimental conditions are not changed by productions, the transition matrix including
experimental conditions is partitionable into a group of C sub-matrices. Experimental conditions can be
implemented with C separate ACT-R models, each tracing the production cycles and paths expanding from
a starting state ηc

0. In this case the experimental conditions do not need to be included in the current state; in-
stead productions that can never be called starting from state ηc

0 are simply not included in the determination
of the c-th sub-model’s state space and transition matrix.

3.6 Model Comparison Using Bayes Factors

The Bayes Factor (Kass and Raftery, 1995) for model M1 in relation to model M0 is the ratio of posterior
to prior odds

B10 =
P (X|M1)

P (X|M0)
,

which is the ratio of marginal likelihoods,

P (X|Mk) =

∫

L(X|θk,Mk)P (θk|Mk)dθk,

where θk is the set of parameters for model k, k = 0, 1.
For an ACT-R model with parameter vector θ, the data augmentation method produces samples from the

joint posterior distribution of model parameters and paths, Pr(θ, η|X). Kass and Raftery suggest a number
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of importance sampling estimators of the marginal likelihood; the easiest one to implement using a sample
from the posterior is

P̂ (X|Mk) =

{

1

T

T
∑

i=1

L(X|θi
k, ηi

k)
−1

}−1

,

the harmonic mean of the likelihood values calculated at each iteration. Though it is unstable due to oc-
casional values of (θi

k, η
i
k) with very small likelihood (and a large effect on the final result), it often gives

enough information for interpretation on a log scale. To obtain the posterior probability of model k in re-
lation to K > 2 competing models, Bayes factors can be calculated against a reference model M0 such
that

P (Mk|X) =
αkBk0

∑K−1
r=0 αrBr0

,

where αk is the prior odds of model k versus model 0 (in many cases where there is no prior information
about models, αk is set to 1).

4 Model Comparison Example

4.1 Description and Data

Scatterplots display the relationships between two quantitative variables by plotting (X,Y ) pairs on a Carte-
sian graph. Baker, Corbett and Koedinger (2003) note that in creating scatterplots, students make two kinds
of errors involving the conceptual understanding of categorical versus quantitative variables. They denote
these conceptual errors as variable choice errors and nominalization errors.

To explore this phenomenon, 132 middle school students were given a scatterplot task with two quanti-
tative variables, the age of a range of singers (AGE) and the number of pieces of fan mail received by each
singer (PIECES), along with the categorical variable of whether each singer was also a musician (MUSI-
CIAN). Percentages of errors are shown in Table 3. Students who committed a variable choice error used
the categorical variable MUSICIAN on one of the axes in the plot. Students who committed a nominaliza-
tion error used both quantitative variables AGE and PIECES, but treated one or both as nominal variables
instead of quantitative variables.

Baker, Corbett and Koedinger wished to determine whether these similar conceptual errors could be
explained better by the execution of a single strategy or the execution of multiple strategies producing
different results. Five experimental conditions were employed, relating to the kind of information each
subject was given at the start of the assignment. These are described in Table 3. Five different models
were constructed. Model KNOW-IT-ALL allowed for the understanding of both the correct representation
of quantitative variables and familiarity with scatterplots. Model KNOW-SCATTERPLOTS allowed for
a familiarity with scatterplots but no understanding of quantitative variables outside that context. Model
KNOW-QUANTITATIVES allowed for an understanding of quantitative variables but a lack of familiarity
with scatterplots. Model CAN’T-USE-QUESTION restricted the information that a student processed when
presented with the task. Finally, model DON’T-KNOW-BARGRAPHS restricted nominalization errors to
random guessing, rather than an inappropriate knowledge transfer from existing skills in creating bar graphs.

All models were terminal models, each consisting of subsets of a common set of 32 productions and 7
chunks. An iterated gradient descent estimation scheme was used, based on the models’ predictive accuracy
toward matching the percentages in Table 3, as measured by the r2 metric described in Section 2.3.1.
Between 4 and 6 utilities were estimated for each model, as well as a common baseline activation value for
all chunks, the activation and utility thresholds, and the utility noise. Model selection was performed by
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No
prompts

No vari-
ables
labeled

X variable
labeled

Y variable
labeled

Both
variables
labeled

(i) Sample size 13 30 29 29 31
(ii) Variable

choice error
15.0 26.9 7.7 26.9 6.5

(iii) Correct axis
variables
(CAV)

0 73.1 79.3 73.1 77.4

(iv) Given CAV, X
axis nominal-
ized only

n/a 15.7 17.4 15.7 12.5

(v) Given CAV, Y
axis nominal-
ized only

n/a 0 0 0 0

(vi) Given CAV,
both axes
nominalized

n/a 5.3 8.7 0 8.3

(vii) Given CAV,
correct repre-
sentation on
both axes

n/a 73.7 73.9 84.3 79.2

Table 3: Percentages of different behaviors in scatterplot construction (Baker, Corbett and Koedinger, 2003).
Columns show experimental conditions, while rows list the number of students in each condition, and the
observed percentages of each response. Rows (iv) through (vii) are percentages conditional on the sub-
populations that labeled the axes correctly (row (iii)).
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Baker et.al. using the least squares criterion,

LS = K
K
∑

k=1

(mk − dk)
2 + p log K,

where mk and dk are the model prediction and observed k-th data value from Table 3, respectively, and p is
a complexity measure based on the number of parameters allowed to vary, and the number of productions
and chunks in the model.

4.2 Preliminary Results

Table 4 shows an exploratory summary of the complexity of the five models estimated. Of the five models,
KNOW-QUANTITATIVES has a dramatically smaller state space, even though more parameters are esti-
mated for this model than model CAN’T-USE-QUESTION. Also, although the state space is the largest for
model KNOW-IT-ALL, model DON’T-KNOW-BARGRAPHS is the only model that provides valid paths
for all observed data. Table 5 shows the student IDs whose responses for each model could not be repro-
duced by the model. The set of matching end states for these students was empty.

Model # Productions # System Variables S # Parameters
Estimated

KNOW-IT-ALL 31 13 2772 8
KNOW-SCATTERPLOTS 29 13 2526 7
KNOW-QUANTITATIVES 27 13 1713 7
CAN’T-USE-QUESTION 27 13 2670 6
DON’T-KNOW-BARGRAPHS 26 13 2635 8

Table 4: An exploratory look at the complexity of five models created in ACT-R, used to model strategy
choice in scatterplot construction.

Model Student IDs
KNOW-IT-ALL 17,26,80,107
KNOW-SCATTERPLOTS 17,26,80,107
KNOW-QUANTITATIVES 17,26,80,86,107
CAN’T-USE-QUESTION 17,26,80,107
DON’T-KNOW-BARGRAPHS none

Table 5: Student IDs outside the model range for the five models.

For likelihood-based estimation, the chunk threshold and noise values were set to the best fit values from
the iterated gradient descent performed by Baker,Corbett and Koedinger for each model. Only utility pa-
rameters, baseline chunk activation and retrieval thresholds were estimated for each model. Estimating both
a retrieval threshold and a baseline activation leads to a multiplicative non-identifiability in the probability
of retrieval. Noise values were kept constant in order to compare likelihood estimates for the utility and
activation parameters with the predictive method.

For the utility and baseline activation parameters, Normal(0, σ2 = 100) priors were used. For the utility
threshold a Normal(0,σ2 = 10) prior was used. G and Cj for production utilities were set to ACT-R default
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values, and the noise value ι for sampling paths was set to 10. Markov chains of 950 iterations were run for
each model, with 300 iterations removed as burn-in. The small number of iterations is due to the prototype
software implementation in S-plus rather than a faster language such as C or C++. Inspection by eye showed
quick convergence for parameters that appeared in many paths, but for parameters that were rarely used or
that estimated tail probabilities, the chains were erratic.

Model LS 1
T

∑T
t=1 L(X|θt

k, ηt
k) log(B0k)

KNOW-IT-ALL 194.1 -1365.4 341
KNOW-SCATTERPLOTS 208.2 -1033.5 0
KNOW-QUANTITATIVES 181.8 -1175.5 171
CAN’T-USE-QUESTION 245.8 -1107.0 84
DON’T-KNOW-BARGRAPHS 215.9 -1338.4 309

Table 6: Average likelihood and Bayes factors for five models of scatterplot generation. Bayes factors are
taken as log B0k where model 0 is model KNOW-SCATTERPLOTS.

Results of comparisons with Bayes factors using the harmonic mean estimator of the marginal likeli-
hood are shown in Table 6. Although the predictive analysis selects model KNOW-QUANTITATIVES, the
likelihood-based analysis is strongly in favor of model KNOW-SCATTERPLOTS. There is little difference
in the predictive power of models KNOW-IT-ALL, KNOW-QUANTITATIVES and KNOW-SCATTERPLOTS,
but model KNOW-SCATTERPLOTS achieves a good fit to the data with shorter paths, and thus less com-
plexity.

Because longer paths multiply more terms into the likelihood, likelihood-based estimation favors shorter
paths and paths with fewer branches (and thus simpler strategies), when all other factors are equal. The
quantitative strategy in models KNOW-IT-ALL and KNOW-QUANTITATIVES used three productions in a
row as opposed to the scatterplot strategy that used only one production. Both quantitative and scatterplot
strategies yielded the same end result, with the only distinction in the likelihood being the larger probability
of a threshold failure along the longer (and thus more complicated) quantitative strategy.

Analysis with Bayes factors suggests that model KNOW-SCATTERPLOTS adequately accounts for
threshold failures, without the extra explanation of exploring an alternate and more difficult strategy. But in
this case, the data do not provide much information for distinguishing between strategies. More information
about the use of the more difficult quantitative strategy could be gained through recording reaction times, in
which case a longer reaction time would give evidence of a more difficult strategy, or through a talk-aloud
approach that could explicitly record a student’s attempt at a quantitative approach.

5 Future Work

The scatterplot example in Section 4 presents some preliminary results and a proof of concept for the
methodology developed in Section 3, but it also raises many questions for researchers interested in us-
ing ACT-R models to account for cognitive processes. Likelihood-based estimation and model selection
methodology provides a framework for discussing uncertainty, identifiability and complexity as well as
goodness of fit, and it can produce dramatically different results and conclusions for models that provide
similar simulation-based predictions. But the usefulness of this kind of evaluation depends also on the goals
of the modelers. For instance, it is perhaps more important to determine the falsifiability or interpretation of
a model in theory testing than in predictive applications. And while penalty terms account for generalizabil-
ity in adaptation to new data for the same task, ACT-R models are often built to generalize toward learning
new tasks – in which case more same-task complexity is required.
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In addition to providing likelihood-based selection criteria for predictive methods, a Bayesian estima-
tion scheme opens the door for decision theoretic model selection based on general utility functions, and
exploring estimation, identifiability and complexity for ACT-R applications provides a concrete example of
implementation and feasibility for complex hidden Markov processes. Toward these goals I propose the
following agenda for the dissertation:

Expand activation equations: For a chunk ` being called by production j in state ηik, the activation
equation can be expanded as

A`(ηik, j) = β − d log t` +
n
∑

m=1

W

n
S`m − D`j ,

where d is a decay rate, t` is the amount of time since chunk ` was last recalled, and m sums over the
attributes in the goal chunk. Further equations govern latency of response times. The parameter W measures
the amount of attention paid to each goal attribute, and S`m is a fan effect that measures the association
between chunk ` and the state of the current goal. The partial matching penalty D`,j is based on the retrieval
constraints set by production j. Any of these parameters can be estimated from the data using the general
MCMC methodology outlined for activation parameters in Section 3. Implementation of these extensions in
the estimation software is a straightforward programming task. Further development involves incorporating
latency and reaction times.

Incorporate learning and extend observable data: Extending the methodology to incorporate learning
via parameter updating is similar to the extension of static latent class models (Langeheine and Rost, 1988)
to dynamic hidden Markov models (Baum and Petrie, 1966). A more complicated extension is involved for
models that create new productions and chunks with repeated trials; in this case the state space and transition
matrix need to be updated with each trial to include new productions and chunks.

When data Xi is retrieved entirely from the state ηiKi
, the set MXi

of paths with non-zero probability
can be explored by finding all possible end states that match Xi. On the other extreme, if entire path is
made visible, as for example with intelligent tutors, the set MXi

consists of only a single path. Along
this continuum, sampling entire paths with non-zero probability of producing Xi is computationally more
difficult than finding the set of end states, as observable data restricts matching states at more points along the
path. This limited observability can be seen as a Markov process (or depending on the nature of observable
data, a hidden Markov process) with missing data or gaps between observable values. One approach to this
problem is to start by adapting traditional estimation techniques for hidden Markov regimes (eg. Lindgren,
1978; Holst and Lindgren, 1991) to ACT-R models, and then to expand the framework to incorporate missing
data.

Calculate traditional model selection criteria for ACT-R models: In addition to Bayes Factors, Ta-
ble 7 lists three statistical model selection criteria that can be applied to ACT-R models. The BIC, DIC and
MDL all involve a marginal maximum likelihood calculation and a calculation of the effective number of
parameters p for the model. Raftery (1995) describes techniques for maximum likelihood estimation using
Monte Carlo simulations, as well as a data augmentation estimator that produces consistent estimation of
Bayes factors when many nuisance parameters are present in all models under consideration.

Moody (1992) discusses the effective number of parameters for models based on least squares estima-
tion, while Ye (1998) offers a method for calculating the effective degrees of freedom of algorithmic models,
based on simulation. For hierarchical normal linear models, Ye’s algorithmic approach coincides with the
constraint-case method of counting parameters outlined by Hodges and Sargent (2001), also closely related
to smoothers (Buja, Hastie and Tibshirani, 1989). Lee and Nelder (1996) also derive a similar method for
hierarchical generalized linear models, based on a first-order approximation. The MDL also requires the in-
tegral over the parameter space of the Fisher information for a sample of size 1 (see Pitt, Myung and Zhang,
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Name Formula
BIC −2 log f(X|θ̂) + p log n

MDL − log f(X|θ̂) + p
2 log n

2π + log
∫

|I(θ)|dθ

DIC −2
T

∑T
t=1 log f(X|θt) + 2 log f(X|θ̃)

Table 7: Common statistical model selection criteria: Bayesian Information Criterion (BIC), Minimum
Description Length (MDL), and Deviance Information Criterion (DIC). Here θ is the vector of model pa-
rameters, with θ̂ the maximum likelihood estimator and θ̃ any Bayesian estimator such as the posterior mean
or mode. The function f(X|θ) is the likelihood function, I(θ) is the Fisher Information matrix of a sample
of size 1, n is the sample size, and p is the effective number of parameters in the model.

2002). But estimation may be feasible, for example using the missing information principle (Tanner, 1996,
pp. 74–75.). In addition, Ito (1992) explores identifiability, complexity and information for parameters in
hidden Markov regimes.

Apply methodology to existing ACT-R models: Some applications that focus on production branching
and strategy choice include task switching (Anderson, Taatgen, and Byrne, 2004) and categorization (An-
derson and Betz, 2001). The task switching application additionally offers the opportunity to study both a
terminal model and a learning model.

While the current estimation methodology is developed for production branching as subjects choose
different strategies, a large number of ACT-R models are also based upon reaction times and latency data.
These models often have a common, simpler production structure for all subjects, and focus on the structure
of chunk activation functions. An example is list memory (Anderson, Bothell, Lebiere, and Matessa, 1998);
although based on an early version of ACT-R, the list memory model is a candidate for translation into the
estimation architecture. Additionally, Daily, Lovett and Reder (2001) outline a theory of working memory
for ACT-R that attributes differences in recall among subjects to individual differences in the magnitude of
the weight W associated with fan effects. The working memory study offers the opportunity to compare a
simple kind of nested structure in ACT-R – models with the same production structure that differ only in the
expansion of a parameter to include individual differences.

Program a computationally efficient estimation algorithm: This incorporates both a translation of the
existing code to C++ for faster and more portable machinery, as well as adapting the MCMC methodology
for path sampling using the complete conditional distributions for individual states in the path.
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