
Hierarchical Models for Indirect Observation in Botnet Population
Estimation: A Case Study Using Conficker-C

Rhiannon Weaver
rweaver@cert.org

July 29, 2010

1 Introduction

This proposal describes a model for the hourly number of peer-to-peer connection requests generated by a
single machine in the Conficker-C botnet, as viewed by an observer who can monitor a fixed proportion of
Internet address space. The goal of developing this peer-to-peer behavioral model is to estimate the number
of infected machines in the botnet when machines cannot be directly observed. Network behavior is often
observed through the filter of IP addresses, where the mapping between machines and addresses is not one-
to-one. Because all machines in the botnet are infected with the same malicious code base, their malicious
behavior can act as a more stable representative for a single machine than an IP address.

Parameter estimation for a single infected machine can be achieved using informed priors and MCMC
methods with Metropolis-within-Gibbs sampling to account for time-dependent heterogeneity in connection
rates. For population estimation in the presence of indirect observation, aconfusion matrixis introduced,
that can be used to represent different mappings of machines to IP addresses commonly used in network
infrastructure. We propose MCMC methods for addressing estimation of single-host parameters and popu-
lation hyperparameters, as well as population estimation across a large set of independent networks.

Section 1.1 and Section 1.2 motivate the population study and give an overview of the main challenges
for applying traditional population estimation methodology to network phenomena. Section 2 introduces the
Conficker-C population and the methods for observing it in more detail. Section 3 describes the model for
observing a single infected machine, and introduces the framework for extending the single-host model to a
network model. Section 4 describes data collection and proposes the steps to be taken for the completion of
the dissertation.

1.1 Botnets and Conficker-C

A botnet is a collection of computers that have been compromised by a malicious software (malware) pro-
gram, putting them all under the control of a single malicious operator or small group of operators. These
operators, or “bot herders,” can use an army of machines for a variety of purposes, such as gathering intelli-
gence about other networks through scanning, sending spam email on a large scale, or crippling local servers
or even national network infrastructures by distributed Denial of Service (DDoS) attacks that throttle net-
work communications with millions of illegitimate connection requests. Tracking botnet size is important in
order to understand the scope and spread of an infection. Security analysts rely on population estimates to
prioritize threats and to measure the efficacy of clean-up strategies, but the methods and differences among
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published numbers are often substantial enough to leave analysts unsure of which numbers are realistic or
trustworthy.

Conficker (also known as Downadup) is a malware program that first appeared in October of 2008.
Conficker targets machines running Microsoft Windows operating systems. By January of 2009, estimates
of the number of Conficker-infected machines ranged between 9 million and 15 million, as reported by
security companies and news outlets. Estimation methodology varies among researchers, and estimates
are often published as daily raw counts with no measures of uncertainty. Little attempt has been made to
simultaneously incorporate seasonal effects and variability due to hosts’ availability, as well as rates of new
infections or cleaned machines with time, into Conficker population estimates.

The Conficker-C variant that propagated through the botnet in March 2009 introduced a specific pattern
of decentralized peer-to-peer (P2P) activity in its communications. When a host infected with Conficker-C
comes online, it initiates a search for peers by randomly scanning Internet address space. Several indepen-
dent researchers developed a behavioral signature that identifies Conficker-C P2P connection requests with
high reliability in large-scale summary information of network traffic callednetwork flow data(Claffy et al.,
1989). The visibility of Conficker-C in this data set gives us a unique window into its behavior, population
size, and birth and death rates.

1.2 Population estimation and network threats

Statistical population estimation is based on mark-recapture models and their extensions to a wide class of
generalized linear models (Fienberg et al., 1999). In network analysis, simple mark-recapture techniques,
which reduce to counting intersections among overlapping sets, have been applied to study botnet popula-
tions (Chan and Hamdi, 2003; Horowitz and Malkhi, 2003; Li et al., 2009), as well as to other phenomena
such as peer-to-peer file sharing networks (Mane et al., 2005; Psaltoulis et al., 2005). But this technique,
an application of log-linear models, is valid only for closed populations with direct observation of individ-
uals of interest, and equal probability of capture for all individuals. Internet phenomena often violate these
assumptions.

Extending mark-recapture models to open populations is widely addressed in the literature (Schwarz
and Arnason, 1996), but botnets often admit several complications of direct observation:

• Individuals are marked based on their observable behavior over a network. Both behavior and observ-
ability are often stochastic in nature.

• Though populations are often reported in terms of the number of infected machines, these machines
are distinguishable only by the network connection points, calledIP addresses, through which they
communicate, and the link between machines and IP addresses is not one-to-one.

Applying mark-recapture models to machines, as opposed to IP addresses, requires a model that links
behavior by address to behavior by machine. On the other hand, applying mark-recapture models directly
to IP addresses introduces heterogeneity among individuals; for example, an address shared in parallel by
100 infected computers is observed if at least one of its underlying hosts is observed, whereas an address
leased serially to a network of one infected machine and 99 clean machines is observed only if it is currently
allocated to the infected machine, and the machine’s behavior is observed.

Dupuis and Schwarz (2007) present a solution for the case when heterogeneity can be modeled as a series
of observable, nominal classes. In this case, posterior inference is based on multinomial models arising from
categorical heterogenous classes and the binary response associated with marked or unmarked animals at
each sampling period. But heterogeneity in botnet behavior often arises from variations in continuous, latent
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behavioral traits such as scan rates. Though machines can be recorded as simply marked or unmarked in
any sampling period, this marking loses information regarding the stochastic behavior that is used to identify
individuals. We not only observe an individualyi, but we observe it because it is performing some stochastic
actionxit ∼ f , wheref is a (possibly parametric) pdf or pmf for the sampling periodt, andxit is correlated
across sampling periodst, t+ 1, t+ 2, and so forth. This data admits a sparser multinomial model than the
Jolly-Seber model described by Dupuis and Schwarz, due to a more complex set of observable categories.

2 Observing Conficker-C Machines

Unlike wildlife studies, where individuals are directly observable, machines in a botnet are visible only
by their network behavior. Physically, infected machines can be located anywhere in the world, but the
malicious applications running on these machines need to communicate over the Internet–with each other
or with a central controller–in order for the botnet to survive as a co-ordinated large-scale threat. Thus for
botnets, communication methods and signature detection define the space of directly observable behavior.
Section 2.1 describes the communication method that Conficker-C hosts use, and the resulting observable
artifacts. Section 2.2 describes how an outside observer can use a monitored network to detect Conficker-C
machines. Section 2.3 motivates a basic probability model for a single host’s P2P scanning process.

2.1 Communication Methods

A set of well-known instructions and rules that defines how software applications communicate with each
other is called aprotocol. Similar to most non-malicious applications in the world, the malicious software
behind Conficker-C communicates using either the Transmission Control Protocol (TCP) or the User Data-
gram Protocol (UDP). Both of these protocols also rely on Internet Protocol version 4 (IPv4), that defines
the recognizableIP addressfor network communication.

An IP address is a 32-bit integer that identifies a machine to others in a network, for the duration of a
connection. IP addresses are generally represented in the dotted decimal format of four octets ranging from
0 to 255 (for example, “192.168.12.2”). In any network connection, the initiator (or source) specifies its own
IP address, and specifies an intended target (or destination) IP address with which to establish a connection.

Both TCP and UDP protocols also require that aport is associated with both the source and destination
IP addresses in a network connection. A port is an integer between 0 and 65535 that is used as a channel to
disambiguate connections from multiple applications between the same communicating hosts.

Often, network traffic monitors cannot identify infected machines directly, but they can identify IP ad-
dresses, protocols and ports through which infected machines are communicating. Like people and “snail
mail” addresses, the map between machines and IP addresses is not one-to-one. Two widely adopted net-
work administration practices complicate the relationship between IP addresses and individual machines:

• Network Address Translation (NAT, one-to-many): A network of many machines is configured to ac-
cess the Internet through a single machine with one external-facing IP address, often called agateway
or proxy. Gateway traffic is also often shuffled among two or more IP addresses over time to balance
bandwidth across several assets, a technique known asload-balancing.

• Dynamic Host Configuration Protocol (DHCP, many-to-one): Internet service providers (ISPs) often
have a pool of IP addresses, any one of which can be provided dynamically to a machine via a tem-
porary lease. Depending on the network configuration, DHCP leases can be valid for hours or days.
One-day leases are common.
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Figure 1: Connection attempts per hour originiating from a /16 net block allocated to an Israieli ISP (left)
and a Russian Telecom company (right). Each row represents one of the 256 /24 net blocks that comprise
the /16 network. Time ranges from March 5 through April 24, 2009.

Networks of IP addresses are usually allocated in contiguous blocks to entities such as companies,
countries, academic institutions or Internet service providers. These blocks can range widely in size. A
/N net block(read “slash N net block”) is the collection of addresses obtained by fixing the firstN bits
of an IP address. Commonly, net blocks are sized by octets. A /24 net block, denoted for example by
192.168.12.0/24, collects together the256 IP addresses in the last octet range0 through255. A /16 net
block, denoted for example by192.168.0.0/16, collects together2562 or 65536 IP addresses.

2.2 Passive Scan Detection

One way that infected hosts maintain contact in the Conficker-C botnet is by peer-to-peer (P2P) communi-
cation. Each host keeps a list of up to2048 peers that it occasionally connects with, looking for software
updates or propagation of instructions from a control channel. But an infected host also has a method for
bootstrapping new addresses into its peer list, in case its own list is lost, cleaned, or corrupted.

Whenever an infected host is turned on, with one or more open Internet connections, it surreptitiously
uses those connections to continuously scan the Internet. It determines connection ports using an algorithm
based on the source IP address and date, which was cracked by several independent researchers (Faber,
2009; Porras et al., 2009a). As a result, Conficker-C P2P requests can be identified with high reliability
in large-scale network summary information, such as flow data, with no need to inspect the content of
messages.

For the outside observer, Conficker-C hosts are visible (up to IP addresses) when they choose to connect
to an IP address that the observer can monitor. Because there is a large population of Conficker-C hosts, and
each host generates many requests per hour, an observer monitoring even a relatively small network has a
good chance of seeing some randomly generated P2P requests.
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An example of observed passive scan data by network is displayed in Figure 1. Color intensity in both
figures represents the number of connection requests per hour sent from Conficker-C infected machines in
a /16 net block, to uninfected machines located on a large monitored network (approximately0.15% of IP
address space). Each row in the figure corresponds to a /24 net block, with brighter yellow colors indicating
higher numbers of connection requests initiated from that net block.

The leftmost figure shows a network allocated to an Israeli ISP. The /24 blocks in this network show
patterns that might be expected with single-machine activity per net block. Intensity is uniformly low-
scale, with daily trends evident in some blocks, and little correlation of activity between rows. Comparing
these patterns to the figure on the right, which is allocated to a Russian Telecom company, we can start to
see the effect of administration policies such as NAT, load-balancing, and DHCP. Intensity varies among
blocks, with the highest belonging to a single net block (94.25.61.0/24) that appears to be acting as a
proxy for a comparatively large number of infected hosts. Daily patterns are also evident as users come
on- and off-line, but the effect seems to be correlated across multiple adjacent blocks, evidence of DHCP
leasing or load-balancing. There are also several places where large blocks of activity appear to “jump”–
scans cease abruptly in one location and appear abruptly in another–possibly due to load-balancing or other
administrative decisions.

2.3 Observing a single infected machine

Suppose an observer monitors a proportionδ of IP addresses. In one hourt, a single infected machine
actively scanning at rateλt intitiatesMt random UDP connection requests, of whichyt fall within the
monitored network. The quantityMt is modeled as a Poisson process:

Mt ∼ Poisson(λt)

This a reasonable model for small-packet scanning activity programmed at regular intervals. Network
traffic is often cited as “bursty” in behavior, but Paxson and Floyd (1995) note that this self-similarity is
more common in packet inter-arrival times once connections have been established, as opposed to multiple
connection requests. Published experiments with the Conficker-C malware in controlled settings (Porras
et al., 2009b) show relatively smooth scanning rates, within both 30-minute and 6-hour time frames.

The Poisson countMt is assumed to be conditionally independent fromMt−1 given its rateλt. The
conditional distributionπ(yt | Mt, δ) is Binomial(Mt, δ), which yields a Poisson marginal model foryt in
terms ofλt andδ:

yt ∼ Poisson(λtδ). (1)

The proportionδ is measured empirically, and the scan rates are unknown; without loss of generality, the
rateλt can be modeled as an observed hit rate (subsuming the parameterδ).

In September 2009, Porras et al. (2009c) provided a de-obfuscated reverse engineering of the Conficker-
C P2P binary image as it appeared on March 5, 2009. When initiated, the P2P module spawns a UDP
scanning process for each valid network connection discovered, in order to bootstrap a peer list of up to
2048 peers. Up to32 processes can run simultaneously. Each process alternates between a 5-second sleep
cycle and a scan phase where it randomly generates a list of up to100 IP addresses to contact. At each
selection, the machine chooses an IP address from its list ofn peers with probability equal to

Pr(existing peer chosen| n) =
(

1000−
⌊

950n
2048

⌋)−1

. (2)
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Figure 2: Connection attempts per hour over a 5-day period, from six different IP addresses.

The speed at which UDP connection requests are sent out over the wire depends on the hardware and
network capabilities of the infected machine, as well as the amount of bandwidth and drop percentage of the
network. The P2P protocol has a maximum of1200 scanning connection attempts per minute, but observed
accounts of Conficker-C P2P scan activity cite lower numbers. Porras et al. (2009b) performed a sandbox
test of an infected Conficker-C host with a single network interface and observed scanning rates starting at
approximately1000 to 2000 IP addresses per5 minute interval, and decreasing over the first two hours of
activity to a steady rate of approximately200 IP addresses per5 minutes.

Figure 2 shows the number of connection requests per hour sent from six different Conficker-C infected
IP addresses, to uninfected machines located in a large monitored network (approximately0.15% of IP
address space), over a five-day period. Several of the series display spikes of activity. It is speculated that
each of these time series plots represents a single machine; empirically, low overall scan rates in these net
blocks suggest they are not NAT gateways. Each address also resides in an “isolated” section of otherwise
dormant (non-scanning) IP addresses that do not appear to be DHCP pools. Based on the information from
the reverse engineering and sandbox tests, two reasons for spikes can be postulated:

• Clearing of peer lists: The proportion of random vs. peer-directed connection attempts depends on
the size of the machine’s peer list. When a peer list is lost or cleaned (for example after a machine
is rebooted), the rate of random scanning will increase due to the effects of equation 2 and gradually
decrease as the machine rebuilds its peer list.

• User-driven network connections: Reboots and other user behavior can initiate multiple network con-
nections (for example, requesting IP addresses from servers, downloading Windows updates, or open-
ing web browsing sessions), that cause a multiplicative increase in scanning rates due to the initiation
of multiple threads.
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3 Formal Modeling

This section outlines the basic model for Conficker-C’s observable P2P scanning. The probability model
from Section 2.3 is formalized and parameterized in Section 3.1. Section 3.2 derives the likelihood for
a single host, and outlines a basic estimation strategy. Section 3.3, Section 3.4 and Section 3.5 outline
prior distributions and complete conditional distributions and sampling strategies for the unknown param-
eters in the single-host model. Section 3.6 presents thoughts and a preliminary strategy for expanding this
single-host model to a network model that maps an unknown number of individual machines to observable
IP addresses, and suggests three typical NAT and DHCP configurations to model. Section 3.7 discusses
strategies for evaluating the model.

3.1 Mathematical model and parameterization

The overall hit rateλt at timet can be parameterized by a mixture of a dormant (zero) rate, a baseline rate
q that represents the stable rate of connection attempts sent by a machine when it is turned on, a parameter
ω > 1 that multiplicatively increases the baseline rate during a spike, and a parameterα that controls the
geometric decay of spike rates back to the baseline.

Denote byO, S, andD the set of hours at which the machine is off, spiking, or decaying, respectively.
The rate of observed connection attemptsλt is equal to0 for all t ∈ O. Givent ∈ S, define the spike rate as

λt = qω, ω > 1 (3)

For an hourt ∈ D, define

λt = q + max[0, α(λt−1 − q)], 0 < α < 1 (4)

The overall hit rateλDt for decay states can also be expressed in terms of the most recent state change.
If a decay state directly follows an off state (t + 1 ∈ D | t ∈ O), then the rate is equal to the baseline rate
q until the machine either spikes or is turned off. For any decay state that followsk steps after a spike state
with no intervening off states (t + k ∈ D | t ∈ S, t + 1, · · · t + k − 1 ∈ D) , the rate can be expressed as
q(1 + αk(ω − 1)). A spike state corresponds tok = 0, resulting in the rateqω as described in equation 3.

A discrete3 × 3 transition matrix is used to characterize the state changes (spiking, decaying, or off)
from hour to hour. Depending on the configuration and use of the infected hosts, rate spikes can appear
at relatively regular intervals (for example, approximately every 24 hours, on weekdays only), at sporadic
intervals corresponding to rare or unscheduled user events, or as a mixture of both scheduled and unschedued
activity. Rate spikes are also more likely to follow periods of inactivity, regardless of the hour at which a
machine turns on.

Let a ∈ {o, s, d} be an index representing the state at timet. To capture varying levels of periodicity
on a 24-hour scale from host to host, the transition probabilities from each state are defined with a periodic
component that controls for amplitude with a scaling parameter0 ≤ ρa ≤ 1 and a baseline parameter
νs > 0, as well as a non-periodic conditional choice parameter0 ≤ γa ≤ 1. Let t∗ be a centered time index
(t∗ = t−d) such that a value of0 accounts for time zones and aligns the periodicity with the desired hour of
the day, for example, aligning troughs with midnight and peaks with noon. Definep(ρa, νa, t

∗) as a 24-hour
periodic probability function parameterized byρa andνa relative tot∗:

p(ρa, νa, t
∗) =

ρa

νa + 2
[sin(2πt∗/24) + νa + 1]
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The following parameterization is defined for off state transition probabilitiesπ·|o(t) = Pr(t + 1 ∈
{O,S,D} | t ∈ O):

πo|o(t) = p(ρo, νo, t
∗)

πs|o(t) = γo(1− p(ρo, νo, t
∗))

πd|o(t) = (1− γo)(1− p(ρo, νo, t
∗)) (5)

This parameterization indicates that the probability of a machine staying off from an off state depends on
the time of day, and conditional that the machine turns on at any time, the probability of a spike or simple
baseline is independent of time.

For spike states, we assume a time-independent probability of transitioning to a decay state, and time-
dependent probabilities of either turning off or spiking again, conditional on a non-decay transition and the
hour of the day. This yields the following transition probabilitiesπ·|s(t) = Pr(t+ 1 ∈ {O,S,D} | t ∈ S):

πo|s(t) = (1− γs)(1− p(ρs, νs, t
∗))

πs|s(t) = (1− γs)(p(ρs, νs, t
∗))

πd|s(t) = γs

This parameterization captures the tendency of user activity to revert toward the stable baseline relative
to its initialization, regardless of the hour of the day.

From decay states, machines tend to either spike periodically, or to turn off periodically. If the machine
turns off periodically from decay states, then transition probabilties can be parameterized as with transitions
from off states (equation 5). Otherwise, a time-dependent transition to a spiking state can be implemented
for π·|d(t) = Pr(t+ 1 ∈ {O,S,D} | t ∈ D):

πo|d(t) = γd(1− p(ρd, νd, t
∗))

πs|d(t) = p(ρd, νd, t
∗)

πd|d(t) = (1− γd)(1− p(ρo, νo, t
∗))

3.2 Likelihood and estimation strategy for a single infected machine

This section develops the likelihood for all observed hours of communication for a single infected machine.
For brevity, the model is restricted to the set of hours for which the machine is known to be infected. New
infections and cleanup (births and deaths) are addressed in the dissertation work proposed in Section 4.

Let ηt be the state of the machine at timet : ηt ∈ {O,S,D}, and defineη = {η0 · · · ηT }. Let
yt be the observed count at timet, and definey = {y0 · · · yT . Let ψ = (ρ{o,s,d}, ν{o,s,d}, γ{o,s,d}) be the
collection of the transition probability parameters andθ = (q, ω, α) be the collection of rate parameters. The
likelihood `(ψ, θ,η;y) can be written as the product of an initial probabilityp(η0), state-to-state transition
probabilities, and Poisson count probabilities conditional on the rates defined for each underlying state:

`(ψ, θ,η;y) = p(η0)
T∏

t=1

p(ηt | ηt−1, ψ)
T∏

t=0

p(yt | ηt, θ)

Collecting like terms, letTs1|s2
be the set of hourst that transition from states1 to states2, and define

the following sets of lag states relative to spike and decay states:
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LB: This set represents all decay timest that follow an off state with no intervening spike states. At
any hourt ∈ LB, the infected machine broadcasts at the baseline rateq.

Lk, k = 0, 1, 2, ...: This set represents all states that followk steps after a spike state, withk = 0
indicating spike states themselves. At any hourt ∈ Lk, the infected machine broadcasts at the
decaying rateq(1 + αk(ω − 1)).

Suppose thatKmax is the largest lagk observed in the data. The likelihood can then be expressed as the
product: ∏

s1,s2∈{o,s,d}

∏
t∈Ts1|s2

πs1|s2
(t)

∏
t∈O

1{yt=0}
∏

t∈LB

e−qqyt

yt!

Kmax∏
k=0

∏
t∈Lk

e−q(1+αk(ω−1))
[
q(1 + αk(ω − 1))

]yt

yt!


Posterior distributions can be estimated using Markov Chain Monte Carlo techniques designed for data

augmentation (Tanner and Wong, 1987), that iterate between the following steps:

1. Updateη0, · · · ηT in blocks between spiking and off states, from the distributionp(ηw, · · · η(w+v) |
ψ, θ,y), using Metropolis-Hastings sampling.

2. Update parametersψ from the complete conditional distributionp(ψ | η) using a combination of
Gibbs sampling and Metropolis-Hastings sampling.

3. Update parametersθ from the complete conditional distributionp(θ | η,y) using a combination of
Gibbs sampling and Metropolis-Hastings sampling.

Step (1) can be considered a data augmentation step, where the states facilitate the parameter updating
described in steps (2) and (3). Section 3.3, Section 3.4 and Section 3.5 describe the priors and complete
conditionals for the single-host model.

3.3 Priors

The priorp(η0) is modeled as a simple discrete uniform with equal weight for statesO, S andD. The priors
for (q, ω, α) and(ρ{o,s,d}, ν{o,s,d}, γ{o,s,d}) are chosen as follows:

π(q) = Gamma(κ, τ)
π(ω − 1) = Gamma(ι = 1.5, β = 15)

π(α) = Uniform(0, 1)
π(νa) = Gamma(ξa = 1, φa = 100)
π(γa) = Uniform(0, 1)
π(ρa) = Uniform(0, 1)

a ∈ {o, s, d}

Uniform priors are chosen forα, γa, andρa to account for the possibility of large individual differences
among networks. These priors may be replaced with more flexible Beta priors when more prior information
about transitions or decay rates is available for a particular network. The parameterνa controls the amount
of periodicity in the 24-hour cycle, with a value of0 resulting in the highest peaks and lowest valleys as
hours change, and a value of100 resulting in near independent and identical transition probabilities for each
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hour. A diffuse Gamma distribution is chosen to highlight the tendency toward periodicity, but also account
for individual differences among networks.

The most important prior in terms of estimating population size is the baseline rateq. Prior information
for q comes from sandbox tests that measure the connection request rates, and the measurement of the size of
the monitored network. This information becomes critical when extending the single-host model to multiple
hosts across multiple networks, in order to gain information about a network-specific number of infected
machines as opposed to estimating a broadly flexible network-specific baseline rate.

The hyperparameters set forq depend on the size of the monitored network. Porras et. al. measured a
connection request rate of approximately2400 per hour; this yields an approximate baseline hit rate of3.6
hits per hour for a monitored network comprising a proportion0.0015 of IP space. The researchers also
observed spikes in activity by a factor of8 to 10 times the baseline rate.

3.4 Complete conditionals and sampling strategy forθ and ψ

Denote byNA the cardinality of a setA. For transition probabilities, the distributions for off state (O)
parameters are shown; distributions for spike and decay state parameters are comparable.

For q > 0 :

p(q | η,y, ξ, φ, θ) ∝ q(ξ+
P

T yt−1) exp

[
− q
φ

[
(T −NO) +

Kmax∑
k=0

NLk
αk(ω − 1)

]]

This distribution is the kernel of a Gamma distribution and can be sampled in the chain using a Gibbs step.

For ω > 1 :

p(ω | η,y, ι, β, θ) ∝ (ω − 1)ι−1 exp

[
1− ω

β
− ωq

Kmax∑
k=0

NLk
αk

]
Kmax∏
k=0

(
1 + αk(ω − 1)

)P
t∈Lk

yt

.

This distribution can be sampled using a Metropolis-Hastings step with a truncated Gamma proposal distri-
bution.

For 0 < α < 1 :

p(α | η,y, θ) ∝ exp

[
−q(ω − 1)

Kmax∑
k=0

NLk
αk

]
Kmax∏
k=0

(
1 + αk(ω − 1)

)P
t∈Lk

yt

.

This distribution can be sampled using a rejection method on the interval(0, 1),or with a Metropolis-
Hastings step with a proposal distribution defined on the interval[0, 1], such as a Beta or a triangular distri-
bution centered at the current value.

For 0 < ρo < 1 :

p(ρo | η, ψ) ∝ (ρo)
NTo|o

∏
t∈To|s∪To|d

(
1− ρo

νo + 2
[sin(2πt∗/24) + νo + 1]

)
.
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This distribution can be sampled using a rejection method (for example based on a Beta distribution that re-
places the periodic probabilityp(ρo, νo, t

∗) with the value maxt∗p(ρo, νo, t
∗)), or with a Metropolis-Hastings

step with a proposal distribution defined on the interval[0, 1], such as a Beta or a triangular distribution cen-
tered at the current value.

For νo > 1 :

p(νo | η, ψ, ξ, φ) ∝ (νo − 1)ξ−1 exp
[
νo − 1
φ

] ∏
t∈To|o

ρo

νo + 2
[sin(2πt∗/24) + νo + 1]

×
∏

t∈To|s∪To|d

(
1− ρo

νo + 2
[sin(2πt∗/24) + νo + 1]

)

This distribution can be sampled using a Metropoilis-Hastings step.

For 0 < γo < 1 :

p(γo | η, ψ) ∝ (γo)
NTo|s (1− γo)

NTo|d

This distribution is the kernel of a Beta distribution, and can be sampled in the chain using a Gibbs step.

3.5 Complete conditional and sampling strategy forηt

The rate structureλ1, ..., λT of the time seriesy1, ..., yT is a deterministic function of the placement of spike
states and off states. Changing the state for a single hourt, for example from decay to spike, also changes the
likelihood of the observed valuesyt+1 until yt+v−1, wherev is the next instance of either a spike state or an
off state. Because of the strong dependency between rates in decay states, a sequential updating of states one
hour at a time (using for example the conditional distributionPr(ηt | ηt−1, ηt+1, yt, θ, ψ) ) is not feasible.
Instead, letb be the current MCMC iteration that requires an update of state values, with corresponding
parameter valuesθb andψb, and path parametersηb. An updating scheme is suggested as follows for the
path parameters at stepb:

1. Define a suitable probability distributiong(t; θ, ψ,η) overt ∈ [0, · · · , T ], for example a uniform dis-
tribution, or a discrete probability proportional to the residual valueyt − λb

t obtained from the current
set of path parameters and states. Select an hourt to update at stepb with probabilityg(t; θb, ψb,ηb).
Let ηb

t be the current state value at iterationb of the hourt chosen for updating.

2. For any hourt and a state valuea ∈ {o, s, d}, let [t, t + v − 1] be the interval of hours affected by a
change in state at timet. Let st−1 be the state at timet− 1 andst+1 be the state at timet+ 1. Define
the functionh(t, a,η, θ, ψ) as follows:

h(t, a,η, θ, ψ) = πst−1|a(t)πa|st+1(t+ 1)
t+v−1∏

i=t

p(yi | λi−1, ηt = a, θ), (6)

whereπ·|·(t) is the state-to-state transition probability, andp(yt | λt−1, ηt = a, θ) is the Poisson
pdf with rate determined by the parameter vectorθ and the lag from the most recent spike or off
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state as determined by setting the state value at timet to a. For a stateηt, let a1
ηt

anda2
ηt

be its two
complementary states.

For the chosen hourt, draw a candidate valueη∗t from the set{a1
ηb

t
, a2

ηb
t
} with probability

Pr(η∗t = ai
ηb

t
) =

h(t, ai
ηb

t
,ηb, θb, ψb)

h(t, a1
ηb

t
,ηb, θb, ψb) + h(tb, a2

ηb
t
,ηb, θb, ψb)

(7)

In cases whereyt is non-zero, this distribution selects the complementary non-off state (spike or
decay) with probability 1.

3. Letη∗ be the set of path parameters described by setting the stateηt = η∗t . Acceptη∗tb according to
the Metropolis-Hastings ratio:

r = min

1,
g(t; θb, ψb,η∗)
g(t; θb, ψb,ηb)

[
h(t, a1

ηb
t
,ηb, θb, ψb) + h(tb, a2

ηb
t
,ηb, θb, ψb)

]
[
h(t, a1

η∗t
,η∗, θb, ψb) + h(tb, a2

η∗t
,η∗, θb, ψb)

]
 .

This ratio reduces to a basic likelihood ratio (Metropolis step) when the selection oft is uniform and
the observationyt is non-zero.

Any number of path update steps can be performed in sequence for obtaining good mixing rates in the chain.

3.6 Preliminary thoughts on a network model

SupposeH infected machines reside on a network that has a total ofM external-facing IP addresses. At
each timet,the observationsyit, i = 1, · · · ,H are mapped to IP addresses via aH ×M confusion matrix
Wt. The indexWtim describes the proportion of all traffic from hosti that was assigned to IP addressm
over the time intervalt. This interpretation requires that

∑
imWtim = H for all t, and that

∑
mWtim = 1

for all t and i. The new observations by IP address,zmt are linear combinations of the counts from the
original machines:

zmt =
H∑

i=1

Wtimyit (8)

A confusion matrixWt = IH for all t represents the simplest mapping of one static IP address per
machine. A DHCP pool may show structure in the changes ofWt with t, although it is unlikely to map
more than one machine at a time to an IP address. It is also unusual for a single host to repeatedly obtain
multiple DHCP addresses (eg, more than 2 or 3) per hour. A single NAT proxy would be represented as a
H × 1 unit vector forWt so thatzt =

∑
i yit.

The network model adds a layer of obfuscation to the single-host model. ForH machines behind a single
network, the joint likelihood of observationszmt and machine parameters is still a product of transition
probabilities and Poisson probabilities:

`(ψ1 · · ·ψH , θ1 · · · θH ,η1 · · ·ηH ;z) =

[
H∏

i=1

p(ηi0)
T∏

t=1

p(ηit | ηit−1, ψi)

]

×
T∏

t=0

 M∏
m=1

exp
[∑H

i=1Wtimλit

] (∑H
i=1Wtimλit

)zmt

zmt!


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In the multi-host network, machine-specific transition probabilities, baseline rates, and spike and decay
rates can be considered as random effects drawn from the prior distributions outlined in equation 6, where
the common network hyperparametersχ = (ξ, φ, κ, τ, ι, β) can also be described by prior distributions and
updated within the MCMC estimation chain.

For population studies, it is most important to estimate the unknownH on the network. WhenH is
large relative toM , or whenWt yields many short, random jumps among DHCP addresses, there may
be little information available about the hour-to-hour dependence of the unobserved machine ratesλi. For
these settings, it may be more advantageous to use a simplified or marginal model as a function of the
hyperparametersχ that averages across the state-to-state variation inλi from the underlying machines (see
eg. Weaver, 2010).

When the number of unobserved machinesH is small, it may be feasible to use a second data augmen-
tation step that updatesH using a complete conditional distribution, and disambiguates the countsz among
the current number of machines. However, this exercise quickly grows computationally complex. For a
network withM active IP addresses, each proxying a large numberHm of machines, estimation can be
based on a marginal rateλ∗tm, such that the countszmt are described by

`(χ,H; z0, · · · , zT ) =
T∏

t=0

M∏
m=1

exp [Hmλ
∗
mt] (Hmλ

∗
mt)

ztm

ztm!

and, based on regularity conditions for largeHm, an approximate marginal transition model

p(λ∗mt | λ∗mt−1, χ) = Normal(µm(χ, t), σm(χ, t))

This model assumes that networks that use large proxies have generally the same kinds of machines and
activity as networks that do not (that is, the same set of hyperparameters is suitable for both types). A
first step toward including network models is to parameterize three basic network administration policies: a
static NAT, a DHCP pool with a 24-hour lease, and a load-balancing scenario that alternates amongD NAT
devices. These network models are also applicable to other situations beyond the Conficker-C botnet where
counting takes place through the telescope of NAT and DHCP in IP space.

3.7 Model evaluation

Model mis-specification is most likely to occur with the format of the spike and decay functions, and the
time-independence of the parametersψ andθ. Introducing time dependence amongψ andθ is a case of
nested modeling, whereas checking the form of the decay and spike functions is not.

Regression-inspired diagnostics, as outlined by Gelfand (1996), can be useful for examining the suitabil-
ity of the spike-decay model. One example may be to use autocorrelation functions based on the posterior
predictive distribution ofλt to examine structure in the residuals resulting from a mis-specification of the
shape of the decay and spike patterns. Posterior predictive residual plots or more formal Bayes factors can
be used to assess the need for time-dependence in parameter values.

When bothH andθ are ambiguous, there is little information available to distinguish between differing
numbers of hosts and widely variable baseline rates. One way to assess model interpretation could be
to measure the posterior distribution of the dispersion of baseline rates against the prior informed by the
behavior outlined in Section 2.3 in order to check for a large discrepancy in prior vs. posterior spread.
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4 Data collection and proposed work

From the period of March 5th through April 24th, 2009, Conficker-C UDP P2P connection attempts sent
into a large private network (approximately21, 000 /24 net blocks, or0.15% of IP address space) were
collected using the SiLK Conficker.C Plug-In (Gates et al., 2004; Faber, 2009). A total of33.6 million
unique IP addresses were observed performing Conficker-C P2P scans over the 2-month window. Hourly
counts were collected, and aggregated by /24 net block to reduce the sparsity and size of the data set, as well
as to account for ephemeral DHCP leases allocated over a small number of addresses. A total of1.1 million
unique /24 net blocks were observed performing Conficker-C P2P scans. Geolocation information for each
block was obtained using a database of country codes associated with IP addreses. Each net block was also
assigned roughly to a time zone based on its country code, with1% of blocks remaining unassigned due to
satellite locations or unavailable country codes.

To complete the dissertation, the following work is proposed:

1. Incorporate births and deaths in the single-host model: To track births and deaths in the popula-
tion, the setsO,D andS must be augmented to include two more states:t ∈ ∗, a prior infection state,
andt ∈ †, a post-cleanup “death” state. Incorporating statest ∈ {∗, †} is a straightforward extension
of the3× 3 transition matrix to include more possibilities for observed0 counts prior to any observed
activity or following all observed activity.

2. Implement the expanded single-host model: Using a suitably fast programming language (C or
python, for example), implement the estimation scheme for the single-host model described in Sec-
tion 3.1 through Section 3.5.

3. Assess estimation method as applied to the collected data: Use the single-host model implemen-
tation to estimate netblock-specific parameters for the two-month data set, relaxing the prior on the
baseline rateq to account indirectly for the heterogeneity of machines behind net blocks. Assess
model convergence, mixing rates, and the suitability of the geometric spike-decay rates.

4. Formalize the network model: Determine conditional distributions and appropriate marginalizations
(see Section 3.6) for efficient estimation ofH in the presence of multiple networks and confusion
matrices. Provide parameterizations of three “typical” confusion matrices over time: a NAT, a large
DHCP pool with average lease of 24 hours, and a load-balancing network that switches disjointly
between a numberD of NATs.

5. Implement the network model: Expand the code from step (2) to include network modeling.

6. Obtain population estimates: Use the informed baseline rate parameters and the network model
to obtain population estimates from the two-month data set. Assess suitability of time-dependent
network parameters.
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