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Introduction.

Over the past decades, adaptive estimation of an unknown regression function has received
much attention. What adaptivity means in practice is that we are able to find a single procedure that
performs (essentially) optimally in a minimax sense for a wide range of smoothness assumptions
simultaneously, even when the degree of smoothness is unknown.

The desire to go beyond estimation and have honest confidence statements is what motivates
the title. For the sake of consistency with the structure of its noble literary ancestor, I divided
thesis work into four Acts, each of them illustrating a particular research topic I am currently
exploring, plus a Prologue containing background, and an Epilogue where conclusions are drawn
along with the description of possible applications in astrophysics.

The structure of this proposal, instead, is as follows. In Section 1 I provide the basic tools
and terminology of modern nonparametric statistics, whereas a review of recently developed
techniques to build nonparametric confidence sets is given in Sections 2 and 3 along with some
optimality results. In Section 4 I describe my proposed thesis work. Finally the Appendix
contains some additional background material.

1 A Primer in Nonparametric Regression.

This section is devoted to the introduction of the basic terminology and review of some recent
results concerning the problem of function estimation. I will start by reviewing some concepts in
function space, minimax optimality and adaptation. Then I will move quickly to the main theme
of this proposal: nonparametric confidence sets (nCS’s)

1.1 Function spaces: some notions and notation.

An Hilbert space H is a complete normed space whose norm is indexed by an inner (or scalar)
product. Two disjoint subspaces A and B of a space S form a direct sum decomposition of S if
every element of S can be written uniquely as a sum of an element of A and an element of B . The
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notation S = A ⊕ B is then used. A (Lebesgue) measurable function f (·) belongs to the Lebesgue
space Lp(R), p ∈ [1,+∞) if

∥∥∥ f
∥∥∥

Lp ,

[∫R ∣∣∣ f (x)
∣∣∣pdx

]1
p

< +∞

An example of Hilbert space is the Lebesgue space L2(R) of measurable and square integrable
functions. A countable subset { fk}k of functions belonging to the Hilbert space H = L2(R) is a
Riesz basis if ∀ f ∈H we have

1. f (·) can be written uniquely as

f (x) =
∑

k

θk fk(x)

2. two positive constants A and B with A < B exist such that

A
∥∥∥ f

∥∥∥2

L2 6

∑

k

|θk|2 6 B
∥∥∥ f

∥∥∥2

L2

A Riesz basis is an orthogonal basis if the fk(·) are mutually orthogonal. In this case, A = B = 1.
So, intuitively, the absolute value of A and B determine the “stability” of the system { fk}k in
reconstructing elements of H (redundancy, in general, generates unstable reconstructions).

1.2 Pointwise Estimation.

The main goal in this work will be to propose new inferential methods to recover an unknown
function from noisy data. For this reason, unless otherwise stated, the two settings I will refer
throughout the rest of this section are:

The basic nonparametric regression model:

Yi = f (xi) + σ εi, i ∈ {1, . . . ,n}, (1.1)

where ε ∼ Nn(0n, In), σ is assumed known, {xi}i∈{1,...,n} are fixed (equispaced) design points and

f ∈ L2
(
[0, 1]

)
is an uknown (smooth) function to be recovered

and, interchangeably, its strict parent:

The Normal means model:

Zi = θi + σn εi, i ∈ {1, . . . ,n}, (1.2)

where, again, ε ∼ Nn(0n, In), θn = [θ1, . . . θn]T ∈ Rn is a vector of unknown parameters and σn, in
general equal to σ/

√
n, is assumed to be known in advance.
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The way to move from one model to the other is via a sequence of basis functions and, heuristi-
cally1, it works as follow:

Step 1: Start from Equation 1.1 and let {ψ j} j∈N be any orthonormal basis for L2
(
[0, 1]

)
, the

space where f (·) lives. Expand f (·) in this basis and write

f (x) =
∑

j∈N θ jψ j(x), ∀ x ∈ [0, 1],

with θ j =
〈

f , ψ j

〉
L2 =

∫
[0,1]

f (x)ψ j(x)dx. Of course, truncating the expansion to the n–th

term we obtain an approximation to f (·) given by

f (x) ≈

n∑

j=1

θ jψ j(x), ∀ x ∈ [0, 1].

Step 2: Define the following random variables

Z j =
1

n

n∑

i=1

Yiψ j(xi), ∀ j ∈ {1, . . . n},

and observe that Zn = [Z1, . . . ,Zn]T ∼ Nn

(
θn, σ

2
nIn

)
.

Step 3: To complete the (statistical) “metamorphosis”, notice that being L2 an Hilbert space,

squared loss for an estimator f̂ (x) =
∑

j∈N θ̂ jψ j(x) of f (x) is equivalent, by Parseval

identity, to squared error loss in sequence–space for θ̂ estimator of θ

∥∥∥∥ f̂ − f
∥∥∥∥

2

L2
=

∫

[0,1]

(
f̂ (x) − f (x)

)2

dx =
∑

j∈N (
θ̂ j − θ

)2

,

∥∥∥∥θ̂ − θ
∥∥∥∥

2

ℓ2

We can now move on and consider what kind of statistical properties any reasonable point-

wise estimator f̂n(·) of the regression function f (·) should satisfy to be considered theoretically
“good”. The following four concepts are those that more frequently appear in contemporary
nonparametric statistic:

• Minimaxity: Assume that f (·), the function to be estimated, belongs to a given functional space
or class of smoothness Fα0

indexed by α0 known in advance. In the next section we will
relax this assumption. Define the Lp–risk of an arbitrary estimator Tn based on the sample

data as E ∥∥∥Tn − f
∥∥∥p

p
with p ∈ [1,+∞], and consequently, its Lp–minimax risk by

Rn

(
Fα0

, p
)
= inf

Tn

sup
f∈Fα0

E ∥∥∥Tn − f
∥∥∥p

p
,

where the infimum is taken over all measurable estimators Tn of f (·).
1See [10, 50, 63] for further details and connections with the white noise model.
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Def. 1.1 The sequence {an}n ∈ N is called the optimal rate of convergence, (or minimax rate of

convergence) on the class Fα0
for the Lp–risk if an ∼ Rn(Fα0

, p)1/p. We say that an estimator f̂n of
f (·) attains the optimal rate of convergence if

sup
f∈Fα0

E ∥∥∥Tn − f
∥∥∥p

p
∼ Rn

(
Fα0

, p
)
.

As an example, in [55, 91], the authors found that, under a squared loss (p = 2), the optimal
rate of convergence attainable by an estimator when the underlying function belongs to the
Sobolev class

W p,s(C) =
{

f :
∥∥∥ f

∥∥∥p

p
+

∥∥∥ ds

dxs f (x)
∥∥∥p

p
6 C2

}
,

is an = − s
2s+1

, hence Rn

(
W p,s(C), 2

)
= n−

2s
2s+1 , and actual estimators that achieve the minimax

bound were also given. More in general, minimax theory under the Normal means model
for mean squared error – but also confidence intervals and probabilistic error, see Section
2 – can all be precisely characterized by the so called modulus of continuity introduced by
Donoho and Liu [37]. Specifically, for any linear functional T and convex parameter space

F , the minimax mean squared error is of order ω2
(

1√
n
,F

)
where the modulus ω(ǫ,F ) is

defined by

ω(ǫ,F ) = sup
{ f ,g∈F :‖ f−g‖L26ǫ}

{∣∣∣T f − Tg
∣∣∣
}
,

and linear procedure can be constructed which are (nearly) minimax in the previous sense.
See Ibragimov Hasminskii [55], Donoho and Liu [37] and Donoho [34] for precise results.

• Maxiset: The minimax approach has some drawbacks: the choice for the function classes is
quite subjective and exhibiting an estimator well adapted to the worst functions of this class
seems too pessimistic for practical purposes. Among others, these are the reasons why,
DeVore, Kerkyacharian and Picard [26] and Kerkyacharian and Picard [68, 67] focused on
an alternative to the minimax setting: the maxiset approach which consists in investigating
the maximal space – called the maxiset – where an estimation procedure achieves a given
rate of convergence. For instance, these authors applied the theory to two well known non-
parametric procedures: wavelet thresholding and local bandwidth selection. By showing
that the maxiset for the first one is included into the maxiset for the second one, they could
conclude that local bandwidth selection is at least as good as the thresholding procedures.

Formally a maxiset is defined in great generality as follow

Def. 1.2 Consider a sequence of models En =
{Pn

θ

}
θ∈Θ

, where Pn
θ
’s are probability distribution on

the measurable spaceΩn, and Θ is a generic parameter–set. Consider also a sequence of estimate ĝn

of a function g(θ) of the parameter θ, a loss function Ln

(
ĝn, g(θ)

)
, and a rate of convergence {an}n∈N

tending to zero. Then, we define maxiset associated with the sequence {ĝn}n∈N, the loss function Ln,
the rate {an}n∈N and the constant C as the following set:

MS
(
ĝn,Ln, an

)
[C] =

θ ∈ Θ : sup
n∈N EθLn

(
ĝn, g(θ)

)

an
6 C

 .
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Hence, instead of a priori fixing a (functional) set such as a Hölder, Sobolev or Besov ball as
it is the case in a minimax framework, in the maxiset framework the parameter set Θ can
be as large as the set of bounded, measurable functions.

• Adaptivity: It may not be sufficient to know that for f (·) belonging to a given space, the
estimator performs well. Indeed, in general we do not know which space the function
belongs to. Hence it is of great interest to consider a scale of function classes and to look
for an estimator that attains simultaneously the best rates of convergence across the whole
scale. For example, the Lq–Sobolev scale is a set of Sobolev function classes indexed by
the parameters s and C of a Sobolev class. We now formalize the notion of an adaptive
estimator. Let A be a given set and let {Fα, α ∈ A } be the scale of functional classes Fα
indexed by α ∈ A . Denote Rn(α, p) the minimax risk over Fα for the Lp–loss:

Rn(α, p) = inf
f̂n

sup
f∈Fα

E ∥∥∥∥ f̂n − f
∥∥∥∥

p

Lp
.

Def. 1.3 The estimator f̂n(·) is called rate adaptive for the Lp loss and the scale of classes Fα with
α ∈ A if for any α ∈ A there exists cα > 0 such that

sup
f∈Fα

E ∥∥∥∥ f̂n − f
∥∥∥∥

p

Lp
6 cαRn(α, p), ∀ n ∈ N.

The estimator f̂n(·) is called adaptive up to a logarithmic factor for the Lp loss and the scale of classes
Fα with α ∈ A if for any α ∈ A there exist cα > 0 and γ = γα > 0 such that

sup
f∈Fα

E ∥∥∥∥ f̂n − f
∥∥∥∥

p

Lp
6 cα(log n)γRn(α, p), ∀ n ∈ N.

Thus, adaptive estimators have an optimal rate of convergence and behave as if they know
in advance in which class the function to be estimated lies.

The theory of adaptive estimation depends strongly on how the risk is measured. When
the performance is measured “globally” through, for example, the usual (integrate) Lp

loss, then full adaptation can often be achieved [13, 36, 53]. But when the performance is
measured at a point, it if often the case that full adaptation is not possible and in general
a logarithmic penalty must be paid for not knowing the smoothness (see [11, 14, 39, 74]).
The goal is then to construct estimators which, for a range of parameter spaces, are both
minimax rate optimal for integrated squared error loss and pay only a logarithmic penalty
for squared error loss at each point (see [13]). To bridge the gap between these two extremes,
Cai and Low [18] developed a theory of superefficiency (see below) and adaptation under
flexible performance measures, which provides a multiresolution view of risk by cropping
a global loss outside some neighborhood that shrinks toward a target–point as the sample
size increases. Wavelet procedures are also given which adapt rate optimally for given
shrinking neighborhoods (see [18]).
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• Superefficiency: The theory of adaptive estimators is closely connected to that of superefficient
estimators which in turn depend on how the risk is measured. The concept of asymptotic
efficiency was invented by Fisher as early as 1922 roughly in the form as we use it for
“regular” models today: a sequence of statistics is efficient if it tends to a normal distribution
with the least possible standard deviation. Successively Cramér, systematizing the topic in
the mid ’40, introduced the concept of asymptotic efficiency of an estimator as the quotient
of the inverse Fisher information and the asymptotic variance, and ended up defining an
estimator sequence to be asymptotically efficient if its asymptotic efficiency equals one: the
classical result about the asymptotic efficiency of maximum likelihood estimators (under
regularity conditions) saw the light in this same period. But, as defined, the concept of
efficiency was too weak. In 1951, in fact, Hodges produced the first example of a superefficient
estimator sequence: an estimator sequence with efficiency at least one for all value of the
parameter θ, and more than one for some θ. Although Hodges’ example threw doubt on
Fisher’s result concerning the asymptotic efficiency of maximum likelihood estimators, was
Lucien Le Cam, shortly after [69], that settled the controversy showing that, for regular
parametric models, a sequence of estimators can be superefficient on at most a Lebesgue
null set2.

Much of the recent work on nonparametric function estimation can be interpreted as an
attempt to construct superefficient estimators with desirable properties such as, adaptivity
(see [6, 7]).

To appreciate the link between superefficiency and adaptation, we need the following
definition

Def. 1.4 For a parameter space Fα0
we call an estimator f̂n(·) superefficient at f ∈ Fα0

under a loss

function Ln

(
f̂n, f

)
– for example Ln

(
f̂n, f

)
=

∥∥∥ f̂n − f
∥∥∥

Lp – if the risk at f converges faster then the

minimax risk, namely E f Ln

(
f̂n, f

)

inf
f̂n

sup
f∈Fα0

E f Ln

(
f̂n, f

) → 0 (1.3)

Now consider two nested function classes Fα2
⊂ Fα1

. Then, according to Definition 1.3,

a fully rate adaptive estimator f̂n(·) over these classes w.r.t. the loss function Ln would
necessary satisfy

sup
f∈Fαi

E f Ln

(
f̂n, f

)
≍ Rn

(Fαi
,Ln

)
= inf

f̂n

sup
f∈Fαi

E f Ln

(
f̂n, f

)
, ∀ i ∈ {1, 2}.

The risk of f̂n for each f ∈ Fα2
must then converge faster than the minimax risk over the

larger parameter space Fα1
. Hence such estimators must be superefficient at each f ∈ Fα2

with respect to Fα1
. The circle is closed.

2See [70, 71] for further details.
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2 Optimality of Confidence Sets.

• The Consequences of “Honesty”: A first asymptotic insight might be drawn from the fol-
lowing Theorem due to Li

Theorem 2.1 ([76], Theorem 2.1). Consider the Normal means model (1.2) and let

Bn =

{
θn ∈ Rn :

∥∥∥θ̂n − θn

∥∥∥2Rn 6 dn

}
,

where θ̂n is an estimator of θn and dn(Zn) is the (random) radius of the ball. Suppose that

lim inf
n→+∞

inf
θn∈Rn

Pθn
(θn ∈ Bn) > 1 − α (2.1)

Then, for any sequence {θn}n∈N and any Cn → 0,

lim sup
n→+∞

Pθn

(
dn 6 Cnσnn

1
4

)
6 α.

For asymptotic confidence procedures, a natural requirement is uniform coverage:

sup
θn∈Rn

∣∣∣P{Bn ∋ θn} − (1 − α)
∣∣∣→ 0 (2.2)

so that the coverage error depends only on n and not on θn. Theorem 2.1 clearly shows
that with no smoothness assumptions on θn, any (1 − α) confidence set of the form

Bn =
{
θn ∈ Rn : n−1/2

∥∥∥θn − θ̂n

∥∥∥
2
6 dn

}

that is asymptotically honest in the sense that

lim
n→∞

inf
θn∈Rn

Pθn

{
Bn ∋ θn

}
> 1 − α,

must necessarily have dn > C n−1/4. This implies that, in general, the radius does not adapt to
the smoothness of the unknown function: the smoothness of f (·) does not affect in any good
way the convergence rate of the confidence set. Robins and van der Vaart [86], Juditsky
and Lambert–Lacroix [65], and Cai and Low [15] show that some degree of adaptivity is
possible but quite restricted.

• Probabilistic Error and Fixed Radius Sets: In Section 1.2 we saw how the minimax theory
for mean squared error can be characterized by a modulus of continuity. This same quantity
plays an important role even when we consider other types of losses strictly related to
confidence sets. In fact, moving from mean squared to probabilistic error; that is, to
loss functions that measure the probability that the estimator is close to the unknown
function, the optimal rates of convergence for estimating a linear functional T over a

convex parameter space F turns out to be ω
(

1√
n
,F

)
. More precisely, results in [34] and Cai

and Low [16] show that
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• ∀ α ∈ (0, 1], ∃ T̂ linear estimator : sup
f∈F

P f

{∣∣∣∣̂T − T f
∣∣∣∣ > 3

2
ω
(

zα/2√
n
,F

)}
6 α,

• ∀ T̂ linear estimator, ∃ α ∈ (0, 1
2
) : sup

f∈F
P f

{∣∣∣∣̂T − T f
∣∣∣∣ > 1

2
ω
(

zα√
n
,F

)}
> α.

These bounds on probabilistic error have direct consequences for the construction of fixed
length confidence intervals and in particular show that for any given coverage, the shortest

fixed length interval has length of order ω
(

1√
n
,F

)
(see Donoho [34]).

• Probabilistic Error Adaptivity and Recentered Confidence Sets : In contrast to mean squared
error, full adaptation for linear functional under probabilistic error can commonly be
achieved. In particular there are many examples where an estimator can be constructed
which is simultaneously rate optimal under probabilistic error and for which there do
not exist simultaneously minimax rate optimal mean squared error estimators [16]. An
interesting question is then whether we can find estimators which have both good mean
squared error performance and also optimal probabilistic error. In [17], Cai and Low quan-
tify the penalty that must be pay in probabilistic error when the estimator is optimal in
mean squared error, and, viceversa, in mean squared loss when the estimator performs
well in probabilistic error. An immediate consequence of these results is that centering con-
fidence intervals on adaptive mean squared error estimators in general yields suboptimal
confidence procedures: either the resulting interval has poor coverage probability, or it is
unnecessarily long.

3 Available Methods: a Review.

There are several approaches to computing confidence bands and balls. Working in function
space, for example, one approach is to use pointwise confidence intervals on a very fine grid of the
observation interval. The level of these confidence intervals can be adjusted by the Bonferroni
method in order to obtain uniform confidence bands. The gaps between the grid points can
be bridged via smoothness conditions on the regression curve. A drawback to the Bonferroni
approach is that the resulting intervals will quite often be too long. The reason is that this method
does not make use of the substantial positive correlation of the curve estimates at nearby points.

Another approach is to consider f̂n(x) − f (x) as a stochastic process (in x) and then to derive
asymptotic Gaussian approximations to that process. The extreme value theory of Gaussian
processes yields the level of these confidence bands. A third approach is based on the bootstrap.
By resampling one attempts to approximate the distribution of

Ln

(
f̂n, f

)
=

∥∥∥∥ f̂n − f
∥∥∥∥

L∞
= sup

x∈[0,1]

∣∣∣∣ f̂n(x) − f (x)
∣∣∣∣ ;

which yields lower and upper bands computed as the (α/2) and (1 − α/2) quantiles of Ln,

respectively. Another bootstrap method is based on approximating the distribution of f̂n(x)− f (x)
at distinct points x and then to simultaneously correct the pointwise confidence intervals in order
to obtain the joint coverage probability 1 − α.
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In this section I will briefly review some of the most common methods available in the liter-
ature to build reliable confidence bands around a given scatter plot smoother or, alternatively,
confidence balls in sequence space for smoothers based on orthogonal expansions. We will see
how most of them, in one way or another, are essentially based on some particular estimator of
the loss associated to the smoother. In the following will be convenient to drop the subscript and
write θ and Z instead of θn and Zn.

• “Classical” methods: The following are two of the simplest – and probably oldest – methods
available to build confidence sets with guaranteed coverage.

[1]– χ2
 : The classical α–level confidence set for θ in (1.2) is based on the

well–known fact that 1
σ2

n
‖Z − θ‖2Rn has a chi–squared distribution with n degrees of

freedom, so that an obvious candidate is the following

Bχ2 =

{
θ ∈ Rn : ‖Z − θ‖Rn 6

√
σ2

n χ
2
n,α

}
=

{
θ ∈ Rn : ‖Z − θ‖2Rn 6 σ2

n χ
2
n,α

}
, (3.1)

where χ2
n,α is the upper α–quantile of a χ2

n. Evidently Pθ(Bχ2 ∋ θ
)

is exactly 1 − α,

for every θ ∈ Rn and, by the triangular array central limit theorem, Bχ2 is a fixed

radius sphere centered at the maximum likelihood estimator θ̂ML = Z whose radius is

approximatively σ2
n

(
n +
√

2nΦ−1(α)
)

for large values of n. Thus

lim
n→+∞

sup
‖θ‖2

ℓ2
6Cn

∣∣∣∣gn

(
Bχ2 ,θ

)
− 2σn

∣∣∣∣ = 0, ∀ R+ ∋ C < +∞,

where, for a given θ0 ∈ Rn, gn(B,θ0) denotes the geometrical risk of the confidence set
B as a set–valued estimator of θ, and is defined as follow

gn(B,θ0) , 1√
n
Eθ0

[
sup
θ∈B
‖θ0 − θ‖Rn

]
. (3.2)

In other words, the geometrical risk is the expected distance toθ0 from the most distant
point in the confidence set.

Notice that the approximate critical value for Bχ2 can be found directly from the
asymptotic normal distribution of the difference

1√
n

[
‖Z − θ‖2Rn − nσ2

n

]
, (3.3)

which compares the quadratic loss of θ̂ML = Z with an unbiased estimator of its risk.
We will see how, moving from fixed to random radius balls, we can improve uponBχ2

within the tight constrained discussed in Section 2.

[2]– Ś– : Under a standard parametric model

Yi = f (xi) + σ εi = ψ(xi)
Tθ + σ εi, ∀ i ∈ {1, . . . ,n},
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where θ ∈ Rp is a vector of unknown parameters, ψ(x) ∈ Rp for each x ∈ X ⊂ Rd is a
known vector function of predictors, σ2 is the unknown variance, and ε ∼ Nn(0n, In),
Scheffe [88] proposed to use

κ =
√

p · Fαp,n−p

where p = rank(Ψ) with Ψ =
[
ψ(x1), . . . ,ψ(xn)

]
, and Fαp,n−p is the upper α quantile of

an F distribution with (p,n − p) degrees of freedom, to build the following predictive
confidence bands for f (x):

Bκ(x) =
{
y ∈ R :

∣∣∣ f̂n(x) − y
∣∣∣ 6 κ σ̂ ‖ψ⋆(x)‖Rn

}
, (3.4)

where σ̂ is any consistent estimator of the variance and f̂n(·) is the least square linear
smoother

f̂n(x) =

n∑

i=1

ψ⋆i (x)Yi =
〈
ψ⋆(x),Y

〉Rn ,

with smoothing vector at x given by

ψ⋆(x) = ψ(x)T
(
ΨTΨ

)−1
ΨT.

• Tube–formula method [ 78, 93, 94]: To build simultaneous confidence bands around a linear
smoother

f̂n(x) =

n∑

i=1

ψ⋆i (x)Yi =
〈
ψ⋆(x),Y

〉Rn , x ∈ X ⊂ Rd,

one solution is the volume of tubes formula proposed in [93]. The idea is simply to replace the
very conservative upper–bound to the non–coverage probability adopted by the Scheffe’s
method, with a better, more direct one. To this end, we consider the random process inside
the non–coverage probability,

Gn(x) =
f̂n(x) − f (x)

‖ψ⋆(x)‖
,

then, under the nonparametric regression model (1.1), Gn(x) converges to a Gaussian
process G(x) on X with mean zero and covariance function Cov(x, x′). This leads to a
general question about how to find good approximation toP{

sup
x∈X

G(x) > z

}
, as z→∞. (3.5)

Sun [92] has a two-term approximation for a general class of random fields when X does
not have boundary: P{

sup
x∈X

G(x) > z

}
≈ κ0Γ0(z) + κ2Γ2(z), (3.6)

where Γi(·) are incomplete Gamma functions depending on the dimension d and z and the
κi are constants depending on X and Cov(x, x′) only.
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Now, returning to our original problem, if d = 1 and f̂n(·) is unbiased, then

Gn(x) =
〈

ψ⋆(x)

‖ψ⋆(x)‖Rn
, ε

〉Rn
,

〈
ψ(x), ε

〉Rn
,

and the critical value κ in the confidence bands (3.4) is such that

α ≈ κ0

π

(
1 +

κ2

n − p

)−n−p

2

+ E · P (∣∣∣tn−p

∣∣∣ > κ
)
, (3.7)

where the first term is the result of an appropriate integration of Equation 3.5 and an
application of the symmetry of G(·); the second term is from a boundary correction to (3.5)
and involves the right tail of a t distribution with (n − p) degrees of freedom, plus the

Euler–Poincaré characteristic E of {ψ(x)}x∈X (see [93] for further details). E is equal to 1 if

X = [a, b] and ψ(a) , ψ(b), whereas E ≡ 0 if ψ(a) ≡ ψ(b). In addition, in the case d = 1, the
following simple computational formula for κ0 is available:

κ0 ≈
∫

X

∥∥∥∥∥
d

dx
ψ(x)

∥∥∥∥∥Rn

dx ≈
∑

i

∥∥∥ψ(xi) −ψ(xi−1)
∥∥∥Rn ,

which, geometrically, is the approximate length of the curve
{
ψ(x)

}
x∈X

. Sufficient conditions

on the tubular area around ψ(x) under which the approximation in (3.7) works well are
given in [93]. If these assumptions are violated as, for example, when the domain of interest
consists of a few points close to each other, then the approximation symbol “≈” in Equation
3.7 should be replaced by “6”.

• Robins–van der Vaart split–sample method [ 86]: This approach makes explicit the basic
idea that has driven much of the recent research in nCS’s: if I want to build an Lp ball
around a “good” estimator of my choice, all I have to do is to find a way to explore the
behavior of its Lp loss (not the risk!). More specifically, taking p = 2 and identifying “good”
with adaptive estimator, we “just” need to control a suitable estimator of a quadratic
functional opportunely centered, hoping that, to some extend, the good properties of the
pointwise estimator carry over the derived confidence set.

• Subspace Pre–Testing [ 3]: Consider again the nonparametric regression model

Yn = fn + σ ǫn, where fn = [ f (x1), . . . , f (xn)]T.

Baraud procedure constructs L2–finite–sample confidence balls for fn by a sequence of
suitable tests. Let S = {Sk}k∈K be a collection of subspaces of Rn and assume Rn ∈ S. For

each Sk ∈ S, let f̂n = ΠSk
Yn with ΠSk

being the orthogonal projection onto Sk, and note that
the basic building block of an L2–ball can be written as

∥∥∥fn − f̂n

∥∥∥2

2
=

∥∥∥(I −ΠSk
)fn

∥∥∥2

2
+ σ2

∥∥∥ΠSk
ǫn

∥∥∥2

2
.

Baraud uses TSk
= (I −ΠSk

)Yn to test

H0 : fn ∈ Sk vs H1 : fn < Sk,

and control ‖(I−ΠSk
)fn‖22, for each k ∈ K: it will be small with high probability when we do

not reject the null.
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•Wahba’s Average Coverage: This “tangentially” Bayesian technique, was started by Grace
Wahba in [97] and further studied in [27, 84, 101, 102]. See [51] and [98] also. Using the
same notation adopted for the Sheffe’s method, consider a generic linear smoother

f̂λG(xn) = Ψ⋆
n (λG)yn,

where yn = [y1, . . . , yn]T, xn = [x1, . . . , xn]T, xi ∈ R and {Ψ⋆
n (λG)}λG∈A with A ⊂ R+, is a family

of smoothing matrices indexed by the global smoothing parameter λG. In this context,
Wahba first suggested that α–level pointwise confidence intervals for the regression curve

f (·) at xi could be constructed using the  smoothing spline estimator f̂
λ̂G

(·) in the form

B
λ̂G

(xi) =

[
f̂
λ̂G

(xi) − zα/2

√
σ̂2

[
Ψ⋆

n

(̂
λG

)]
(i,i)
, f̂
λ̂G

(xi) + zα/2

√
σ̂2

[
Ψ⋆

n

(̂
λG

)]
(i,i)

]
(3.8)

where λ̂G is the value of λG that minimizes (λG),
[
Ψ⋆

n

(̂
λG

)]
(i,i)

is the i–th diagonal element

of the smoothing matrix3, and σ̂2 is the estimator of σ2 from the smoothing spline estimator

given by /
{
n − tr[Ψ⋆

n (λG)]
}

with  equal to the residual sum of squares. Through

simulation results, Wahba found that the average coverage probability, 1
n

∑
i P[

f (xi) ∈ Bλ̂G
(xi)

]
,

is close to 1 − α. This result led to the conjecture by Wahba that 1
n
σ̂2tr

[
Ψ⋆

n (λG)
]

was related

to the expected average squared error

EASE(λG) = E
1

n

n∑

i=1

[
f (xi) − f̂λG(xi)

]2

 .

Nychka [84] proved this conjecture of Wahba’s to be true and a more detailed discussion of
these  pointwise confidence intervals is given therein. Finally in [27] this same strategy
for confidence intervals based on a global smoothing parameter λG is applied to estimates
where the smoothing parameter is actually a vector valued function λL = [λ1, . . . , λn]T that
adapts to the local curvature of the function. Accordingly, the pointwise intervals have the
same form as in Equation 3.8 except the estimate and standard error are evaluated at the

local smoothing parameter λ̂i rather than λ̂G. If the quantity σ̂2
[
Ψ⋆

n

(̂
λi

)]
(i,i)

is close to the

pointwise expected squared error, then one would expect the confidence interval to hold
its level uniformly at all points. And in fact the proposed new method called  was
shown to be superior to the standard use of generalized cross-validation for constructing
confidence intervals.

• Asymptotic and Bootstrap–based Pivot–balls [ 5, 8]: Suppose we wish to construct a confi-
dence set for the parametric function τ(θ). Classical theory advises to find a pivot; that is, a
function of the sample Zn and of τ(·) whose distribution under the model does not depend
on the unknown parameter θ.

3As an aside, the term σ̂2
[
Ψ⋆

n

(̂
λG

)]
(i,i)

results from some nice simplifications for splines in terms of expressing the

posterior variance of the estimate as a simple function of the smoothing matrix A. For other smoothers what should
be included here is the posterior variance for the estimator

12



Though important, the exact pivotal technique is rarely available, in particular when dealing
with nonparametric model (it already fails to generate confidence intervals for the difference
of two normal means in the Behrens–Fisher problem). To generalize the pivotal method
we can follow two different paths: one rooted in resampling methods, and the other in
asymptotic approximations of some kind. In both cases, we start with a function Rn(Zn, τ)
with distribution Hn(θ). Rn does not need to be a pivot, but it plays an analogous role.
Beran calls Rn a root. Assume now that by bootstrap or some asymptotic argument, an

approximation Ĥn(θ) to Hn(θ) is available. At this point we are in position to build
confidence sets by analogy with classical pivot–method.

Let Ĥ−1
n (α) denote the α–quantile of our approximation toHn and let T denote the support

of τ(·). Define the approximate confidence set for τ(·) to be

Bn =
{
t ∈ T : Rn(Zn, t) 6 Ĥ−1

n (α)
}
.

Under suitable conditions on Ĥn and on the limitH(·) of the sequence {Hn}n, the coverage
of Bn converges to α.

For the basic Normal mean problem the function τ of interest is the signal θn itself. In this
setting, Beran (1995), based on Stein (1981), considers L2–balls centered on the James–Stein

estimator θ̂JS. This leads naturally to a root that compares the L2–loss Ln

(
θ̂JS,θn

)
of θ̂JS with

an unbiased estimator of its risk R̂n

(
θ̂JS

)
:

Rn(Zn,θn) = 1√
n

[
Ln − R̂n

]
,

Later, Beran and Dumbgen (1998) extended this approach to confidence sets centered on a
larger class of estimators that includes the so called modulators:

θ̂(λ) = [λ1θ̃1, . . . , λnθ̃n]T,

where 1 > λ1 > · · · > λn > 0, and θ̃n is the maximum likelihood estimator.

4 Proposed Work.

Act I: TW T  “F” C B
Wavelet bases are ubiquitous in modern nonparametric statistics starting from the 1994
seminal paper by Donoho and Johnstone [35]. What makes them so appealing to statis-
ticians is their ability to capture the relevant features of smooth signals in a few “big”
coefficients at high scales (low frequencies) so that zero thresholding the small ones, results
in an effective denoising scheme (see [96]).

In a variety of real–life signals, significant wavelet coefficients often occur in clusters at ad-
jacent scales and locations. Irregularities, like a discontinuity for example, in general tend
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to affect the whole block of coefficients corresponding to wavelet functions whose “sup-
port” contains them. For this reason it is reasonable to expect that the risk of “blocked”
thresholding rules might compare quite favorably with other classical estimators based on
level–wise or global thresholds. The literature is filled with successful examples of “hor-
izontally” (within scales) blocked rules derived from both, purely frequentist arguments
[13, 19, 52], or Bayesian reasonings of some flavor [1, 21, 100]. Recently, an increasing
amount of work has been devoted to study a new class of “vertically” (across scales)
blocked or treed rules [2, 12, 23, 40, 87], that have proved to be of invaluable help in at
least two settings of great importance: the construction of adaptive pointwise confidence
intervals [85] and the derivation of pointwise estimators of a regression function that adapt
rate optimally under what I will call a focused performance measure that bridges the gap
between pointwise and global risk cropping the latter outside some neighborhood around
a target point of interest [18].

The main goal of this section is to explore the possibility of using treed or other type of
doubly–blocked rules to support the construction of focused confidence bands and balls;
that is, of possibly adaptive confidence sets with guaranteed coverage only in a reasonably
sized neighborhood of a target–point. More specifically, my main interest here will be
in obtaining what can be called maximal focused bands; that is, adaptive α–level focused
bands over the maximally allowed neighborhood of a target–point. In fact, although we
have a whole catalog of adaptive function estimators considered also practically effective
in recovering a function observed in a low noise environment, when we come to global
nonparametric confidence sets, adaptivity is extremely limited (Lp balls with p < +∞, see
[15, 76]) or just impossible (uniform bands or L∞–balls, see [79]), no matter where we center
our sets: here adaptive methods do not perform significantly better than others as, for
example, fixed bandwidth local polynomial smoothers. But, looking at the way Picard and
Tribuley build adaptive pointwise confidence interval in their recent paper [85], it seems that
some room is left out to rescue the credibility of particular classes of pointwise adaptive
estimators in driving the construction of localized (focused) balls and bands.

Act II: B  T S P–T
In a recent work (see [3] and Section 3 also), Yannick Baraud constructs finite–sample
confidence ball for an unknown regression function f (·) observed in Gaussian noise, based
on the following sequential testing procedure (pre–testing) inspired by Lepski [75]: given
a family of linear subspaces {S}α∈A , for each α he tests f ∈ Sα and, in case the test does
not reject, he builds an α–level L2–ball with minimal radius centered on the L2–optimal
estimator (under the constraint that f ∈ Sα). The output of this algorithm is the unique
confidence ball having minimal random radius. He then goes on comparing his technique
with the one based on the James–Stein estimator [76, 90].

Based on this, my goal in this part of the work will be two-fold: on one hand I will show
how to employ George’s multiple shrinkage setting [43] to inject flexibility into the Li–
Stein’s procedure so to achieve the performance of Baraud’s confidence sets; on the other, I
will try to improve upon Baraud’s method itself by relaxing the condition on the linearity
of the subspaces, via a sequential treed testing, reminiscence of the “treed” thresholding
rule described in the previous Act. In both cases I will consider two different options to
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calibrate the confidence radius: one based on asymptotic arguments and the other on an
appropriate bootstrap technique. Possible ways to attack the problem from a finite–sample
point of view will also be described.

Act III: A NM P  P E
While frequentist methods for nonparametric estimation are flourishing, nonparametric
Bayesian estimation methods have a relatively shorter history (see [99] for a nice review).
Besides philosophical reasons, there are some practical advantages on using the Bayesian
approach: on the one hand it allows to reflect ones prior beliefs into the analysis, on the
other, it is, at least in principle, straightforward to apply since inference is based on the
posterior distribution only, although computation of this distribution is an important and
potentially formidable issue. In fact, due to the lack of useful analytical expressions for
the posterior in most curve estimation problems, computation has to be done by some
numerical technique, usually by the help of suitable Markov chain Monte-Carlo methods.

From a theoretical point of view, questions relative to consistency and convergence rates
of Bayesian procedures have been explored in length [22, 49, 47, 89], whereas the study
of adaptivity issue is still in its infancy [4, 46, 54, 103]. Moving to another topic of major
concern, the catalog of priors over infinite dimensional spaces available to conduct a non-
parametric analysis is growing constantly and a nice review is contained in a recent paper
by Choudhuri, Ghosal and Roy [44], but still, it seems that there is a lack in the literature
relative to the construction/discovering of what in the “classical” parametric setting has be
called probability matching prior; that is, of a prior distribution under which specific α–level
credible sets are also α–level confidence intervals up to some order of approximation (see
[28] for further information). Motivated by such a simple consideration, and by the growing
complexity of Bayesian nonparametric models, in this part I will try to (partially) fill in the
gap tackling the matching problem from a purely algorithmic point of view: I will consider
the “non–informative” prior distributions introduced in [45] and, rewriting the matching
conditions as an optimization problem, I will see to what extend the perturbed–ellipsoids
methods due to Ghosh and Mukerjee [48] can be adapted to the nonparametric case.

Act IV: REACT  –G N
Building upon the already mentioned 1981 Stein’s seminal paper [90], in 1998 Rudy Beran
and Lutz Dümbgen introduced what later has been called pivot–ball in sequence space,
to assess the uncertainty around a nonparametric function estimator based on orthogonal
expansion. Since then, the basic framework has been extended in several directions [41, 58],
but none of them has focused on broadening the noise class this procedure applies to, and
this is precisely what I will pursue in this last part of my work. More specifically, I will
extend the asymptotic pivoting argument to the case of error distributions belonging to
the (natural) exponential family with quadratic variance function (QVEF in the following)
introduced by Carl Morris in the early ’80 [82, 83] and covering the Gaussian, Poisson,
gamma, binomial, negative binomial and generalised hyperbolic secant distributions.

�
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Appendix

A Act I: Treed Wavelet Thresholding and “Focused” Bands.
[Background]

A.1 Wavelets, function spaces and smoothing: an overview.

In this section, I give an overview on multiresolution analysis, wavelet series and wavelet estimators in the
classical setting . By “classical” or “first-generation” wavelets, I mean wavelets whose construction is deeply rooted
in Mallat’s pyramidal algorithm and were initially designed to analyze signals observed at equispaced design points
and with a sample size which is a power of two. This class of wavelets have to be contrasted with the“second-
generation” wavelets basis introduced in [95] and recently applied to nonparametric regression with random design
[31, 32].

If one wants to analyze a function of time with a series expansion, the first idea that comes probably into one’s
mind is to use a Fourier series, i.e. decompose the function into sine and cosine at different frequencies. In this
process, we hope that only a few coefficients in the series will carry most of the information about the signal. Certain
smooth functions admit such an “economical” Fourier expansion. However, for a large range of functions, a good
Fourier series approximation requires numerous sine and cosine basis functions. Indeed, the sine functions have a
precise frequency but are not localized in time, hence a localized information in the signal like a discontinuity will
a.ect all the coe.cients of the series. This drawback lead to look for more efficient bases, that is, bases which are
localized both in time and in frequency. We will see here that a wavelet basis offers exactly this property.

A.1.1 Multiresolution analysis.

A natural way to introduce wavelets is through the multiresolution analysis. Given a function f ∈ L2(R), a

multiresolution of L2(R) will provide a sequence of spaces {Vk} j∈Z, such that the projections of f (·) onto these spaces
give finer and finer approximations (as j→ +∞) of the function f (·).

Def. A.1 A multiresolution of L2(R) is defined as a sequence of closed subspaces V j ⊂ L2(R), with j ∈ Z, that verifies the
following propertis

1. . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .
2.

⋃
j∈ZV j is dense in L2(R) and

⋂
j∈ZV j ={0}

3. If f (x) ∈ V0, then f (2 jx) ∈ V j, i.e. the spaces V j are scaled versions of the central space V0.

4. If f (x) ∈ V0, then f (x − k) ∈ V0, ∀ k ∈ Z, i.e., V0 (and hence all the V j) is invariant under translation.

5. The exists φ(x) ∈ V0 such that {φ(x − k)}k∈Z is a Riesz basis in V0.

I will call “level” of a  one of the subspaces V j. From Definition A.1, it follows that, for fixed j, the set

{φ j,k(x) = 2 j/2φ(2 jx − k)}k∈Z of scaled and translated version of φ(·) is a Riesz basis for V j. Since φ ∈ V0 ⊂ V1, we can
express φ(·) as a linear combination of {φ1,k}k∈Z:

φ(x) =
∑

k∈Z

hkφ1,k(x) =
√

2
∑

k∈Z

hkφ(2x − k). (A.1)

Equation A.1 is called the two–scale equation or refinement equation. It is a fundamental equation in since it tells us
how to go from a fine level V1 to a coarser level V0. The function φ(·) is usually called father wavelet or scaling function.
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As said before, the spaces V j will be used to approximate general functions. This will be done by defining

appropriate projections onto these spaces. Since the union of all the V j is dense in L2(R), we are guaranteed that any

given function of L2(R) can be approximated arbitrary well by such projections. As an example, define the space V j

as
V j =

{
f ∈ L2(R)

∣∣∣∀ k ∈ Z, f
∣∣∣
[2− jk,2− j(k+1)]

is constant
}
. (A.2)

Then the scaling function φ(x) = 1[0,1)(x), called Haar scaling function, generates by translation and dilations a 
for the sequence of spaces {V j} j∈Z defined in Equation A.2, see [30].

A.1.2 The detail space and the wavelet function.

Rather than considering all the nested spaces V j, it would be more efficient to code only the information needed
to go from V j to V j+1. Hence consider the space W j which complements V j in V j+1:

V j+1 = V j ⊕W j, (A.3)

The space W j is not necessarily orthogonal to V j, but it always contains the detail information needed to go from
an approximation at resolution j to an approximation at resolution j + 1. Consequently, by using recursively the
Equation A.3, we have for any fixed j0 ∈ Z, the decomposition

L2(R) = V j0 ⊕
∞⊕

j= j0

W j.

With the notational convention that W j0−1 , V j0 , the sequence {W j} j> j0−1 is usually called multiscale decomposition
(), and a function ψ(·) is called mother wavelet or simply wavelet whenever the set {ψ(x − k)}k∈Z is a Riesz basis of
W0. Since W0 ⊂ V1, there also exist a refinement equation for ψ(·) similar to A.1:

ψ(x) =
√

2
∑

k∈Z gkφ(2x − k). (A.4)

The collection of wavelet functions {ψ j,k(x) = 2 j/2ψ(2 jx − k)}( j,k)∈Z2 is then a Riesz basis for Lp2(R). One of the main
features of the wavelet functions is that they possess a certain number of vanishing moments.

Def. A.2 A wavelet function ψ(·) has N vanishing moments if

∫
xpψ(x)dx = 0, ∀ p ∈ {0, . . . ,N − 1}.

The following are three interesting cases of wavelet bases.

• Orthogonal bases on R: In an orthogonal , the spaces W j are defined as the orthogonal complement of V j in
V j+1. The following theorem tells us one of the main advantages of such a .

Theorem A.1 ([30], Theorem 5.1.1). If a sequence of closed subspaces {V j} j∈Z in L2(R) satisfies Definition A.1, and
if, in addition, {φ(x − k)}k∈Z is an orthogonal basis for V0, then there exists one function ψ(·) such that {ψ(x − k)}k∈Z
forms an orthogonal basis for the orthogonal complement W0 of V0 in V1.

An immediate consequence of Theorem A.1 is that {ψ j,k}k∈Z constitutes an orthogonal basis for the orthogonal
complement W j of V j in V j+1. In this section, let P j and Q j be respectively the orthogonal projection operator
onto V j and onto W j. The orthogonal expansion

f (x) = P j0 ( f )(x) +

∞∑

j= j0

Q j( f )(x) =
∑

k∈Z 〈
f , φ j0,k

〉
φ j0,k(x) +

∞∑

j= j0

∑

k∈Z 〈
f , ψ j,k

〉
ψ j,k(x),
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says that a first, coarse approximation of f (·) in V j0 is further refined with the projection of f (·) onto the detail
spaces W j. The simplest orthogonal wavelet system is the Haar system associated to the scaling function
defined in Section A.1.1. The Haar wavelet given by

ψ(x) = 2−1/2
[
φ(2x − 1) − φ(2x)

]
= 1[ 1

2 ,1

)(x) − 1[
0,

1
2

)(x),

has only one vanishing moment and consequently is optimal only to represent functions having a low
degree of regularity, like, for example, β–Hölder function with β ∈ (0, 1). Daubechies constructed in [29, 30]
compactly supported wavelets which have more than one vanishing moment. Compactly supported wavelets
are desirable from a numerical point of view, while having more than one vanishing moment they allow to
reconstruct exactly polynomial of higher order. These wavelets cannot, in general, be written in a closed
analytic form. However, their graph can be computed with arbitrary high precision using a subdivision
scheme algorithm. In addition, compactly supported wavelets cannot, in general, be symmetric. The best
we can do is to build what Daubechies called least asymmetric wavelets or Symmlets. See [30, 53, 96] for other
orthogonal systems.

• Orthogonal bases on [0,1]: Different procedures are available to build orthogonal wavelets on an interval.
Among these, the most popular is probably the one synthesized in [25] by transforming the boundary wavelets,
i.e. those whose supports overlap x = 0 or x = 1, into functions having their support striclty contained in

[0, 1] so to provide the necessary complement to generate a basis for L2([0, 1]). If the mother wavelet has a
compact support then there is only a constant number of boundary wavelets at each scale to be modified.

The main difficulty in implementing these schemes, is to construct boundary–wavelets that keep their van-
ishing moments. In fact, of the three main procedures available, the one mentioned here is slightly more
complicated to construct, but it is also the only capable to produce bases having as many vanishing moments
as the original inside–wavelets. See [80] for further details and alternative constructions.

Another construction particularly interesting for its statistical implications, is the one recently introduced
by Silverman and Johnstone [63]. More specifically, they use their boundary–modified coiflets basis to show
that the discrete wavelet transform of finite data from sampled regression models asymptotically provides
a close approximation to the wavelet transform of the continuous Gaussian white noise model so that, as a
matter of fact, estimating errors in the practical discrete setting need not be larger than those expected in the
continuous statistical setting.

• Biorthogonal bases: Having an orthogonal  puts strong constraints on the construction of a wavelet basis.
For example, the Haar wavelet is the only real–valued function which is compactly supported and symmetric.
However, if we relax orthogonality for biorthogonality, then it becomes possible to have real-valued wavelet
bases of fixed but arbitrary high order (see Definition A.3) which are symmetric and compactly supported [24].

In a biorthogonal setting, a dual scaling function φ̃(·) and a dual wavelet function ψ̃(·) exist. They generate a

dual with subspaces Ṽ j and complement spaces W̃ j such that

Ṽ j⊥W j and V j⊥W̃ j.

In other words, 〈
φ̃(·), ψ(· − k)

〉
= 0 and

〈
φ(·), ψ̃(· − k)

〉
= 0.

Moreover, the dual functions also have to satisfy
〈
φ̃(·), φ(· − k)

〉
= δk,0 and

〈
ψ̃(·), ψ(· − k)

〉
= δk,0,

where δx,y is the Kronecker simbol. By construction, the dual scaling and wavelet functions satisfy a refinement
equation pretty similar to Equations A.1 and A.4. In this work, we use the following convention: the dual
will be used to decompose a function (or a signal), while the original, or primal  reconstructs the function.

This yields the following representation of a function f ∈ L2(R)

f (x) =
∑

k∈Z

〈
f , φ̃ j0,k

〉
φ j0,k(x) +

∞∑

j= j0

∑

k∈Z

〈
f , ψ̃ j,k

〉
ψ j,k(x). (A.5)
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A.1.3 Wavelets as unconditional bases.

The most important basis in analysis has certainly been the trigonometric system. This is so because the
resolution of several key problems in physics is particularly simple when formulated in this setting. Unfortunately,
the convergence of the corresponding series posed important mathematical problems since Du Bois-Reymond
showed in 1873 that the Fourier series of a continuous function may diverge (see [66] where the fine properties of
Fourier series and the development of ideas that led to wavelet analysis are described). Is this phenomenon inherent
to any orthogonal decomposition? Hilbert posed this problem to his student Alfred Haar, who gave a negative
answer in his thesis by constructing in 1909 the wavelet basis named after him (see Section A.1.1). Haar showed
that the partial sums of the decomposition of a continuous function in this basis are uniformly convergent. The
comparison with the trigonometric system is striking: a basis composed of discontinuous functions is more adapted
to the analysis and reconstruction of continuous functions than the trigonometric system, though this system is
composed of C∞ functions. The Haar basis has another important property which the trigonometric system lacks:
Marcinkiewicz showed in 1937 that it is an unconditional basis for the spaces Lp when 1 < p < ∞; this means that
any function of Lp can be written in only one way as

∑
θ j,kψ j,k(·) and the convergence is unconditional, i.e. does not

depend on the order of summation. This result still has important implications in current research.
Of course, since the Haar basis is not composed of continuous functions, it cannot be a basis for spaces of

continuous functions. This last remark motivated the search for “smooth” analogs of the Haar basis. The goal was
to construct bases of similar algorithmic type, and which would be unconditional for a wide range of function spaces.
In 1910, Faber considered on [0, 1] the basis composed by 1, x and the primitives of the Haar basis. This Schauder
basis (so-called because it was rediscovered by Schauder in 1927) has the same algorithmic form as the Haar basis
with ψ(·) equal to the primitive of the Haar wavelet, and, as Faber himself proved, it is actually a basis for C 0([0, 1]).

The price to be paid is that it is no longer a basis for L2([0, 1]). Should one necessarily lose on one hand what has been
obtained by the other? In 1928, Franklin showed that this is actually not the case. By applying the Gram-Schmidt
orthonormalization procedure to the Schauder basis, he obtained a basis which is simultaneously unconditional
for all Lp([0, 1]) spaces with p ∈ (1,∞), for C 0([0, 1]) and for the Sobolev spaces of low regularity. One can go on
and iterate one step of integration (which regularizes) and one step of Gram-Schmidt orthonormalization. Doing
so, in 1972 Ciesielski constructed bases which are unconditional for a wider and wider range of function spaces on
[0, 1]. Of course, applying the Gram-Schmidt orthonormalization procedure iteratively makes these bases essentially
impossible to be computed numerically. Something has been lost along the way. However, algorithmic simplicity
and regularity can go together. In 1981, Strömberg had the idea of applying the Gram-Schmidt orthonormalization
on the whole line instead of [0, 1] only (loosely speaking, one starts the orthonormalization at −∞). Because of the
dilation and translation invariance of the real line, this substitute of the Shauder basis now has the exact algorithmic
form. In addition, starting the orthonormalization with B-splines of arbitrary high degree, Strömberg was able
to construct orthonormal wavelet bases of arbitrary regularity that are actually unconditional for a wide range of
Sobolev and Besov spaces. The ultimate perfection was found in 1986 by Yves Meyer and Pierre-Gilles Lemarié,

who constructed C∞ wavelets
{
ψ(i)(·)

}
i∈{1,...,2d−1} such that the functions

ψ
(i)

j,k
(x) , 2

d j

2 ψ(i)
(
2 jx − k

)
, ∀ (i, j,k) ∈

{
1, . . . , 2d − 1

}
× Z × Zd, (A.6)

form an orthonormal basis for L2(Rd), thus

f (x) =
∑

i, j,k

θ
(i)

j,k
ψ

(i)

j,k
(x), (A.7)

where the wavelet coefficients

θ
(i)

j,k
=

∫Rd

2d jψ
(i)

j,k
(x) f (x)dx,

are normalized with respect to the L∞ norm. An easy way to build such multidimensional systems is via the so
called tensor product method: let φ◦(x) and ψ◦(x) be the scale and corresponding wavelet functions in R1, then define

φ(x) =

d∏

r=1

φ◦(xr).
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Let S denote the set of 2d−1 vectors s = [s1, . . . , sd]T consisting of zeros and ones excluding the zero vector [0, . . . , 0]T.
Define the set of wavelet functions

{ψ(i)(x)}i∈{1,...,2d−1} =


d∏

r=1

ψsr
(xr)


s∈S

with ψ(0)(x) = φ◦(x) and ψ(1)(x) = ψ◦(x). This basis allows one to characterize functions of arbitrary regularity or,
by duality, distributions – in the sense of Schwarz – of arbitrary irregularity (see [73]). To be more specific, let
p ∈ (1,+∞) and s > 0, and define the Sobolev spaceW p,s(Rd) as the function space composed by the elements of Lp(Rd)
whose fractional derivatives of order s also belongs to Lp(Rd). It can be proved that a function belongs to W p,s(Rd) if
and only if its wavelet coefficients satisfy the following condition (see [81])

f ∈ W p,s(Rd)⇔


∑

i, j,k

∣∣∣θ(i)

j,k

∣∣∣2
(
1 + 22 s j

)1k (x)




1
2

∈ Lp. (A.8)

where k = k j,k =
k
2 j +

[
0, 1

2 j

]d
denotes the generic dyadic cube of Rd centered at k

2 j . The contrast with classical Fourier

expansions is evident: when p , 2, there is no characterization of W p,s by condition on the moduli of the Fourier
coefficients.

This characterizations are quite difficult to handle and, in the context of wavelet analysis, Besov spaces are much
more commonly in use. The (inhomogeneous) Besov spaces on the unit intervals, B

s,p
q ([0, 1]), consist once again of

functions that have a specific degree of smoothness in their derivatives. The parameter r1 can be viewed as a degree
of functions inhomogeneity while s is a measure of its smoothness. Roughly speaking, the (not necessarily integer)
parameter s indicates the number of functions derivatives, where their existence is required in an Lr1-sense; the

The success of for the two following reasons:
• They are very close to Sobolev spaces, as shown by the following embeddings

∀ ǫ > 0, ∀ p > 1, ∀ q ∈ R ⇒ W p,s+ǫ ֒→ B s,p
q ֒→ W p,s−ǫ

• They have a very simple wavelet characterization (see [81]),

f ∈ B p,s
q (Rd)⇔



∑

i,k

∣∣∣∣∣∣θ
(i)

j,k
2

(
s− d

p

)
j

∣∣∣∣∣∣

p

1
p

, η j, and {η j} j∈Z ∈ ℓq(R). (A.9)

Note that in all such characterizations, wavelets are assumed to be smooth enough, say, with at least derivatives up
to order [s]+ 1 and having fast decay (see [9] for optimal regularity assumptions on the wavelets). In sharp contrast
with the Sobolev case, Besov spaces are defined for any p > 0.

One of the reasons for the success of wavelet decompositions in applications is that they often lead to very
sparse representations of signals. This sparsity can be characterized by determining to which Besov spaces B

p,s
q

the function considered belongs when p is close to 0. Let us illustrate this assertion by an example. Consider the
function h(x) = 1[−1,1](x) and suppose that the wavelet used is compactly supported on [−a, a]. For each j, there are
less than 4a non–zero wavelet coefficients, so that the wavelet expansion of a function f (·) is extremely sparse. Now,
since h(x) is bounded, θ j,k 6 C, ∀ ( j, k) thus, using Equation A.9 with d = 1, we conclude that h(x) actually belongs

to B
p,s
q (R) as soon as

(
s − 1

p

)
< 0. Let us check that, conversely, this property is a way to express that the wavelet

expansion of a function is sparse. Suppose that a bounded function f (·) satisfies

∀ p, q > 0, ∀ s < 1
p , f ∈ B p,s

q .

We claim that ∀ a > 0, ∀ ǫ > 0, at each scale j there are less than Cǫ,a2ǫ j coefficients of size larger than 2−aj. Indeed,
if it was not the case, taking p = ǫ

2a , we get
∑

k |θ j,k|p → +∞ when j → +∞, hence a contradiction. Here is another
illustration of the relationship between sparsity of the wavelet expansion and Besov regularity. Suppose that f (·)
belongs to ⋂

p>0

B
d/p,p
p (Rd),
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Going back to Equation A.9, this condition exactly means that the sequence belongs to ℓp for all p > 0, which is also
equivalent to the fact that the decreasing rearrangement of the sequence has fast decay, which, again, is a way to
express sparsity, see [57]. Besov spaces when p < 1 are no longer locally convex, which partly explains the difficulties
met when using them. Before the introduction of wavelets, these spaces were either characterized by the order of
approximation of f (·) by rational functions whose numerator and denominator have a given degree, or equivalently
by the order of approximation by splines with free knots, see [33] and [57]. However such characterizations were
much more difficult to handle, and of difficult use in numerical applications.

A.1.4 Approximation of Functions.

Lets start with a definition of the order of a multiresolution analysis.
Def. A.3 A multiresolution analysis is said to be of order N⋆ if the primal scaling function φ(·) reproduces polynomials up to
degree N⋆ − 1, i.e.,

∀p ∈ 0, . . . ,N⋆, ∃Ck ∈ R : xp =
∑

k

Ckφ(x − k).

The associated dual wavelet ψ̃(·) has then N⋆ vanishing moments. It can be proved that the order of a  and
the regularity of the scaling function are linked: the larger N⋆, the higher the regularity of φ(·). Symmetrically to

Definition A.3, the order of the dual  is N if φ̃(·) can reproduce polynomials up to degree N − 1.
The main goal when decomposing a function in a wavelet series is to create sparse representation of the function,

that is, to obtain a decomposition where only a few number of detail coefficients are “large” in absolute value, while
the majority of the coefficients are close to zero. Near a singularity, large detail coefficients at different levels will
be needed to recover the discontinuity. However, between points of singularity, we can hope to have small detail

coefficients, in particular if the analyzing wavelet ψ̃ j,k have a large number of vanishing moments. Indeed, suppose

the function f (·) to be decomposed is analytic on the interval I without discontinuity. Since
〈
xp, ψ̃ j,k

〉
L2 = 0 for

p ∈ {0, . . . ,N⋆ − 1}, we are sure that the first N⋆ terms of a Taylor expansion of f (·) will not give a contribution to

the wavelet coefficient
〈

f , ψ̃ j,k

〉
L2 provided that the support of ψ̃ j,k does not contains any singularities of the function

f (·).
This sparse representation also explains why (first generation) wavelets provide smoothness characterization

of function spaces like Sobolev and Besov bodies as suggested in Section A.1.3 (see [38] for further information).
Another interesting example of this wavelet–based characterization is the case of β–Hölder functions.

Def. A.4 The class Λβ(C) of Hölder continuous functions is defined as follow:

1. if β 6 1, Λβ(C) =
{

f ∈ L2 : | f (x) − f (y)| 6 C |x − y|β
}
,

2. if β > 1, Λβ(C) =
{

f ∈ L2 :
∣∣∣ f (⌊β⌋)(x) − f (⌊β⌋)(y)| 6 C |x − y|β′ ∧

∣∣∣ f (⌊β⌋)(x)
∣∣∣ < ∞

}
, where ⌊β⌋ is the largest integer less

than β and β′ = β − ⌊β⌋.

The global4 Hölder regularity of a function can be characterized as follow [20, 30]:

Theorem A.2 Let f ∈ Λβ(C), and suppose that the (orthogonal) wavelet function ψ(·) has r continuous derivatives and r
vanishing moments with r > β. The

∣∣∣∣
〈

f , ψ j,k

〉
L2

∣∣∣∣ 6 C12
− j

(
β+

1
2

)
.

where C1 ∈ R+.

4In [56] a local Hölder regularity is defined a it is shown how this quantity is related to a brand new family of
wavelet–characterized function spaces called Oscillation spaces.
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B Act II: Bayesian and Treed Subspace Pre–Testing.
[Background]

B.1 Multiple Shrinkage.

The classical James–Stein estimator (JSE) used by Li [76] in constructing his asymptotically optimal confidence
set, depends heavily on the specification of a single target point toward which the observation vector is shrunk. It is
well–known that regardless of the location of the target in relation to the true mean, the JSE will dominate the MLE
but still meaningful reductions in MSE occur only if this shrinkage target is relatively close to the true mean vector.
If the shrinkage target is a poor guess, the JSE will provide little or no improvement upon the MLE. There are
many scenarios in which an accurate shrinkage target might be available. A reasonable target might be provided
by the result of a previous experiment or by some special physical or statistical structure of the problem. In many
cases however it is difficult to specify a single accurate point shrinkage target for use in the JSE. In this section I
will review an expansion to the basic JSE framework that allows adaptive simultaneous shrinkage toward multiple
target points or multiple subspaces that allows for a substantial reductions in risk compared to the MLE not just in
the vicinity of a single point. The discussion in this section focuses mainly on the results in [43] and [42].

B.1.1 Shrinkage Toward a Subspace.

In many settings the requirement that the JSE shrink toward a unique target point is way too restrictive:
consider, for instance, an observation vector comprising measurements that are believed to be independent and
identically distributed. In this case, although there is a strong prior indication of what might be a “reasonable”

estimate of the mean θ ∈ Rp – namely, θ̂ = θ̂1p – the the standard form of the JSE does not allow incorporation of
this knowledge. More generally, if there is reason to believe that the mean belongs to a lower dimensional subspace
of Rp, we might want to restrict any estimate to be close to this subspace. Again, however, the JSE in its basic
formulation does not has the ability to do this.

Consider again the general problem: we wish to estimate θ ∈ Rp from a vector observation x ∼ Np(θ, σ2Ip).
Suppose that instead of specifying a single point as a shrinkage target, we wish to specify an entire subspace
V ⊂ Rp, that captures some belief about the region of Rp in which a reasonable estimate might lie. Adapting the
JSE, we would like to shrink toward the entire subspace V instead of toward a single point. The modification
needed is remarkably simple: let the subspace V have dimension p − q where q is required to be greater than 2.
Define a projection operator PV from Rp into V and a projection operator P⊥ = 1 − PV from Rp into the orthogonal
complement of V inRp (which has dimension q), so that

x = PVx +P⊥x , xV + x⊥.

Now, because xV ∈ V, it corresponds to the component of the observation that conforms to the prior belief indicating
V as the subspace in which a reasonable estimate should lie. On the other hand, x⊥ corresponds to the deviation
of the observation from this prior belief. It might then be reasonable to estimate θ by maintaining the component
xV, but reducing the magnitude of the orthogonal component x⊥. In other words, we might want to retain xV and
shrink x⊥ toward 0p. Applying the JSE we get

θ̂JS[V] = xV +

[
1 − σ

2(q − 2)

‖x⊥‖22

]
x⊥ = PVx +

[
1 − σ2(q − 2)

‖x − PVx‖22

]
(x − PVx) . (B.1)

Of course, Equation B.1 is an adaptation of the JSE to the case where shrinkage is desired not toward a single
point but toward an entire subspace and the standard JSE can be viewed as a special case in which V = {v} ∈ Rp,
q ≡ p and PVx = v. The subspace–target JSE just introduced can be trivially modified to yield a dominating
positive–part JSE as for the single target point case. The general idea of modifying the JSE to shrink toward a
subspace instead of a point appears to have been first proposed by Lindley [77] in 1962.
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Shrinkage toward a subspace as prescribed by Equation B.1 adds a great amount of flexibility to the estimation
procedure but, as usual, it also comes with a serious drawback: a reduction in the potential improvement over
the MLE. It is well–known that the potential savings in MSE increases with the dimensionality of the problem;
by shrinking toward a subspace instead of a single point, the dimension of the estimation problem is effectively
reduced resulting in a reduction of the potential improvement. Depending on the specific application, this may or
may not be an acceptable price to pay.

B.1.2 Shrinkage Toward Multiple Targets.

Suppose that multiple vague and possibly conflicting prior information suggest that any one of the (linear)
subspaces in the family {Vk}k∈{1,...,K} with Vk ⊂ Rp and dim(Vk) = p − qk, might be an appropriate shrinkage target for

estimation of θ from x ∼ Np(θ, σ2I). Denote by θ̂JS[k] the positive–part JSE formed by shrinking toward the k − th
subspace Vk:

θ̂JS[k] = Pkx +

[
1 − σ2(qk − 2)

‖x − Pkx‖22

]

+

(x − Pkx) (B.2)

where Pk is the projection operator fromRp into Vk and qk > 2. The choice of which of these JSEs to use will have a
great impact on the performance of the estimator.

It is natural to investigate whether the K estimators defined by Equation B.2 might be combined to allow for
substantial reductions in risk as long as θ is close to any of the Vk. George studies this issue in [43] drawing a parallel
to Bayesian estimation to derive a candidate multiple shrinkage estimator. More specifically, consider again the

problem of estimating θ from x ∼ Np(θ, σ2Ip) under a prior πk(θ). The Bayesian estimate θ̂B[k] = E(θ|x) in this case
can be shown5 to satisfy

θ̂B[k] = x + σ2∇ log (mk(x)) , (B.3)

where mk(x) is the marginal density for x, i.e.,

mk(x) =

∫Rp

1

(2πσ2)p/2
exp

[
− 1

2σ2
‖x − θ‖22

]
πk(θ)dθ. (B.4)

One way to interpret an arbitrary estimate θ̂ that can be put in the form (B.3), then, is as a “pseudo–Bayesian”
estimate of θ generated under a particular marginal density mk(x). George shows that each of the JSEs given by
(B.2) can be put in the form (B.3) with

mk(x) =



[
σ2(qk−2)

‖x−Pkx‖22

] qk−2

2
exp

[
− qk−2

2

]
, if ‖x − Pkx‖22 > σ2(qk − 2);

exp
[
− 1

2σ2 ‖x − Pkx‖22
]
, if ‖x − Pkx‖22 < σ2(qk − 2),

(B.5)

for k ∈ {1, . . . ,K}. A few comments regarding Equation B.5 are in order. First of all notice the split based on a “test”
very similar to the one used by Baraud to build his confidence regions. As a consequence, each of the marginals
naturally encapsulates some soft prior information suggesting or discouraging shrinkage toward a subspace Vk:
each mk(·) monotonically decreases as x becomes more distant from the corresponding Vk. This having said, it is
worth adding that the mk(·)’s are not true marginal densities: examination of Equation B.5, in fact, reveals that these
“marginals” do not, in general, integrate to 1. Secondly, George does not explicitly assume that these marginals
actually arise from appropriately chosen priors by way of Equation B.4. The assumed marginals are essentially
convenient constructions used to draw an analogy between James–Stein estimation and Bayesian estimation.

Returning to the problem of trying to combine the shrinkage estimators, suppose that prior information is
available regarding how likely each Vk is to be the “correct” target for shrinkage. Specifically, suppose that we

were actually able to assign weights {wk}k∈{1,...,K}, satisfying
∑K

k=1 wk = 1, to each of the target–space. In the Bayesian

analogy, this corresponds to specify a mixture prior π(θ) =
∑K

k=1 wkπk(θ) that produces a marginal density equal to

m(x) =

K∑

k=1

wkmk(x), (B.6)

5See [72].
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and, consequently, a (pseudo)Bayesian estimate of θ that represents the most natural combination scheme we may
think about is given by

θ̂B = x + σ2∇ log (m(x)) . (B.7)

George shows that θ̂B can be expressed in the following enlightening way

θ̂B =

K∑

k=1

[
wkmk(x)

m(x)

]
θ̂B[k] ,

K∑

k=1

ρk(x)θ̂B[k].

Clearly
∑K

k=1 ρk(x) = 1, thus θ̂B is just a data dependent6 convex combination of the individual shrinkage estimators
with adaptive weights given by the relevance functions {ρk(x)}k∈{1,...,K}. This is George’s multiple shrinkage estimators.

Investigation of the behavior of θ̂B reveals many appealing properties. First of all when x is distant from all of
the target–spaces, the shrinkage provided by each of the component estimators is very small and, as a result, the
combined estimators is approximately the same as the MLE. Secondly, the relevance function {ρk(·)}k adapt to x so
to provide the most shrinkage toward the closest Vk and, viceversa, very limited shrinkage toward distant Vk: the
relevance functions vary proportionally to the corresponding marginal mk(·) that, in turn, is largest when x is close
to Vk. Thirdly, the prior weights wk can be chosen to provide more shrinkage toward lower–dimensional subspaces
to reflect the fact that proximity of x to a low–dimensional subspace Vk is a better validation of prior information
than proximity of x to a high–dimensional subspace7. In the absence of other prior information, George proposes to
implement this idea using the following prior weights:

wk = C

(
qk−2

2

)

e

(
qk−2

2

)

, (B.8)

where C > 1 is an arbitrary constant to be tuned in order to modulate the amount of shrinkage toward smaller
subspaces for equal distances. Using this scheme, equal–dimensional subspaces are all weighted similarly and,
consequently, the relevance function ρk(·) represents, in most cases, just the shrinkage coefficient of the k − th
component estimator. In addition, regardless of the specific choice of the wk, the multiple shrinkage estimator

behaves approximately like θ̂B[k] in the vicinity of a single Vk. Finally, in view of what is coming up next, it seems
interesting to observe that, as a matter of fact, the center of Baraud’s  is simply a particular case of George’s
multiple shrinkage estimator; more specifically, it is the one obtained by a winner–take–all quantization of the
weight functions. The “winner” in this case, is clearly the estimator that induces the minimal radius and that, in
general, coincides with the one associated to the maximum weight (i.e. the one that shrinks toward the nearest
subspace).

But, as I said before, there is a price for adaptivity. A naive approach to achieve a good estimate would be
to specify a plethora of subspaces Vk as shrinkage targets. This approach is clearly flawed: the more subspace
targets we specify, the more unwanted shrinkage toward incorrect subspaces will be performed. More formally, we

can examine the reduction in risk from the MLE achieved by θ̂B studying its Stein’s unbiased risk estimate ().
George shows that the risk of each component estimator is given by

k(x) = pσ2 − Dk(x),

where

Dk(x) =


[σ2(qk−2)]

2

‖x−Pkx‖22
, if ‖x − Pkx‖22 > σ2(qk − 2);

2σ2qk − ‖x − Pkx‖22 , if ‖x − Pkx‖22 < σ2(qk − 2),

whereas, the risk estimate for θ̂B turns out to be

(x) = pσ2 −D(x),

6It is quite striking the similarity of the current estimator to the one obtained within the hierarchical mixture of experts
framework introduced by Jordan and Jacobs in [64] and further explored, among other papers, in [60, 59, 61, 62].

7That is, a point chosen at random is less likely to be near a lower–dimensional subspace than a higher–
dimensional
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with

D(x) =

K∑

k=1

ρk(x)Dk(x) −
K∑

k=1

K∑

ℓ=1

ρk(x)ρℓ(x)
∥∥∥∥θ̂B[k] − θ̂B[ℓ]

∥∥∥∥
2

2
. (B.9)

This last equation implies that the expected reduction in risk achieved by θ̂B is roughly a convex combination of

the reductions achieved by each individual θ̂B[k], with the important caveat that the risk is possibly inflated by a

factor depending on how far apart the component estimators are. If θ̂B is strongly influenced by only one θ̂B[k],
then the remaining component, being relatively “next” to each other, will be roughly equal to the MLE, and D(·) will

approximatively equal the corresponding Dk(·). On the other hand, if θ̂B is influenced by two or more components,
each of them shrinking toward a different subspace and thus producing widely separated estimates, then Equation
B.9 indicates that there will be a price to pay in terms of the expected reduction in risk. An unjustified proliferation

of shrinkage targets pooled together into a single estimator like θ̂B, results in an increased probability that x will be
pulled in many different directions confounding the desirable property characterizing the JSE, namely, a significant
reduction in risk near the shrinkage target. Additionally, regardless of the number of shrinkage targets, there is a
price to pay for adaptivity even in the ideal case when θ ∈ Vk for some k. The reason behind this is simply that
the relevance functions ρk(·) are, in general, smaller than 18 and this clearly implies that there will always be some

“pressure” from the other components in pulling the overall estimate out of the “true” Vk, causing θ̂B not to perform

quite as well9 as θ̂B[k].

8Except in degenerate case when wk = 1 or x ∈ Vk
9To fix this, we could design a simple winner–take–all quantizer based on some suitable threshold over the

relevance functions.
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