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1 Introduction

We have witnessed rapid development in our understanding of molecular biology in the
past decades. Its breadth and profound applications have made it one of the most active
area of modern science. In my thesis, I will analyze two such applications. They involve
principled techniques applied to structured datasets obtained from complex experiments.

The first application is determination of protein structures using nuclear magnetic res-
onance (NMR). One challenge to NMR protein structure determination is that only small
proteins can be analyzed. On the other hand, most of the interesting proteins are very
complex molecules with very intricate functions and thus relatively few protein structures
can be solved using NMR. An obstacle is that large molecules require estimating a large
number of resonance frequencies (the main parameters) from already noisy NMR spec-
troscopy data. Thus, improving the process of 3D protein structure estimation will help
recover the structure of a larger number of proteins and their roles in the biological pro-
cesses and human evolution. The endpoint would be a better understanding of unsolved
diseases, of cell development, of our evolution, etc.

The second application is understanding the expression of a large number of sequences
of DNA under different experimental conditions. One byproduct of understanding gene ex-
pression is discovering new genes and their roles in biological pathways. Another byprod-
uct is inferring gene regulation under environmental changes of the cells. The statistical
challenge in gene expression analysis using microarray technology is that we study a large
pool of DNA sequences simultaneously. In our application, the expression of the DNA se-
quences is observed over time where each gene exhibits a different expression profile. Some
of the gene expression profiles are overexpressed, some of them are underexpressed and
many of them are constantly expressed. Another statistical challenge in microarray data
is that the expression of the DNA sequences is contaminated by significant experimental
noise.

My proposal is divided in two parts describing the statistical approaches for the ap-
plications briefly introduced above. More detailed description of the background of the
two applications will be part of my thesis.
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2 Peak Identification and Estimation with

application to protein structure

The first statistical problem presented in my proposal is motivated by an NMR (nuclear
magnetic resonance) experiment performed at Carnegie Mellon University. The NMR
technique is used to determine 3D protein structures. The statistical problem is to identify
and estimate peaks. We apply the peak identification and estimation method to two-
dimensional frequency data after Fourier transformation of the NMR signals. The two-
dimensional frequency data consist of very sharp peaks, some of the peaks are isolated,
some of them are close together, and some of them are partially or totally overlapping. The
peak distribution over the two frequencies is not uniform. Also the peaks have different
heights and shapes due to different amplitudes and decay times. Some of the peaks will
have flat tops due to limited digital resolution, and some of them will be skewed due to
misphasing. In addition to the true peaks, we also expect artifactual peaks. A perspective
plot of the intensities on a subset of 100 by 50 design points is in Figure 1.

One might imagine the peak analysis to be an easy problem: just find a data-driven
threshold for the noise level and then apply a mixture model to the data above the noise
level. There are several difficulties that make the peak analysis still be in the spot light
of many researchers.

How do we estimate the noise level? The first difficulty is identifying a data-driven
treshold for the noise level. Most of the solutions are based on visually-chosen thresholds.

How can we identify the significant modes? The second difficulty is identifying a large
number of modes. The problem of identifying the location of the significant modes and
their number has been mostly introduced under the density estimation framework and
most of the approaches deal with smooth 1-dimensional density functions (see Minotte,
Scott (1993), Minotte (1997), Chaudhuri, Marron(1997), Davies and Kovac (2004)). These
methods cannot be easily extended to the regression problem and/or to bivariate predic-
tors. A statistical method for estimating the lower bound of the number of extremes is
proposed in Davies and Kovac (2001) for the regression problem (see also the references
therein). They also provide intervals for the location of each extreme. Even though
the authors don’t make any smoothness assumptions, this method is developed only for
univariate predictors.

What is the number of components in the mixture model? The third difficulty is that
we expect overlapped peaks, peaks that may be a mixture of components, and peaks that
are split due to noise. In our application, it is important to account for these problematic
peaks. There are a few proposals for modality tests and for detecting the presence of
mixture within the density problem (see Hartigan, Hartigan (1985), Muller, Sawitzki
(1991), Roeder (1994), Walther (2004)). To the best of my knowledge, there are no such
proposals for the regression problem.
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Another issue is that we can only estimate a lower bound for the number of components
since there will be peaks below the noise level. A limitation for EM type estimation is
that we need the number of components and not a lower bound.

What would the model function be? The fourth difficulty surrounds the model assump-
tions. We can use prior information and assume a parametric model function or if we don’t
know anything about the peaks’ shape we may assume a nonparametric model function.
Both alternatives have their limitations.

Asymptotics? Most of the statistical properties of the methods referred above are based
on large N , the sample size. We will see in the text that we assume small σ, the error
standard deviation, rather than large sample size.

To the best of my knowledge, there hasen’t been proposed a technique that incor-
porates all the difficulties above in the statistical literature, but there have been a few
proposals for complete systems for peak analysis in 2D NMR data. One very complex
system is AUTOPSY (Koradi et al 1998). A downside of this technique is the large num-
ber of unjustified “empirical factors” and tuning parameters the user needs to input. It is
also quite complex, consisting of a very large number of steps. There are other software
packages that have incorporated automated peak picking procedures which are not as
complex as AUTOPSY (see Neidig et al (1995), Kleywegt, Boelens, Kaptein (1990)). For
related work on determination of protein structures with NMR spectroscopy see Gronwald,
Kalbitzer (2004) and the references therein.

There is also a large literature for peak detection rising from astrophysics, proteomics,
and other imaging data. These data display particular difficulties in the peak shapes,
peak overlapping, etc.

2.1 Method

Our aim is to develop an automated statistical method for peak identification and es-
timation which overcomes many of the difficulties mentioned above. In this section we
propose such a method. The technique consists of a series of steps summarized below.

Smoothing. We consider data of the form

Zij = f(xi, yj) + σεij, i = 1, . . . n, j = 1, . . . , m (1)

where E(εij) = 0. In the examples of interest, n and m are both large and not necessarily
equal (in our dataset, n = 512 and m = 256). The design points are equally spaced:
(xi, yj) = (i/n, j/m).

We assume that the function f displays spatial inhomogeneity. That is, the noise
is spread fairly uniformly through all data, whereas the signal is quite sparse, being
concentrated in some region of the 2D space of (xi, yj). This suggests a spatially adaptive
smoothing method. One smoothing technique is tensor-product wavelet estimation with
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block thresholding. We extend the 1D block thresholding (Cai 1999, Cai, Silverman 2001)
to 2D wavelet estimation. A block is a rectangular region around a point (xi, yj). The
blocks can be disjoint or overlap.

Local Maxima identification. Our goal is to estimate the location of the L compo-
nents, µl, l = 1, . . . , L. In the transformed NMR data, each component corresponds to a
frequency line (each frequency line corresponds to one sinusoidal component in the time
domain data).

A first task is to identify local maxima/peaks in the frequency data. Under the as-
sumption of stationary Gaussian random field noise, Worsley (1995) estimates the number
of local maxima using the Hadwiger characteristic of connected sets. We propose a sim-
pler method that will provide us with a lower bound for the number of peaks as well as
initial values for the peak location.

The noise level is estimated using the same concept as in soft- and hard-thresholding
(Donoho 1995; Donoho, Johnstone 1995). We estimate the noise level (see Figure 3) by:

T̂ = σ̂
√

2 log (n×m)

where σ̂ is the median absolute deviation of the wavelet coefficients at the finest scale of
resolution divided by 0.6745 (MAD variance estimator).

We find the local maxima as follows:

1. Arrange the Zij larger than the noise level, T̂ , in increasing order, Z(ij). Denote
(x(i), y(j)) the design point in the 2D frequency coordinates of Z(ij), i = 1, . . . n,
j = 1, . . .m.

2. Start with the maximum value Z(nm) and put (x(n), y(m)) in a list of accepted peaks,
LP , and also in a list of design points already visited, LC . Next examine Z(nm−1)

and so on, in decreasing order.

3. For each such Z(ij) ≥ T̂ , check if its design point (x(i), y(j)) is within a distance of
radius r = 1 from any one in the list of design points already visited, LC .

• If (x(i), y(j)) is not within a distance of radius r from each of the design points
in the list LC then declare Z(ij) a local maximum, and put (x(i), y(j)) in the
peak list, LP , as well as the list of design points already visited, LC.

• If (x(i), y(j)) is within a distance of radius r from at least one of the design
points in the list then Z(ij) is not a local maximum, and only put (x(i), y(j)) in
the list of design points already considered, LC .

Then consider the next Z(ij−1) ≥ T̂ , and repeat.
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The algorithm above provides a list of local maxima, LP , and their locations in the
2D frequency coordinates.

In the following, a component is defined by a local maximum or a peak. However, a
peak or local maximum may consist of more than one component as we will discuss later
in the text. For now, we assume that each local maximum represents one component only.

Peak-Parameter Estimation. At this step we take the locations of the identified peaks
and estimate the parameters corresponding to each of them. The center of a peak needs
not fall exactly at the location we identified at the previous step. We estimate the peak
location as well as its width and its amplitude.

We begin with the assumption:

f(x) =
L∑

l=1

Alg
(
σ−1

l (x− µl)
)
. (2)

where g is known symmetric function.
This assumption is relevant for NMR data since the NMR signals are sums of sinu-

soids. Each component in the frequency domain model (2) corresponds to one sinusoidal
component in the time domain data.

The shape of peaks is expected to be fairly symmetric and the peak data are additive.
Hence, we assume a parametric additive model of the form:

E[Z|X, Y ] =

L∑

k=1

fk(X, Y )

fk(x, y) = Hke
−

(
(x−µxk)2

(2σ2
xk

)
+

(y−µyk)2

(2σ2
yk

)

)

where L is the number of components. Hk is the amplitude, µk = (µxk, µyk) is the
peak location, and σk = σxk, σyk) controls the width of the peak in each of the two
dimensions. Denote the parameters for peak k: θk = (Hk, µk, σk). For each peak, there
are 5 parameters to be estimated. Thus for a large number of peaks (L = 163 in our
NMR data) the dimension of the parameter space is large (about 800 for our data). We
overcome the problem of estimating a large number of parameters by using a modified
Gauss-Seidel-Newton algorithm (also called backfitting):

1. Initialize: First we need to obtain initial values close to the true parameters. For
example, the initial value for µk is the location of the local maximum obtained in
the previous section, and the height is the intensity value at that location.

2. Backfitting: For j = 1, . . . , p, 1, . . . , p, . . . regress the partial residuals:

E
(j)
i = Zi −

(
j−1∑

k=1

fk(Xi, Yi|θ(j+1)
k ) +

p∑

k=j+1

fk(Xi, Yi|θ(j)
k )

)
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against the predictor fj(Xi, Yi) with i = 1, . . . , N and estimate the parameter θj

conditional on the other parameters using a nonlinear least squares estimation al-
gorithm. Thus the parameters of one peak are estimated while all the others are
fixed. We cycle over all components for a few times until convergence.

We estimate the parameters by minimizing the square loss E(Z − f(X, Y ))2 for a
subspace of functions in L2. An advantage of using least squares loss over some other
losses (e.g. L2E) is that we don’t need to make any assumption about the distribution
of the errors. By using backfitting method with good initial values we estimate the peak
parameters in a very localized manner, thus robust to outliers. However, the robustness
to outliers may fail when estimating peaks that overlap.

2.2 Discussion

One standard approach to protein structure determination is Nuclear Magnetic Resonance
(NMR). NMR lies at the interface between biology, chemistry and physics. However, for
an NMR experiment to reach the final objective (i.e. identify protein bonds), a biolo-
gist/chemist/physicist will have to analyze spectroscopy data. These are signal data over
a large number of time points in one or more dimensions. Parametrically, the 2D NMR
signal data can be described as a sum of exponentially decaying sinusoids plus noise:

S(t1k, t2j) =

L∑

l=1

Ale
iφle−t1k/τ1le−t2j/τ2leit1kw1leit2jw2l + εkj (3)

here ω1l, ω2l are the resonance frequencies of one sinusoid, Al is the amplitude, τ1l, τ2l are
the decay times, and φl is the phase at time 0. Each sinusoid corresponds to a single
nuclear resonance. The parameters of major interest are the sinusoidal frequencies ω1l

and ω2l.
For 1D NMR signals, there are a few statistical approaches to fitting the parametric

model (estimating the parameters for each resonance/sinusoid in the time domain). A
common one is estimation of a the nonlinear regression model. A recent one is using the
filter diagonalization method (FWD) (Hu et al 1998). However, this is not the standard
approach to estimating the NMR spectroscopy parameters since we need the number of
resonance frequencies, L. Also, these techniques are not yet extended to 2D NMR signals.

The standard approach to parameter estimation is a two-step technique: transfor-
mation into frequency domain (estimating the power spectral density) and peak identi-
fication/estimation in the frequency domain. The transformation step is quite complex
and involves a few other sub-steps such as apodization (signal convolution with a win-
dow function) and/or zero padding, phase correction (correction for the phase φl at time
t = 0), and baseline correction. We processed our spectroscopy data with the widely used
FELIX program.
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We apply our smoothing and peak identification technique to the frequency domain
data. The perspective plot of a subset of the smooth intensity data is in Figure 2. The
image of all intensity data after smoothing and thresholding is in Figure 4.

3 Cluster Analysis of Gene Expression Profiles

Our second application presented in this proposal is motivated by a genetic microarray
experiment conducted at the University of Pittsburgh. This experiment provided expres-
sion profiles for 5355 DNA sequences over 15 time points. The primary goal is to analyze
the similarity of these expression profiles and cluster them by shape. This problem is chal-
lenging because of the small number of time points but large number of expression profiles,
the small signal-to-noise ratio, and the large number of flat profiles (constantly expressed
genes). We also expect artifactual signals which are due to the experimental error rather
than inherent signal. We present such artifactual signals due to cross-hybridization in
Handley et al (2003).

There is now a substantial literature on genetic microarrays on various topics such as
clustering (Eisen et al, 1998; Hastie et al, 2000; Bar-Joseph, Gerber, Gifford and Jaakkola,
2002; Wakefield, Zhou, Self, 2002) and multiple testing (Dudoit et al, 2000; Efron, Storey
and Tibshirani, 2001; Newton et al, 2001). For related work on curve clustering in the
context of microarray data see Bar-Joseph, Gerber, Gifford and Jaakkola(2002) and Wake-
field, Zhou, Self(2002). However, none of these approaches provides estimates of uncer-
tainty, which is particularly relevant given the highly noisy character of microarray data.

3.1 Method

We propose a technique for nonparametrically estimating and clustering a large number
of profiles. The basic idea is to first remove the curves which are nearly flat, smooth the
remaining curves, and then cluster the smoothed curves. A novel feature of our method is
that we estimate the error added by clustering the estimated rather than the true curves:
we obtain an asymptotic confidence bound for the clustering estimation error based on
estimated confidence balls of the non-constant curves. The method we use for confidence
ball estimation was introduced by Beran and Dümbgen (1998).

We consider data of the form,

Yij = fi(tij) + σiεij, i = 1, . . . , N, j = 1, . . . , m. (4)

where E(εij) = 0. Thus, Yij is the jth observation on the ith curve. In the examples of
interest, N and m are both large but N is typically much larger than m. In the microarray
setting, Yij is the log gene expression of gene i at time tj. We assume that the curves fi

belong to a Sobolev space F ≡ Fβ(c) of unknown order β and radius c.
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Our method involves a series of steps briefly described below.
Data transformation. Let ψ1, ψ2, . . . be an orthonormal basis for F and write

fi(t) =
∞∑

j=1

θijψj(t) where θij =

∫
fi(t)ψj(t) dt. (5)

We estimate fi by f̂J
i (t) =

∑J
j=1 θ̂ijψj(t). We transform the data into the Fourier domain

using the cosine basis:

θ̂ir =
1

m

m∑

j=1

ψrjYij

where Ψ = {ψrj}r,j is the Gram-Schmidt orthogonalized matrix of Φ = {φr(tj)}r=1,...,m, j=1,...,m,
φ0(t) = 1, φr(t) =

√
2 cos(2πr).

Smoothing. We propose two different approaches for estimating J . One approach is
based on minimizing the regret function:

r̂i(J) = R̂i(J) − min
1≤k≤m

R̂k(J) with R̂i(J) =
Jσ̂2

i

m
+

m∑

j=J+1

(
θ̂2

ij −
σ̂2

i

m

)

+

(6)

which measures how much risk is sacrificed for curve i if smoothing parameter J is used.
We want the smoothing parameter to be the same for all curves even though the minimum
regret will be attained at different values of J . To find the optimal amount of smoothing
simultaneous for all curves, we minimize the total regret function:

t(J) =

n∑

i=1

r̂i(J). (7)

The second approach is to consider values of J simultaneously and choose the one that
leads to the most efficacious clustering (the multiscale approach).

Screening out flat curves. We remove those curves (expression profiles) which are
constant over time using simultaneous hypothesis testing. The null hypothesis for gene
expression profile i is: H0i : fi(t) = ci for some constant ci. This suggests the test statistic

Ti =

m∑

j=2

θ̂2
ij.

We reject the null hypothesis for large value of Ti. To correct for the multiplicity
problem we use the Benjamini-Hochberg (1995) FDR method. We obtain a set of non-

constant expression profiles Â. The curves in Â will be clustered with the technique
described below.
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Confidence Set for fi. For the minimum regret smoothing approach, we use the method
in Beran and Dümbgen (1998) for constructing a confidence ball Bi for fi. Fix α > 0 and
let

Bi =
{

(θi1, . . . , θim) :

m∑

j=1

(θij − θ̂ij)
2 ≤ s2

i

}
where s2

i =
z α

N
τ̂i√
m

+ R̂i, (8)

where zα is the α quantile of the standard normal and τ̂i is the estimate of the asymptotic
variance of

√
n

(
m∑

j=1

(θij − θ̂ij)
2 − R̂i

)
.

The corresponding confidence ball for fi is {∑m
j=1 θijψj(x) : θ ∈ Bi}. For notational

convenience, the confidence ball for fi will also be denoted by Bi.
Theorem 1 follows directly from the theorems of Beran and Dümbgen:

Theorem 1 Let Fβ(c) denote a Sobolev space of order β and radius c. Then, for any
β > 1/2 and any c > 0,

lim inf
N→∞

sup
f1,...,fN∈Fβ(c)

P

(
fi ∈ Bi for all i = 1, . . . , N

)
≥ 1 − α.

Clustering. We want to identify curves with similar shape. This suggests using Pearson
correlation as the similarity measure.

In the microarray setting for example, genes with similar expression profiles are co-
expressed gene. Co-expressed genes are likely to be co-regulated and hence co-expression
can suggest functional pathways and interactions between genes.

We cluster the standardized curve coefficients

θ̃j =
θj√∑∞

j=2 θ
2
j

, j ≥ 2

since the correlation between two curves can be expressed as:

ρ(fi, fj) = 1 − || θ̃i − θ̃j||2
2

. (9)

Hence, correlation clustering in function space is equivalent to Euclidean clustering in the
Fourier domain, after the transformation θ 7→ θ̃.

We cluster the standardized estimated coefficients using the k-means clustering algo-
rithm with the Euclidean distance. Any other distance-based clustering method could be
used.
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We estimate the number of clusters using the gap method of Tibshirani, Walther, and
Hastie (2000). We can also infer the number of clusters using the clustering estimation
error introduced next.

Estimating the clustering error rate. Since our goal is to cluster the curves, we need
a measure of the efficacy of a set of clusters. Let C = {f1, . . . , fN} denote a finite set of
curves. A clustering algorithm may be viewed as a map

T : C × C → {0, 1}

where

T (f, g) =

{
1 if f and g are in the same cluster
0 otherwise.

The cluster map T induces a partition {C1, . . . , Ck} of C where two curves f and g are
in the same partition element if and only if T (f, g) = 1.

Let C = {f1, . . . , fn} denote the true curves and let Ĉ = {f̂1, . . . , f̂n} denote the

estimated curves. Let T and T̂ denote the corresponding clustering maps. We define the
clustering estimation error rate for K clusters η(K) by

η(K) =
1(
N
2

)
∑

r<s

I
(
TK(fr, fs) 6= T̂K(f̂r, f̂s)

)
. (10)

Thus, η is the fraction of all pairs which are either incorrectly put in the same cluster
or are incorrectly put in separate clusters. We write η(K) to indicate the dependence
on the number of clusters K. The clustering estimation error rate can be expressed as
η = 1 −R(T, T̂ ) where R is the Rand index (Rand, 1971).

k-means clustering produces a set of cluster centers a1, . . . , ak. This, in turn, produces
the Voronoi tessellation {A1, . . . ,Ak} where f ∈ Aj if f is closer to aj than any other
cluster center. In this case, T (f, g) = 1 if and only if f and g belong to the same member

of the tessellation. Similarly, T̂ (f̂ , ĝ) = 1 if and only if f̂ and ĝ belong to the same member

of the tessellation of the estimated curves {̂A1, . . . , Âk}. Based on these facts, we estimate
an asymptotic upper bound for the clustering estimation error using only the tesselation
of the estimated curves.

Theorem 2 Assume the conditions of the main theorem in Pollard (1982). Let {A1, . . . ,Ak}
be the tessellation based on the true curves and let {Â1, . . . , Âk} be the tessellation from

the estimated curves. Let j(i) denote the index of the tessellation element containing f̂i.
Then

η ≤ 1

N

N∑

i=1

I
(
fi /∈ Âj(i)

)(
1 +

1

N − 1

N∑

i=1

(
1 − I

(
fi /∈ Âj(i)

)))
+OP

(
1√
m

)
.
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The asymptotic upper bound in the above theorem is computationally feasible. We es-

timate I
(
fi /∈ Âj(i)

)
= I

(
Bi ∩ Âr 6= ∅ for some r 6= j(i)

)
. Replacing the estimate of

I
(
fi /∈ Âj(i)

)
we obtain the upper bound in the following theorem.

Theorem 3 Let

η =
N∑

i=1

I
(
Bi ∩ Âr 6= ∅ for some r 6= j(i)

)
and η̂ =

η̄

N

(
1 +

N − η̄

N − 1

)
.

Then, [0, η̂] is an approximate 1 − α confidence interval for η.

3.2 Discussion

To evaluate the validity of our clustering method, we generated synthetic datasets for
different number of time points, m = 15, 25, 50, for different levels of signal-to-noise ratio
and accounting for a small time-varying variance.

With a small smoothing parameter, the nonparametric test proves to be powerful in
identifying constant curves. This step is important, because a large number of noisy flat
curves affects the clustering. We’ve tried a few other tests but the nonparametric test
presented in this paper proved to be the most powerful at a small number of design points.

The last step is the inference of the cluster estimation error. We estimated the clus-
tering error rate based on the fraction of all pairs put incorrectly in the same cluster or
put incorrectly in different cluster. To the best of our knowledge, this approach to cluster
estimation has not been considered previously. Note that the cluster error rate does not
tell us how many clusters there are, but rather, how many we can actually estimate.

For the gene expression data, we identified two clusters of gene expression profiles
which showed a change in expression over treatment times. The confidence balls of the
non-constant gene expression profiles are in Figure 6.

Besides characterizing the uncertainty of the clustering, we can use the estimated upper
bound for the clustering error rate to infer the smoothing parameter and the number of
clusters. The estimated clustering error bound is about 0.1 for 2 clusters which shows
that the error due to the fact we are clustering the estimated rather than the true curves
is low (see Figure 7).

Detailed description of the method and results are presented in Serban and Wasser-
man(2004).

4 Proposed Work

My thesis proposal consists of two statistical problems. My proposed work focuses on
peak identification and estimation. If time allows, I will further investigate other ideas
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related to the analysis of multiple curves. Below there is an outline of my proposed work
in prioritized order.

1. To complete our technique for peak identification and estimation we need to estimate
a lower bound for the number of components (see Section 4.1) and to estimate peak
location (see Section 4.2).

2. Peak analysis is common in other science areas such as proteomics and astrophysics.
Ideally, we would like to validate and/or extend our technique across different appli-
cations to understand the generality of our method. We would also like to compare
the performance of other methods related to peak analysis, assuming software is
available, with our technique.

3. There are a few other directions we can take if the time allows (see Section 4.3).
They are important problems within the NMR framework.

4. We have completed our technique for cluster analysis of multiple curves. We still
have a few ideas to follow if we complete our work on peak analysis (see Section
4.4).

4.1 Lower Bound for Number of Components

The direction we want to take next is estimation of a lower bound for the number of
components within the additive model. We can estimate a lower bound for the number
of local maxima using the algorithm proposed in Section 2. However, the number of
local maxima is not equal to the number of components. We need to account for two
scenarios. First, two local maxima may correspond to only one component. Second, one
local maximum may consist of more than one component. See Figure 5. We define the
two problems within a more general framework.

Separation of peaks. First, we want to test whether two local maxima are correctly
separated using our method or any other method. We propose a test under the model:

Zi = f(xi) + σεi, i = 1, . . . , N (11)

where f ∈ F , F is some nonparametric class of function and xi, i = 1, . . . , n are univariate
design points.

We begin by assuming that the centers of the two local maxima are fixed, known and
the observed data points between the two local maxima are Zi, i = n, n + 1, . . . , m with
m ≤ N, n ≥ 1, m− n ≥ 3. The separation test becomes:

H0 : f(x) monotone between the design points xn and xm

HA : f(x) convex between the design points xn and xm
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where H0 is rejected if the two peaks represent two components in the additive model.
The challenging problem is to develop an asymptotic powerful test under the assump-

tion of σ −→ 0 and N small.
The test can be easily extended to 2-dimensional peaks.
Detecting mixtures of components. Second, we want to design a test for iden-

tifying peaks that may be a mixture of more than one component and to estimate the
number of components. We will need a powerful test under the assumption of σ −→ 0
and N small. The test hypotheses are:

H0 : f(x) = A1g(σ
−1
1 (x− µ1)), HA : f(x) = A1g(σ

−1
1 (x− µ1)) + . . .+Akg(σ

−1
k (x− µk))

where g is a parametric function, which is inferred from the shape of isolated peaks, and
the locations of the modes are unknown.

The number of components. After identifying the local maxima, we can further
apply the separation test to any two close peaks in order to detect components which
are incorrectly separated due to noise. Further, we apply the test that accounts for the
number of components to all the identified peaks. Finally, we can estimate a lower bound
of the number of components based on the number of local maxima, the number of peaks
that are incorrectly separated, and the number of components of each of the identified
peaks.

4.2 Parameters Estimation

After separating all the peaks and accounting for all the components, the next step is to
estimate the peaks’ parameters such as their locations, widths, and heights.

Under a parametric model, we can use prior information regarding the peaks’ shape to
define the additive model function in (2). Further, we can apply the backfitting algorithm
to estimate the model parameters. For NMR frequency data, it is reasonable to assume
that all peaks have a similar shape given by g in (2). For other types of applications, the
assumption on the shape should be reconsidered. One way to relax the shape restriction
is to assume a nonparametric model.

Under a nonparametric model, the location, width and height parameters cannot be
estimated from the model function. However, we can infer them from the smoothed
function.

For the beginning, we will focus on parametric versions of the model function. If time
allows, we will also explore nonparametric model functions.

4.3 Other Considerations

Noise peaks. An important problem to be examined is that of differentiating the signal
peaks from the noise peaks. Artifactual peaks could be produced by solvent lines or
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poor data processing. An approach to this problem is to classify the peaks as signal
or artifactual according to the shape and linewidth since we expect a small proportion
of artifactual peaks and similar shape with similar linewidth for all the components.
Classification approaches have been already proposed in the literature (see Carrara et al.
1993, Schulte et al. 1997), but they have their limitations.

Data processing. NMR data processing involves a series of steps. Before Fourier
transformation, the signal is convoluted with a window function (this is called the apodiza-
tion step) to enhance the sensitivity or the resolution. After apodization, NMR signals
are transformed into Fourier space. In the Fourier space, the frequency data is phase
corrected (to correct for ψl in (3)) and baseline corrected (correct the baseline distortions
due to delay in detection, to the band limit of the signal, etc.). Phase correction and
baseline correction are still open problems even though there are several proposals for
each of them.

3D NMR data. Currently, NMR experiments for protein structure determination
can also include 3 or more dimensions. One challenging problem is to extend our technique
to more than two dimensions.

Analysis of time domain data. A different approach to parameter estimation is
to fit the parametric time domain model (3). By fitting this model, we avoid processing
steps altogether, which introduces different sources of error. This is a different statistical
problem by itself and there is quite an extensive literature related to it. For that, we
may not achieve substantial progress on this problem within our timeline but it is worth
consideration.
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4.4 Further Ideas on Analysis of Multiple Curves

Clustering confidence sets. An extension to our clustering analysis is using the confi-
dence sets of the true curves rather than their estimated curves and clustering based on
the distances between the confidence sets. A popular measure of the closeness between
two sets is the Hausdorff distance. However, in the context of our problem, we propose
using the maximal distance between two sets:

M(B1,B2) = sup
f1∈B1,f2∈B2

ρ(f1, f2)

where ρ(f1, f2) is the distance between any two objects f1 and f2 (in our example is the
correlation coefficient). This distance has the property in the theorem below.

Theorem 4 Let Fβ(c) denote a Sobolev space of order β and radius c. Then, for any
β > 1/2 and any c > 0,

lim inf
N→∞

sup
f1,...,fN∈Fβ(c)

P

(
M(Bi,Bj) ≥ d(fi, fj), ∀i, j = 1, . . . , N

)
≥ 1 − α.

Both the Hausdorff distance and the maximal measure can be computed when the
measure of similarity between two curves is the correlation or the Euclidean distance.

Next we want to use a clustering algorithm which requires only the distance matrix
for the objects, i.e. the matrix of all pairwise distances. Our distance matrix is given by
the maximal distance D = {dij = M(Bi,Bj)}. One such algorithm is the single-linkage
tree, which is the oldest clustering algorithm based on the distance matrix.

We would like to further develop this confidence-set clustering in the context of clus-
tering a large number of curves.

Optimal smoothing. The current smoothing procedures are developed in general
contexts. Such an example is the smoothing by minimum regret used in our technique. A
different approach to the estimation of the optimal smoothing in the context of clustering
is to define a distance between the true tessellation and the estimated tesselation and
minimize this distance:

min d(Tk, T̂k).

Such a technique allows us to identify the smoothing level at which the true clustering is
the closest to the estimated clustering.

One challenge is to define the distance to be minimized in order to have a feasible
computational problem. This is one research idea we will further examine.
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Figure 1: Perspective plot of intensities on a subset of the design points (100 × 50).
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Figure 2: Smooth frequency data
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Figure 3: Left figure shows the estimated noise level (T̂ = σ̂
√

2(n×m)) and the right

figure shows the threshold level equal to 10T̂ of intensities on a subset of the design points
(100 × 50).
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Figure 4: Image of all data above the noise level after smoothing and thresholding.
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Figure 5: Left panel: Two components in one local maximum. Right panel: One compo-
nent represented by two local maxima.
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Figure 6: 2D balls for significant genes. Each circle represents the confidence ball of one
gene with radius computed using χ2 approximation. The red circles are in cluster 1 and
the black circles are in cluster 2.
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