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Abstract

The research is motivated by a desire to model the stochastic process of trades in
a limit-order-book market. We model the trade process as a marked point pro-
cess. We propose a semiparametric model for the conditional intensity function,
attempting to capture the effect of the recent past in a nonparametric way and the
effect of the more distant past using a parametric time series model. Our frame-
work provides more flexibility than the most commonly used family of models,
known as Autoregressive Conditional Duration (ACD), in terms of the shape of
the density of durations and in the form of dependence across time. We also pro-
pose a way to incorporate the effect of additional explanatory variables (i.e. marks
in the marked point process.) So far, we have shown that the framework works
much better than the ACD family in the sense of both prediction log-likelihood
and various diagnostic tests using data from the NYSE. We propose two main
extensions to the existing framework. One is to model multiple point processes,
specifically a bivariate version, to predict both the duration to the next event but
also the side (buy or sell) of the next event. The other aspect is to take into account
the effect of information that arrives between two consecutive events to update the
conditional intensity before the next event. In general, the framework can be used
both to estimate intensity functions in self-exciting point process, and to estimate
a series of conditional densities for a random process.

1 Introduction

In today’s financial world, most markets rely on a limit order book (LOB) to match buyers and
sellers. High frequency traders and market makers rely on real-time access to the LOB in order
to implement their trading algorithms. When a LOB is broadly available, markets become more
transparent and efficient. With the development of infrastructure and data collection techniques,
researchers, traders and regulators are greatly interested in LOB data nowadays.

There are three major types of orders placed in a LOB, limit orders, market orders and cancellations.
A trader places a market order when he wants to buy or sell a certain number of shares at the
current best available price. The market order will be matched with existing nonexecuted orders
immediately, and this leads to an execution (also called a trade). A limit order is placed when a trader
specifies a price and the number of shares he wants to buy or sell at that price or better. Such orders
will remain in the LOB unexecuted until either the trader cancels them or they get executed. When
a trader changes his mind about an unexecuted limit order, he can place a cancellation order which
cancels all or part of the unexecuted portion. All of these orders are recorded chronologically in the
LOB. By following the flow of orders over time, we can construct the complete history of executed
and unexecuted orders at every time during each trading day. The rich and high quality of LOB data
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provides opportunities for a variety of research topics. Gould, Porter, Williams, McDonald, Fenn and
Howison (2012) [GPW+12] provide a thorough survey of LOBs. Popular research topics include
the construction of optimal order execution strategies in Obizhaeva and Wang (2005) [OAW05], the
impact of orders on the rest of the market in Eisler et al. (2010) [EZBK10], and the empirical analysis
on various features of the order flow in Cont (2000) [Con00]. Modelling parts of the order flow, such
as the trade execution process and the price duration process is another rich research area. Poisson
processes are employed to describe the order flows in Cont, Stoikov and Talreja (2010) [CST10].
Traditional methods for optimal order execution derive from econometric approaches, such as the
perfect-rationality approach, zero-intelligence approach, agent-based models and so forth. On the
other hand, with the development of machine learning in recent years a variety of new techniques
have been employed in the analysis of LOBs. Examples include SVM, Lasso and Graphical models.
Although people have a better understanding of LOBs than ever before, there are still many things
that are not yet well understood. open questions, such as cross stock effects, cross exchange effects,
hidden order effects, dark pool effects, etc.

Every single order in LOB carrys varying degrees of market information. For that reason, they can
all potentially affect market prices. From the flow of these orders, we can identify those events
in which we are interested. The sequences of these events naturally form various processes. For
example, the market orders and executions form the trade process. The events that change the price
form a price process. Similarly, we can define a volume process, a touch event process(touch event is
an event that changes the best available price on either side.The best available price on the buy side is
defined as the bid price, while the best available price on the sell side is defined as the ask price) and
so forth. The times that elapse between two consecutive events are defined as durations. Thus, each
of the above processes is an example of a duration process. Traders, regulators and researchers have
shown great interest in various duration processes. The price duration process helps us understand
the evolution of price. The volume duration process shows how the market demand changes over
time. The trade duration process helps to understand how likely it is that an order will be executed
in a certain time. Naturally, a better modeling of these processes can help high frequency traders to
make better algorithms.

A common feature among all of these duration processes is self-excitation. This refers to the oc-
currence of an event increasing the likelihood of future occurrences. Self-exciting processes exhibit
a clustering effect. In other words, long durations are likely to be followed by long durations and
short durations are likely to be followed by short durations. In order to capture the self-exciting fea-
ture and predict how the duration evolves over time, self-exciting point process models have been
introduced, including two main types of models. One type of model is the intensity model. The
intensity function, which characterizes the instantaneous probability of an occurrence at each time,
is modeled as a function of the history of the process. Bauwens and Hautsch (2006) [BH06] give a
good survey of current methods of modeling intensity functions. The most common intensity model
is the Hawkes process, introduced by Hawkes (1971) [Haw71], in which the conditional intensity
function is modeled as a linear combination of the effects of all the past events. And the effect of a
certain past event is modeled as a decaying function applied on the time elapsed from that particu-
lar event. Zhao’s thesis (2010) [Zha10] proposed another intensity model, in which the conditional
intensity function depends on the number of events in the most recent past time window of a fixed
length. The other main type of model is direct modeling of durations between events. This type
of model was first introduced by Engle and Russel (1997, 1998) [ER98]. Their popular autoregres-
sive conditional duration (ACD) model assumes that expectated value of the next duration has an
autoregressive structure so as to capture the self-exciting feature. There is rich literature extending
the ACD model to other duration models. Pacurar (2006) [Pac06] has given a comprehensive survey
on the development of ACD models. In particular, Bauwens and Veredas (2004) [BV04] proposed
a stochastic conditional duration (SCD) model, in which they introduce a stochastic noise in the
autoregressive formula for the mean duration. Also, a log-ACD model, a threshold ACD model, and
a stochastic volatility duration model are all designed to improve the original ACD model in specific
ways. Furthermore, Russell (1999) [Rus99] has developed an intensity model based on duration
called the autoregressive conditional intensity (ACI) model.

Although the ACD family of models successfully capture the self-exciting features of the duration
processes, Bauwens, Giot, Grammig and Veredas (2000) [BGGV00] has shown that none of the
ACD models can pass the a model evaluation criterion based on the probability integral transform

2



theorem proposed by Diebold, Gunther and Tay (1998) [DGT98] in terms of trade duration process.
This fact dramatically undermines the credibility of ACD family.

Among all the processes mentioned above, trade duration process, along with its attached informa-
tion such as execution price, trade volume, trade duration and so forth, carries the most valuable
market information and almost all the automatic trading algorithm will react to trades immediately.
In particular, the duration of trades has great power in predicting the side of future trades, which the
high frequency traders extremely care about. Therefore, In this proposal, we focus on the dynam-
ics of trade flow and propose a semi parametric framework, combining nonparametric conditional
density estimation and parametric time series models, to estimate the conditional intensity function
of a duration model, especially for but not limited to the trade duration process. Since trades are ir-
regularly time-spaced events, the trade duration process is typically characterized as a marked point
process, where the trades are target events and the other associated features, including price, spread,
trade side, and other features of the LOB are marks.

Another interesting problem we hope to address is to model a bivariate version of the duration
process. High frequency traders are particularly interested in on which side the next trade would
occur in order to decide whether to take a long or short position. And the side of next trade is known
to be highly correlated with the recent trade durations. In particular, a trade with a short duration
tends to be on the same side as the previous trade, while a long duration has nearly 50% chance of
being on either side. And a lot of research have extended the intensity models and duration models
to bivariate versions. Shek (2011) [She11] developed the bivariate Hawkes process. Bauwens and
Giot (2002) [BH03] developed the asymmetric ACD model. And the ACI model by Russell (1999)
[Rus99] is itself a multivariate intensity model. Bauwens and Giot (2006) [BG06] extended the ACI
model by introducing a latent common intensity factor to the multivariate intensity model. We have
already set up a parametric model for predicting the side of a trade after we predict the duration based
on our univariate point process. We intend to extend our framework to a bivariate version to model
the sides of trades along with durations. Another natural extension is multivariate point process.
Such an extension is motivated by modeling the cross-stock effect and cross-exchange effect. We
intend to 1) combine the SPIE duration model and Hawkes process model and 2) combine the SPIE
duration model and copula to model the multivariate point process.

The rest of the proposal is organized in the following way. In section 2, we give a brief overview
of our dataset. In section 3, we give a brief review of ACD models, their extensions and their draw-
backs. In section 4, we introduce our framework for modeling the duration process. We propose
a systematic way to incorporate additional explanatory variables. In section 5, we present experi-
mental results on LOB data from the New York Stock Exchange and compare our framework with
the ACD model. In section 6, model diagnostics are introduced. Section 7 gives discussion and
conclusion. Section 8 is future work.

2 Data Description

In this section, we give a detailed description of the dataset that we use. The LOB dataset is ex-
tremely huge and complex. Table 1 shows a small piece of the original LOB dataset format. Each
row corresponds to one order. The columns from left to right are respectively the time of the order
(measured in millisecond from the midnight), the stock name, the price of that particular order, the
existing number of shares sitting on the corresponding price after this order occurs, the size of the
order, the existing number of active orders at that level after this order occurs, the side of the order
(B for buy and S for sell) and the type of the order (O for new order, C for cancellation, E for trade,
X for multiple orders and N for others).

Table 1: Limit order book data sample. Time is measured in millisecond after midnight. Depth is
number of existing shares after the arrival of the order. Size is the number of shares the coming
order carries. Type includes O(new limit order), E(market order), C(cancellation).

time stock name price depth size number of existing orders side type
43026177 JPM 124.50 2000 300 5 S C
43026179 JPM 124.42 400 100 3 B C
43026180 JPM 124.43 100 100 1 B O
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Since we focus on the dynamics of trade flow in this proposal, we filtered out the market orders
and produced a list of triples of (Tt, Bt, Lt) as in Table 2, where Tt is log of duration, Lt is side
of trade (+1 for sell side and -1 for buy side), and Bt is the book pressure imbalance, defined as
the log ratio of the number of sell-side shares at the ask price to number of buy-side shares at the
bid price. We observe such a triple whenever a trade occurs. Although book pressure imbalance
actually changes much more frequently than trades occur, for the time being we keep track of the
book pressure imbalance only when a trade happens. We intend to address the problem of how the
trade duration Tt evolves over time by introducing a new class of semi parametric methods to model
the durations. Part of the model will be to incorporate the effects of marks (such as book pressure
imbalance and side of trade.)

Table 2: Trade Flow Sample.

log duration book pressure imbalance label
3.91 -0.588 -1
6.82 -0.134 -1
6.10 -1.946 +1

3 Review of ACD model

In this section, we briefly review the ACD model, which was first proposed by Engle and Russell
(1998), along with some of its variants. Let xi denote the time elapsed between two consecutive
events at times ti−1 and ti, i.e. xi = ti − ti−1. An ACD model attempts to capture the time
dependence in the duration process by modeling the conditional expectation of the next duration
given the past, i.e. E(xi|Fi−1), where Fi−1 denotes the information available before time ti−1. A
common ACD model is:

xi = Ψiεi,

where
Ψi = ω + αεi−1 + βΨi−1,

{εi}i≥1 is a process of IID positive random variables with mean 1, ω > 0, α > 0 and β > 0 are
parameters with α + β < 1 (to allow the Ψi to have a common mean.) Thus, E(xi|Fi−1) = Ψi.
The particular model specified above is called ACD(1,1) because of the introduction of one order
lag of both εi and Ψi. The distribution of εi is assumed to be from a parametric family with a long
tail. Common choices include, Gamma, Weibull and Burr families.

As an example, consider the family of Weibull(1, γ) distributions. Then the parameters can be
estimated by maximum likelihood method. In a point process, the intensity function is equal to the
hazard function, and the hazard function of εi, which is defined as density over survivor function,
can be derived as:

h(εi) = γεγ−1
i

The conditional hazard function of xi can be obtained as

h(xi|Fi−1) =
γ

Ψi
(
xi
Ψi

)γ−1

When γ = 1, the Weibull distribution is an exponential distribution. If γ > 1, the hazard function is
increasing. If γ < 1, the hazard function is decreasing. The process will be self-exciting when the
hazard is decreasing, that is γ < 1.

3.1 Additional Explanatory Variables in ACD

In a market microstructure dataset, such as our NYSE dataset, events are usually associated with
some additional explanatory variables, such as volume, spread, price and so forth. These variables
can be characterized as marks in the point process and they can have an impact on the intensity of
events. In the original ACD models and its variants, the effects of additional explanatory variables
are incorporated in the autoregressive formula, as in Equation 1:

Ψi = ω + αεi−1 + βΨi−1 + δTui, (1)
where, ui is a vector of additional explanatory variables and δT is the corresponding coefficients.
Such a specification indicates that the additional variables only affect durations through their means.
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3.2 ACD Variants

Among all of the extensions of ACD models, the Log-ACD by Bauwens and Giot (2000) [BG00] is
the most popular. The objective of such an extension is to relax the constraint of positivity of coef-
ficients, especially when additional explanatory variables are incorporated. The model is specified
as:

xi = Ψiεi, (2)
Ψi = eψi , (3)
ψi = ω + αεi−1 + βψi−1. (4)

The exponential transformation guarantees the positivity of conditional duration Ψi.

Another important extension is the threshold ACD (TACD) by Zhang, Russell and Tsay (1999)
[ZRT01]. TACD allows more flexibility in the autoregressive part:

ψi =

{
ω1 + α1εi−1 + β1ψi−1 , if 0 < xi−1 <= r1

ω2 + α2εi−1 + β2ψi−1 , if r1 < xi−1 <= r2

ω3 + α3εi−1 + β3ψi−1 , if r2 < xi−1 <∞

Bauwens and Veredas (1999) [BV04] assumes that the durations are driven by a stochastic latent
factor and introduced the stochastic conditional duration model (SCD). This stochastic latent vari-
able is interpreted as dynamic and random market information. Thus, the autoregressive formula is
modified to:

ψi = ω + βψi−1 + ui

3.3 Drawbacks of ACD Models

Bauwens, Giot, Grammig and Veredas (2000) [BGGV00] have shown that the ACD model and
its variants do not perform well with trade duration data under the evaluation method proposed by
Diebold, Gunther and Tay (1998)[DGT98]. There are two main reasons for this poor performance.

First, in ACD models and their variants, there is a strong parametric assumption on the distribution
of the ε process, in particular being positive with a long-tailed distribution. Gamma and Weibull
distributions are most commonly used, and both of these include exponential distributions as spe-
cial cases. However, as we will show in the next section, the trade durations do not have such a
ideal parametric distribution. Furthermore, the empirical distribution of log-durations appears to be
bimodal, which undermines the performance of any parametric ACD model and its variants. Such
a bimodal feature is the direct reason that makes the ACD model and its variants fail to pass the
Kolmogorov Smirnov test in the model evaluation proposed by Diebold, Gunther and Tay (1998)
[DGT98].

Another important restriction on ACD models and their variants is that the time dependency is incor-
porated only in the expectation of the duration. However, as we show in the rest of the proposal, we
can see that the previous trade duration affects the ensuing trade duration in a more general way. In
particular, it changes both the locations and the relative sizes of the two modes. Therefore, modeling
the time dependency solely in terms of the mean duration cannot capture the more general effect of
previous durations. Although some of the extensions are designed to overcome this shortcoming,
they are still not flexible enough to capture the effects on the modes of the distribution.

4 Semiparametric Intensity Estimation (SPIE)

In this section, we propose a semi parametric model for the conditional intensity function of a point
process or a sequence of conditional densities for durations. Suppose that we observe a series of
occurrence times {ti} from a point process. By taking the differences of successive occurrence
times, we get a series of durations {∆ti}. Suppose that the conditional density function (given the
past) for ∆ti is pi(t) with CDF Pi(t). For the point process, the conditional intensity function λ is
defined as:

λ(t|Ft) = lim∆t→0
1

∆t
P (One event occurs in the time interval [t, t+ ∆t]|Ft)
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In a duration-based point process, the estimated intensity λ̂t is essentially the hazard function, which
can be obtained by ĥazi(.) = p̂i(.)/(1− P̂i(.)).

Since the duration has a long tail, we transform to the log scale in the rest of the proposal and use
{Ti} to denote the logarithms of the durations. We let fi(.) denotes the density of Ti, and Fi(.)
denotes its CDF. Naturally, pi(.) and Pi(.) can be directly derived from fi(.) and Fi(.) and vice-
versa. Therefore, the goal of the following report is to estimate the density function fi(.) of Ti given
{Tj}i−1

j=1.

Our semi parametric framework is characterized in the following way:

1. Construct an initial nonparametric estimator f̂i(.) for log-durations. Its corresponding CDF
is F̂i(.).

2. Calculate the generalized residuals ci = F̂i(Ti) and construct transformed generalized
residuals pi = Φ−1(Ci).

3. Construct a parametric time series model for the transformed generalized residuals:
TSmodel(pi|{pj}i−1

j=1).

4. Estimate the predictive distribution of the transformed generalized residuals under the time
series model: Pi|{pj}i−1

j=1 ∼ N(µ̂i, σ̂
2
i ).

5. Transform back to the distribution of log-durations and compute the adjusted estimated
conditional density f̂∗i of log-durations. That is, if Pi has the distribution in step 4, then
Ti = F̂−1

i (Φ(Pi)) ∼ f̂∗i (t), where Ti is the random variable of adjusted predictive distri-
bution of log-duration.

In step 1, F̂i(.) is any nonparametric estimator of the conditional CDF F̂i(.|Fi−1) of Ti. Due to the
curse of dimensionality and heavy computational demands, this first estimate will depend on only the
most recent past. This attempts to capture the short-term memory nonparametrically. In principle,
the marginal distribution of Ti or F̂i(Ti|Ti−1) could be a good starting point. In the example in
section 5, the nonparametric estimator is a kernel conditional density estimator given the previous
duration, F̂i(Ti|Ti−1). Thus, the ci can be regarded as generalized residuals and are supported
on (0, 1). In step 2, Φ−1 is the standard normal quantile function. The transformed generalized
residuals pi should then be approximately standard normal random variables. In step 3, TS−model
is any parametric time series model that we can fit to the series {pi}ni=1. Using the time series model,
we compute the conditional predictive distribution of each transformed generalized residual Pi.
Typically, an ARIMA model could be used in this step. However, with market microstructure data,
especially for trade flow, long memory (slowly decaying autocorrelation function) is present. Thus,
ARFIMA models might be a better choice. In the example in section 5, we use an ARFIMA(1,d,1)
model, which provides a good fit. According to the time-series model, the predictive distribution
of Pi is the normal distribution with mean µ̂i and variance σ̂2

i in step 4. Step 5 transforms to the
predictive distribution of Ti back in the log-duration space. If Pi has the distribution in step 4, then
Ti = F̂−1

i (Φ(Pi)) has the estimated predictive distribution of log-durations given the past. The
adjusted estimated density function of Ti is f̂∗i (t).

4.1 Adjusted New PDF and CDF

In this section, we derive the adjusted estimated conditional density function f̂∗i (t) of Ti. We start
with the initial nonparametric density estimate f̂i(t). The adjusted CDF is:

F̂ ∗i (t) = P (Ti <= t) = P (F̂−1
i ◦ Φ(Pi) <= t) = P (Pi <= Φ−1 ◦ F̂i(t))

f̂∗i (t) =
∂

∂t
F̂ ∗i (t) = ĥi(Φ

−1(F̂i(t))) ∗ Φ−1′(F̂i(t)) ∗ f̂i(t) =
ĥi(Φ

−1(F̂i(t)))

φ(Φ−1(F̂i(t)))
∗ f̂i(t)

where, φ(.) is the standard normal density, Pi ∼ N(µ̂i, σ̂
2
i ) and ĥ∗i (.) is density of Pi. The new

density function is the product of the initial density and ĥi(Φ
−1(F̂i(t)))

φ(Φ−1(F̂i(t)))
. If no time series model
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is fit to the Pi in step 3, then ĥi(.) = φ(.). The adjusted predictive CDF can also be derived
straightforwardly:

F̂ ∗i (t) =

∫ t

0

f̂∗i (s) =

∫ t

0

ĥi(Φ
−1(F̂i(s)))

φ(Φ−1(F̂i(s)))
f̂i(s)ds

=

∫ F̂i(t)

0

ĥi(Φ
−1(s1))

φ(Φ−1(s1))
ds1 ,where s1 := F̂i(s))

=

∫ Φ−1(F̂i(t))

−∞

ĥi(s2)

φ(s2)
φ(s2)ds2 ,where s2 := Φ−1(s1)

= Ĥi(Φ
−1(F̂i(t)))

Here Ĥi(.) is CDF corresponding to the density ĥi(.). Accordingly, the adjusted generalized residual
c∗i is:

c∗i = F̂ ∗i (Ti) = Ĥi(Φ
−1(F̂i(Ti)) = Ĥi(Φ

−1(ci))

If the time series model does improve the estimation, the adjusted generalized residual c∗i should be
closer to having a uniform U(0, 1) distribution than does ci, both marginally and conditional on any
past information (prior to the occurrence of Ti.) Empirical results will be shown in the example in
section 5.

The difference between the adjusted log-likelihood (after fitting the parametric time-series model)
and the initial nonparametric log-likelihood is:

lladjusted − llinitial =
∑

log(f̂∗i (Ti))−
∑

log(f̂i(Ti))

=
∑

log(ĥi(Φ
−1(F̂i(Ti))))−

∑
log(φ(Φ−1(F̂i(Ti))))

=
∑

log(ĥi(pi))−
∑

log(φ(pi)).

This indicates that, as long as the linear time-series model fits the transformed generalized residuals
{pi}ni=1 better than the IID standard normal model, it increases the log-likelihood in the original
log-duration space. The increase in log-likelihood in the original log-duration space is the same as
the increase in the transformed generalized residual space.

4.2 Additional Explanatory Variables

In a marked point process, marks are observed along with the target events. These marks, or addi-
tional explanatory variables, may have an impact on the distribution of log-duration. In the ACD
models, the marks’ information is incorporated in the autoregressive formula for the conditional
mean of duration. Analogously, in our SPIE framework, it is natural to incorporate the additional
variables’ effects in the parametric time-series model (step 3).

In a typical ARMA model, additional variables can be incorporated in two ways. One is called an
ARMAX model. The other is called an ARMA model with regression. Their formulas, state space
representations, parameter estimation and prediction are described in Appendix. These two methods
can both be summarized in the following format:

xt+1 = Φxt + γut+1 + Θwt, where wt ∼ N(0, Q),

yt = Axt + Γut + vt, where vt ∼ N(0, R),

cov(wt, vs) = Sδts
x1 = 0,

where yt are observations, xt are hidden states, wt and vt are gaussian noise, and ut are additional
variables, one of which might be a fixed constant to allow for an intercept.

Likewise, with ARFIMA models, common extensions are the ARFIMAX model and ARFIMA with
regression model, in which yt − Γut comes from an ARFIMA model as in Equation 5. In the
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example of trade flow in section 5, the additional variable book pressure imbalance is incorporated
in such a manner.

φ(B)∆d(yt − Γut) = θ(B) (5)

where ∆ = (1−B) and B is the back-shift operator.

The state space representation of ARFIMA model and its corresponding parameter estimation and
prediction are described in Appendix.

5 Experimental Results

In this section, we apply the SPIE framework to the trade flow from the limit order book of J.P. Mor-
gan stock on the New York Stock Exchange (NYSE) for dates between 07/07/2010 and 07/14/2010.
The trading procedure on the NYSE is discussed by Schwarts (1993) [Sch93] and Hasbrouck, Sofi-
anos and Sosebee (1993) [HSS93]. The dataset includes a series of pairs (Ti, Bi), where Ti is
log-duration and Bi is an additional explanatory variable, book pressure imbalance. In what fol-
lows, we will describe the specific methods that we used in each step of the SPIE framework and
specify the way we incorporated the additional expanatory variable. The improvement, in the sense
of negative log-likelihood, of each step is given afterwards, followed by the comparison between
our model and the ACD model.

We follow the SPIE framework as we described in section 3. In particular, in the first step, since
it is well-known that all of the duration processes in market microstructure data are self-exciting
(especially inter-trade durations,) and since the most recent durations carry the most information, we
used nonparametric kernel conditional density estimation in Hall, Racine and Li (2004) [HRL04]
for Ti given Ti−1. We call the estimated conditional cdf F̂i(.|Ti−1). Figure 1 shows the conditional
densities estimation conditional on different values of the previous log-duration Ti−1. It is clear that
the self-exciting feature is captured by the conditional density estimation to a large extent. No matter
what the previous duration Ti−1 is, the distribution of the current duration Ti has two humps. And as
the previous duration increases, both the proportion and location of the second hump increase. The
bimodal characteristic explains why those parametric conditional duration models with a unimodal
residual distribution cannot capture the dynamics of trade flow very well.

In step 1, the duration needs to be preprocessed before applying the kernel conditional density
estimation because the duration is measured in millisecond and thus discrete. In order to make
kernel density estimation of log-duration eligible, we added a little noise on the original duration
to make it continuous. In detail, we transformed all the original durations in training data and
test data by adding a constant 0.5 millisecond first. And when it comes to the kernel conditional
density estimation, we add an IID uniform noise U ∼ Uniform(-0.5, 0.5). Such a transformation
is to guarantee that the log duration is still positive and that the transformed durations still keep
their original numerical order. Intuitively, the noise is so small that it should not make a significant
difference on the estimation.

The noise must be employed in the first step in order to make duration continuous and avoid the
bandwidth in the kernel conditional density estimation crash. However, the noise may be incorpo-
rated in the time series modeling step or not. Although we still need a theoretical proof that the noise
will not undermine the estimation, we have tested multiple versions of combinations of noises for
multiple times. And since the noise is small, the parameter estimation result in time series modeling
and the model evaluation result are both consistent and stable. In particular, the rest of this section
shows the result with noise employed only in nonparametric kernel conditional density estimation.
In the appendix, the detailed adjustment of the estimated function with noise f̂ in step 1 and ĥ in
step 3 as well as model evaluation are provided. In the future work, I will deliver a simulation test
to justify the estimation with noise.

In step 2 of SPIE, we get the transformed generalized residuals pi. As in Figure 2 and Figure
3, the autocorrelation function and partial autocorrelation function of the transformed generalized
residuals on 6 days are shown. It is clear that pi has a long memory with slowly decaying ACF.
Thus, we employ an ARFIMA model in step 3.

In step 3 of SPIE, we first consider a time series predictor without book pressure imbalance. By
minimizing the AIC score among all of the ARFIMA models, ARFIMA(1,d,1) without intercept
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is the chosen model, as in Equation 6. Table 3 shows the results of parameter estimation and the
improvement of log-likelihood compared to the purely kernel conditional density estimation. on
both training data and test data. (“Test data” refers to the next trading day throughout this report.)
From table 3, we can see that parameter estimation is generally stable except on July 9th and the
improvement of log-likelihood is consistent on both training data and test data.

(1− φB)(1−B)dPi = (1− θB)Zi, where Zi ∼WN(0, σ2) (6)

Table 3: Parameter estimation of fractional integrated ARMA model on the transformed generalized
residuals. Standard Deviation is attached the following parenthesis. ∆ll is log likelihood improve-
ment compared to pure kernel conditional density estimation in step 1. Test data is the data on the
next trading day.

Date φ θ d σ2 ∆ lltraining ∆ lltest
07/07 0.149(0.039) 0.393(0.044) 0.211(0.015) 0.97 159 195
07/08 0.133(0.036) 0.387(0.042) 0.208(0.015) 0.97 194 113
07/09 0.088(0.047) 0.296(0.049) 0.175(0.013) 0.97 116 96
07/12 0.199(0.049) 0.409(0.054) 0.186(0.017) 0.97 98 149
07/13 0.157(0.040) 0.376(0.046) 0.182(0.015) 0.98 149 99

In order to incorporate the effects of book pressure imbalance, we consider an ARFIMAX model
with two lags of book pressure imbalance as in Equation 7. |Bi| is the absolute value of book
pressure imbalance. Book pressure imbalance is measuring the degree of imbalance between buying
desire and selling desire. Since it is the degree of imbalance that determines the duration to next
trade, we take into account the absolute value of book pressure imbalance instead of original book
pressure imbalance). It turns out both b0, b1 and b2 make a difference significantly. Table 4 shows the
parameter estimation and the log-likelihood improvement compared to pure nonparametric density
estimation on both training data and test data. It is clear that both the parameter estimation and the
improvement of log-likelihood are generally consistent across days except that on July 9th, there is
a clear deviation. And the improvement of incorporating the book pressure imbalance is significant
from the difference of ∆lltest between the Table3 and Table 4, indicating that the incorporation of
book pressure imbalance through an ARFIMAX model performs much better than ignoring book
pressure imbalance.

(1− φB)(1−B)d(Pi − b0 − b1|Bi| − b2|Bi−1|) = Zi, where Zi ∼WN(0, σ2) (7)

Table 4: Parameter estimation of fractional integrated ARMA with book pressure imbalance as
additional explanatory variables.

Date φ θ d β0 β1 β2

07/07 0.110(0.050) 0.329(0.058) 0.188(0.017) 0.096(0.038) -0.225(0.010) 0.128(0.010)
07/08 0.088(0.041) 0.314(0.056) 0.185(0.015) 0.096(0.036) -0.227(0.009) 0.127(0.009)
07/09 0.052(0.060) 0.247(0.067) 0.161(0.016) 0.113(0.035) -0.232(0.011) 0.122(0.010)
07/12 0.180(0.064) 0.371(0.073) 0.173(0.019) 0.066(0.039) -0.217(0.012) 0.133(0.012)
07/13 0.118(0.044) 0.328(0.051) 0.175(0.015) 0.091(0.032) -0.246(0.009) 0.159(0.009)
Date σ2 ∆ lltraining ∆ lltest
07/07 0.896 467 528
07/08 0.897 530 374
07/09 0.892 372 287
07/12 0.908 292 601
07/13 0.893 609 348

Then in steps 4 and 5 of SPIE, by transforming the estimated density of Pi back to the density of Ti,
we obtain the new estimated density

f̂∗i (t|Fi−1) =
ĥi(Φ

−1(F̂i(t)))

φ(Φ−1(F̂i(t)))
f̂i(t),
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where f̂i(t) and F̂i(t) are respectively nonparametric kernel conditional estimated PDF and CDF
and ĥi(.) is one-step ahead predicted distribution of Pi from the ARFIMA model on the sequence
of pi.

Figure 4 shows an intuitive idea of how much each step improves the model. The pure nonparametric
conditional density estimation works as a baseline. The blue bins reflect the amount of improvement
of the ARFIMA model as the time series predictor in step 3 in terms of log-likelihood compared to
the pure kernel conditional density estimation in step 1. On average, ARFIMA model improves
by 0.5 percent. On the other hand, the red bins reflect the amount of improvement of ARFIMAX
model as the time series predictor in step 3 in terms of log-likelihood compared to the pure kernel
conditional density estimation in step 1. The ARFIMAX model improves by 1.3 percent on average.
Both models make a consistent and significant improvement.

5.1 Comparison to ACD Model

In this section, we implemented the most common version of the ACD model, i.e. log-ACD model
as in Equations (2), (3), and (4). We then compare it to our SPIE model in terms of negative log-
likelihood on the test data. Table 5 shows the parameter estimation results for the log-ACD model by
means of maximizing log-likelihood and the negative log-likelihood on both training data and test
data. Obviously, the estimated parameters are consistent and the autoregressive feature is significant
since β̂ is close to 1. In addition, γ is significantly smaller than 1, which suggests a decreasing
hazard function, i.e. the self-exciting feature. The original negative log-likelihood is derived as in
Equation 8, where xi is the original duration and λ = 1

Γ(1+1/γ) to make sure that the mean of ε is 1.
In order to compare it with our SPIE model, where we model log-duration we derived the negative
log-likelihood for log-duration in log-ACD model as in Equation 9.

Table 5: Parameter estimation of log Autoregressive Conditional Duration modle. lltraining is neg-
ative log likelihood of training data. lltest is negative log likelihood of test data, which is the next
trading day.

Date α̂ β̂ ω̂ γ̂ lltraining lltest
07/07 0.119 0.955 0.242 0.415 27380 31617
07/08 0.134 0.937 0.355 0.416 31604 22516
07/09 0.163 0.922 0.485 0.402 22492 21484
07/12 0.214 0.927 0.420 0.426 21512 34119
07/13 0.144 0.930 0.392 0.406 33925 26767

−lloriginal−duration = −
∑

log(f(xi|Fi−1)) = −
∑

log[
γ

λ
(
xi
λΦi

)γ−1e−(xi/λΦi)
γ 1

Φi
] (8)

−lllog−duration = −lloriginal−duration −
∑

log(xi) (9)

To compare the performance of our SPIE framework and ACD model visually, Figure 5 shows the
comparison of negative log-likelihood between the two models. The log-likelihoods are calculated
on test data with the model trained from the previous trading day’s data. Obviously, the SPIE
framework outperforms the log-ACD model to a great extent.

6 Model Diagnostics

Diebold, Gunther and Tay (1998) [DGT98], henceforth referred to as DGT, proposed a method of
density forecast evaluation based on the probability integral transform. According to DGT, under the
null hypothesis that the predicted density is the true density, the probability integral transform ci =∫ Ti
−∞ fi(t)dt is an IID sample of uniform random variables on the interval (0,1). In particular, they

don’t have any autocorrelation dependency. Furthermore, Bauwens, Giot, Grammig and Veredas
(2000) [BGGV00] compared the main existing conditional duration models, including ACD, log-
ACD, TACD, SCD and SVD models, by means of the DGT method. Although these models work
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well on the price duration process and volume duration process, none of them work on the trade
duration process.

In this section, we investigated our specific model in section 4 by the DGT method. As we described
in Section 3.1, the new generalized residual is derived as c∗i =

∫ Ti
−∞ f∗i (t)dt. Under the null hypoth-

esis that f∗i (t) is the true model, C∗i should be IID uniform on (0,1) and have no autocorrelation
dependency.

6.1 IID Uniform Test

In this section, we test the null hypothesis that H0 : C∗i ∼ U(0, 1) by a Kolmogorov Smirnov
test. Table 6 shows the p-values of the KS tests on both training data and test data on multiple days
without the effect of book pressure imbalance. Table 7 shows the counterpart with the effect of book
pressure imbalance. Obviously, both the ARFIMA and ARFIMAX model on all test days passed
the Kolmogorov Smirnov test at the 0.05 confidence level. In other words, the generalized residuals
from our model appear to be close to having a uniform (0,1) distribution.

Table 6: P-value of KS test of model without book pressure imbalance

Date P-value on training data P-value on test data
07/07 0.82 0.21
07/08 0.23 0.54
07/09 0.67 0.38
07/12 0.33 0.43
07/13 0.46 0.74

Table 7: P-value of KS test of model with book pressure imbalance

Date P-value on training data P-value on test data
07/07 0.68 0.92
07/08 0.89 0.85
07/09 0.81 0.64
07/12 0.86 0.24
07/13 0.77 0.15

6.2 Autocorrelation Test

In this section, we test the null hypothesis thatH0 : C∗i are not autocorrelated by the Ljung-Box test.
Table 8 shows the p-values of the Ljung-Box tests on both training data and test data on multiple
days with multiple number of lags Q without the effect of book pressure imbalance. Table 9 shows
the counterpart with the effect of book pressure imbalance. We can see from the tables that the
generalized residuals generally do not have autocorrelation dependency except that the predictor
trained on July 8th and tested on July 9th did not pass the Ljung Box test.

Table 8: P-value of Ljung Box test of model without book pressure imbalance. Q represents the
number of autocorrelations considered.

Date P-value on training data P-value on test data
Q=5 Q=10 Q=15 Q=5 Q=10 Q=15

07/07 0.89 0.66 0.84 0.10 0.11 0.14
07/08 0.18 0.15 0.21 0.02 0.01 0.005
07/09 0.17 0.26 0.12 0.16 0.31 0.63
07/12 0.62 0.60 0.85 0.39 0.23 0.37
07/13 0.61 0.25 0.50 0.38 0.04 0.13
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Table 9: P-value of Ljung Box test of model with book pressure imbalance. Q represents the number
of autocorrelations considered.

Date P-value on training data P-value on test data
Q=5 Q=10 Q=15 Q=5 Q=10 Q=15

07/07 0.89 0.81 0.89 0.27 0.46 0.27
07/08 0.37 0.52 0.41 0.03 0.03 0.03
07/09 0.11 0.26 0.13 0.36 0.63 0.80
07/12 0.67 0.78 0.91 0.55 0.66 0.69
07/13 0.91 0.81 0.86 0.11 0.03 0.10

6.3 Pearson Correlation Test

In this section, we test whether the density forecast is well explained by the previous information,
i.e. H0 : the generalized residuals have 0 correlation with the previous time gap and other marks at
various lags. We used the Pearson correlation test between generalized residuals and any previous
information. The p-values of Pearson correlation tests on various lags and multiple days are shown
in Table 10. Likewise, the test is also conducted on the ARFIMAX model with book pressure
imbalance. Table 11 and Table 12 respectively show the p-values of tests for durations and book
pressure imbalance. In general, the both models fit very well because most previous durations and
book pressure imbalances have no correlation with generalized residuals.

Table 10: P-value of Pearson Correlation test between generalized residuals and previous durations
at different lags under ARFIMA model without book pressure imbalance on test data.

P-value
Lag 07/08 07/09 07/12 07/13 07/14
1 0.57 0.62 0.60 0.88 0.44
2 0.27 0.46 0.14 0.18 0.91
3 0.20 0.77 0.49 0.06 0.28
4 0.71 0.03 0.10 0.66 0.12
5 0.13 0.00 0.25 0.30 0.27
6 0.14 0.10 0.87 0.19 0.02
7 0.04 0.08 0.52 0.48 0.50
8 0.24 0.02 0.28 0.16 0.23
9 0.77 0.18 0.34 0.08 0.26
10 0.13 0.07 0.91 0.69 0.82

Table 11: P-value of Pearson Correlation test between generalized residuals and previous durations
at different lags under ARFIMAX model with book pressure imbalance on test data

P-value
Lag 07/08 07/09 07/12 07/13 07/14
1 0.65 0.48 0.32 0.53 0.01
2 0.74 0.93 0.18 0.55 0.67
3 0.23 0.61 0.54 0.21 0.30
4 0.98 0.06 0.24 0.54 0.03
5 0.16 0.00 0.38 0.12 0.39
6 0.39 0.38 0.80 0.18 0.05
7 0.17 0.17 0.62 0.49 0.67
8 0.64 0.02 0.34 0.20 0.18
9 0.71 0.18 0.84 0.18 0.40
10 0.39 0.23 0.82 0.48 0.61
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Table 12: P-value of Pearson Correlation test between generalized residuals and absolute value
of previous book pressure imbalance at various lags under ARFIMAX model with book pressure
imbalance on test data

P-value
Lag 07/08 07/09 07/12 07/13 07/14
1 0.94 0.33 0.11 0.01 0.00
2 0.60 0.38 0.21 0.11 0.21
3 0.00 0.50 0.06 0.00 0.04
4 0.23 0.79 0.68 0.41 0.75
5 0.60 0.27 0.58 0.26 0.58
6 0.69 0.20 0.40 0.07 0.42
7 0.06 0.12 0.79 0.40 0.34
8 0.43 0.74 0.69 0.20 0.99
9 0.10 0.87 0.31 0.32 0.29
10 0.76 0.89 0.86 0.66 0.61

7 Discussion and Conclusion

We proposed a new semi-parametric framework for estimating the conditional intensity function of
a marked point process. In particular, we applied our framework to trade-duration processes. By the
DGT evaluation method, our model generally passes the Kolmogorov Smirnov test for the uniform
distribution, the Ljung-Box test of independence as well as the Pearson correlation test between
residuals and auxilliary variables. Bauwens, Giot, Grammig and Veredas (2000) [BGGV00] claimed
that the ACD model and all of its variants model fail to pass both the Kolmogorov Smirnov test
and the Ljung-Box test. In addition, our model based on the SPIE framework has consistently
significantly better performance than the ACD model and its variants in the sense of log-likelihood
on test data. Therefore, our framework has great potential for modeling the intensity functions of
duration processes, especially the trade duration process.

Furthermore, we have introduced a systematic way to incorporate additional explanatory variables
in the SPIE framework. In the example in section 5, we have shown that the incorporation of effects
of book pressure imbalance significantly improves our model in terms of log-likelihood and the new
model generally continues to pass the residual tests.

The essence of the framework lies in two aspects. On one hand, the framework decomposes the
modeling of the shapes of distributions and the modeling of time dependency. Nonparametric den-
sity estimation captures the shapea of distribution, while parametric time series model captures the
time dependency. On the other hand, in the particular case of trade-duration process, the framework
seperates the long memory and short memory estimation. The nonparametric conditional density
estimation captures the recent information to a precise extent, while the time series model captures
the relative distant information.

The reason that the framework works and outperforms the existing ACD family on the particular
trade duration processes is that the nonparametric conditional density estimation is able to recover
the bimodal distribution, while all the ACD family models assume unimodal distributions. Further-
more, the ARFIMA model on the transformed generalized residuals is able to capture the autocor-
relation dependence in a more flexible way than merely through the expectation.

The SPIE framework is designed for estimating a conditional intensity function. But it can also be
used for estimating and predicting any series of densities, in principle.

8 Work in the Future

8.1 Multivariate Point Process

Our method is aimed at modeling the dynamics of trade flow for a single stock. A natural extension is
to model multivariate point processes, motivated by capturing cross stock and cross exchange effects,
explaining bivariate buy/sell flow as well as explaining flows of limit orders and cancellations. The
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popular current existing models include the Hawkes Process ( λ(t|Ft) = λ0 +
∑
j

∑ni
i=1 γjφj(t −

ti) ), GLM-framework( logλ(t|Ft) = γ0 +
∑
j

∑Q
i=1 γ

j
i∆N

j
t−i ) and some ACD variants. Their

essential idea is to sum up the effects of all of the past events. Yet, they suffer from ignoring the
interactive effects of previous events and failure in the goodness-of-fit test. Possible future work
directions include (1) combining our SPIE framework with a Hawkes process, (2) introducing a
latent process as a driving force, and (3) asymmetric SPIE modeling to deal with buy/sell flow. The
asymmetric SPIE is discussed in the next subsection.

8.1.1 Asymmetric SPIE

In practice, traders care about not only the duration of a trade but also on which side the next trade
would occur. We already know that trade-duration is closely related with the side of a trade and that
longer durations increase the probability of changing side from the previous trade to the limit of one
half.

In order to estimate the probability P (Li = 1|Fi−1) of the side of a trade, there are two obvious
methods. Since it is known that duration has a great impact on label, we can estimate the duration
first and then estimate the probability of Li = 1 conditional on the estimated duration, i.e. P (Li =
1|Fi−1) =

∫
t
P (Li = 1|Ti = t,Fi−1)P (Ti = t|Fi−1)dt. Another method is an extension of

our SPIE framework to an asymmetric version, in which there are two types of target events. At
each time, both of the two types of events are waiting to occur. But we can only observe the one that
occurs first, and the other unobserved duration is a latent duration. We can use nonparametric density
estimation for both types of events, ĝ(1)

i (.) and ĝ(2)
i (.) and then model the transformed generalized

residuals by a bivariate time series model with missing values.

In our example, we would fit a bivariate ARFIMA model, in which only one value is observed
at each period and the other one is censored to lie in an interval. A state space representation is
needed in order to estimate parameters or make predictions for ARMA model or ARFIMA models
with missing values. Palma and Chan (1997) [PC97] investigated Kalman filtering with infinite
dimensional state methods to fit an ARFIMA model with missing values. Shumway and Stoffer
(1982) [RD82] modified the EM algorithm to deal with missing values in state space models. Our
ARFIMA model can be expressed in the following equations. Here, Xt are hidden states, one of
y

(1)
t and y(2)

t is the observed value and the other is censored to lie in the interval (lt,+∞). The
one-sided censoring indicates that the unobserved duration is longer than the observed one. Without
loss of generality, suppose that y(2)

t is missing, then lt can be derived by Φ−1(ĝ
(1)
i (Ti)).


Xt+1 = ΦXt + Θεt, t = 1, 2..n(
y

(1)
t

y
(2)
t

)
=

(
A

(1)
t

A
(2)
t

)
Xt +

(
ε
(1)
t

ε
(2)
t

)

In order to estimate parameters and make predictions from our model with interval-censoring, the
censored data must be included in the log-likelihood. A modified version of Kalman filter or EM
algorithm to deal with the problem of restrictions is needed.

8.2 Update Information between Two Consecutive Trades

Our model is based on analysis of durations and the marks at the times when trades occur. However,
some marks evolve continuously over time. For example, the book pressure imbalance is changing
between two consecutive trades. So far, our model does not take into account that evolution. Mod-
eling the mark process is actually attractive because quite a few trades have long durations. In such
cases, how the marks change during the long inter-trade intervals is more informative in predicting
the next trade than the values of the marks when the intervals start.

In duration models, the hazard function is essentially equivalent to the intensity function. Thus,
modeling the conditional intensity has potential. The Hawkes process [Haw71] models the condi-
tional intensity function in continuous time. The information from past trades decays over clock
time rather than over event time as in duration models. Zhao’s (2010) thesis [Zha10] models the
conditional intensity depending on the number of events in the previous fixed-time-length window.
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For modeling multivariate point processes, we intend to start by combining the SPIE framework with
a Hawkes Process to keep updating the information between the current trade and the next trade. In
particular, using the SPIE framework, whenever a trade occurs, we obtain a new hazard function for
next duration hi(.). Then the events after the current trade are incorporated by Hawkes kernels, that
is,

λ(t) = hi(t) +
∑
k

∑
xi<t∗k,j<t

φk(t− t∗k,j), where t > xi,

where k represents the types of events, xi is the clock time of ith trade, t∗k,j is the clock time of jth
event of type k, and φk(.) is a linear combination of kernels, such as exponential kernel, Weibull
kernel, gamma kernel. Such a parameterization helps identify whether the extra information (other
events) excites or inhibits the target point process. And this generalization can also be extended to
modeling multivariate point processws to detect causality among processes.

8.3 Model Improvement and General Ideas

There are also a few ways to further improve our model, including automating model selection,
modeling deterministic intraday patterns as well as employing index model(i.e. the single variable
condition can be replaced by a linear combination of several variables). A few general ideas will also
be considered in the future work, including consistency analysis, bootstrap simulation, nonlinear
correlation test as well as noise justification in theoretical analysis and simulation. In the next two
subsections, we provide a brief of bootstrap simulation and nonlinear correlation testing.

8.3.1 Bootstrap Simulation

In this section, we discuss an algorithm for bootstrapping the SPIE models and how we could imple-
ment it. With the bootstrapping tool, we can estimate the bootstrap standard error and a confidence
interval for the parameters in the time series models. Moreover, we can estimate the confidence
interval of the nonparametric conditional density estimation of current durations given any previous
information. As in our example, we can estimate a confidence interval for f(Ti|Ti−1). We could
bootstrap the SPIE model as follows:

1. Given log-duration sequences {Ti}ni=1, estimate a series of density f̂∗i (.|Fi−1) by the SPIE
framework.

2. Construct the new generalized residuals ci = F̂ ∗i (Ti), i = 1, 2...n. By our assumptions,
the {ci}ni=1 form a sequenc of IID U(0,1) random variables.

3. Resample the new generalized residuals {ci}ni=1 with replacement to get {c∗i }ni=1.
4. Construct the bootstrap dataset {T ∗i }ni=1 as follows. Keep the first few durations the same

as the original durations, i.e. T ∗i = Ti, i = 1, 2, ..m, for small m. Given {T ∗i }
j−1
i=1 , we can

get a prediction of the density of the next duration f̂∗j using the SPIE model. Then the next

duration is constructed as T ∗j = F̂
∗(−1)
j (c∗j ).

5. Using the bootstrap durations, repeat the parameter estimation process to get new parameter
estimates and new nonparametric conditional density estimates.

6. Repeat steps 3–5 a large number, B, of times and get a set of bootstrap parameter estimates
and conditional density estimates {Θ̂∗i , i = 1, 2...B}. These, can be used to construct confi-
dence intervals for both parameters in the time series models and nonparametric conditional
densities.

Bootstrap simulation is a powerful tool. There are two difficulties in the bootstrap simulation pro-
cess. First, it is generally time-consuming for nonparametric conditional density estimation. Second,
to calculate the inverse function of the predicted distribution F̂ ∗(−1)

j (.) is not trivial.

8.3.2 Nonlinear Correlation Test

In section 6.3, we have shown by the Pearson correlation test that our model’s generalized residual
ci are not linear correlated with some of the previous information, including previous durations Ti−j
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and book pressure imbalance Bi−j at any time lag j > 0. However, this test is not enough, even if
our model perfectly estimates the duration density. Under the ideal model, ci should be independent
of all information in the entire past Fi−1.

An interesting test we plan to implement is to divide the dataset into m subgroups conditional on
certain past information. For example, the entire dataset could be divided into 30 subgroups by the
i/30, i=1,2..30 percentiles of the Ti−1. Do the KS test and get a p-value on each subgroup. Ideally,
the m p-values should come from a uniform (0,1) distribution. Thus, a pp-plot of the m p-values
and the theoretical uniform (0,1) distribution would be helpful to identify any patterns.
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Appendix

A Figures

Figure 1: Conditional Density of Ti Given Ti−1
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Figure 2: ACF and PACF of Generalized Residual Pi

Figure 3: ACF and PACF of Generalized Residual Pi
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Figure 4: log-likelihood improvement of each step.

Figure 5: log-ACD -loglikelihood vs. SPIE -loglikelihood
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B State Space Representation of ARMA Model 1

There are multiple ways to represent ARMA models as state space models. In this project, we use
the following representation. An ARMA(p,q) model φ(B)yt = θ(B)Zt can be represented as a
state space model:

yt = Axt + Zt

xt+1 = Φxt + ΘZt,

where, assuming p ≥ q,

Φ =


φ1 I 0 · · · 0
φ2 0 I · · · 0
...

...
...

. . .
...

φp−1 0 0 · · · I
φp 0 0 · · · 0



Θ =



θ1 + φ1

...
θq + φq
φq+1

...
φp


In particular, an ARMA(1,1) model yt − φtt−1 = Zt + θZt−1 can be represented as the state space
model:

yt = xt + Zt

xt+1 = φxt + (θ + φ)Zt

B.1 State Space Representation of ARMAX and ARMA with regression Models

Exogenous variables ut, including fixed constant intercept, may enter into the state equation or into
the observation equation, leading to ARMAX or ARMA with regression model respectively.

A typical ARMAX model φ(B)yt = γut + θ(B)Zt can be represented as a state space model:

yt = Axt + Zt

xt+1 = Φxt + γut + ΘZt
And a typical ARMA model with regression yt−Γut ∼ ARMA(p, q) can be represented as a state
space model:

yt = Axt + Γut + Zt

xt+1 = Φxt + ΘZt

In general, the ARMAX model and ARMA model with regression can be combined and represented
as:

xt+1 = Φxt + γut+1 + Θwt

yt = Axt + Γut + vt
cov(ws, vt) = Sδts
x0 ∼ N(µ0,Σ0)

where µ0 and Σ0 are the initial mean and variance, Φ is the transition matrix,Q and R are state
and observation covariance matrices, and γ and Γ are input coefficient matrices. In particular, when
γ = 0 and wt = vt, it reduces to ARMA with regression. And when Γ = 0 and wt = vt, it reduces
to ARMAX model.

1The state space representation of ARMA model, Kalman Filter and log-likelihood are referenced from
[RD11]
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B.2 State Space Representation of ARFIMA model 2

A moving average representation of an ARFIMA(p, d, q) model is given by:

yt =

∞∑
j=0

ψjεt−j , (10)

where ψj are the coefficients of ψ(z) =
∑∞
j=0 = θ(z)/φ(z)(1 − z)−d. The standard ARFIMA

model does not have a finite-dimensional state-space representation. However, if we truncate equa-
tion (10) at the first m terms, then it can be represented as:

xt+1 = Fxt +Hεt

yt = Gxt + εt

where

F =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0



H =


ψ1

ψ2

...
ψm



G = ( 1 0 0 0 · · · )

C Kalman Filter for State Space Models

C.1 Kalman Filtering for State Space Models model with independent errors

Consider a state space model with initial conditions x0
0 = µ0 and P 0

0 = Σ0, and specified as

xt = Φxt−1 + γut + wt

yt = Axt + Γut + vt

wt
iid∼ N(0, Q)

vt
iid∼ N(0, R)

cov(ws, vt) = 0.

Then for t = 1, ..., n, the update is derived as:

xt−1
t = Φxt−1

t−1 + γut

P t−1
t = ΦP t−1

t−1 Φ′ +Q

with

xtt = xt−1
t +Kt(yt −Axt−1

t − Γut)

P tt = [I −KtA]P t−1
t ,

where the Kalman gain is

Kt = P t−1
t A′[AP t−1

t A′ +R]−1

2Referenced from [PC97]
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C.2 Kalman Filtering for State Space Model model with correlated errors

Consider a state space model with initial conditions x0
1 and P 0

1 , and specified as

xt+1 = Φxt + γut+1 + Θwt

yt = Axt + Γut + vt

wt
iid∼ N(0, Q)

vt
iid∼ N(0, R)

cov(ws, vt) = Sδts

Then, for t = 1, ..., n, the update is derived as:

xtt+1 = Φxt−1
t + γut+1 +Ktεt

P tt+1 = ΦP t−1
t Φ′ + ΘAΘ′ −KtΣtK

′
t,

where εt = yt −Axt−1
t − Γut, and the gain matrix is given by

Kt = [ΦP t−1
t A′t + ΘS][AP t−1

t A′ +R]−1.

Then the filter values are given by

xtt = xt−1
t + P t−1

t A′[AP t−1
t A′ +R]−1εt+1

P tt = P t−1
t A′[AP t−1

t A′ +R]−1AP t−1
t .

And the initial value is:

x0
1 = E(x1) = Φµ0 + γu1

P 0
1 = var(x1) = ΦΣ0Φ′ + ΘQΘ′

D Log likelihood of State Space Model

In the state space model, we use Θ to represent the parameters in the model, Θ =
{µ0,Σ0,Φ, Q,R, γ,Γ}. The likelihood is computed based on innovations εt = yt − Axt−1

t − Γut
and covariance matrices Σt = AP t−1

t A′ +R. Thus, the negative log-likelihood can be written as:

−lnLY (Θ) =
1

2

n∑
t=1

log|Σt(Θ)|+ 1

2

n∑
t=1

ε(Θ)′Σt(Θ)−1εt(Θ)

E Durations with Noise

Throughout the section, Xi and Ti are used to represent original duration and log-duration respec-
tively. The duration variable X is measured in millisecond and hence discrete. It ranges from 1
millisecond up to more than 50000 milliseconds and shows a extremely long tail feature. Thus, it
is reasonable to fit the duration variable as a continuous variable. Log transformation is employed
before modeling is due to the fact that 1) the most recent duration carries the most information and
we desire to start with kernel conditional density in the first step. 2) the marginal long tail feature
makes the kernel conditional density estimation unreliable. Thus, the log transformation limits the
support of T . In fact the nonparametric conditional density on log-duration is equivalent to non-
parametric conditional density with adaptive bandwidth. Therefore, a kernel conditional density
estimation on the log-duration should perform well. A natural question arises, that is, how to deal
with the discreteness of the log-duration before fitting the kernel conditional density estimation. The
bandwidth will crash if we apply directly the kernel conditional density estimation on the discrete
log-duration. In order to deal with the discreteness of log-duration, we imposed a small noise on the
original durations.
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E.1 Implementation

We first add 0.5 milliseconds on to all the durations no matter whether it is training data or test data
and denote it by Yi, i.e. Yi = Xi+0.5. Then, define Y ∗i = Yi+Ui, where Ui ∼ U(−0.5, 0.5). Thus,
Y ∗i is a continuous variable ranging from 1 to positive infinity theoretically. Define Ti = log(Yi),
T ∗i = log(Y ∗i ), T−i = log(Yi − 0.5) and T+

i = log(Yi + 0.5).

Following the SPIE framework, in the first step, we construct the kernel conditional density
f̂(.|T ∗i−1) by sequence of durations with noise T ∗i . In the second step, calculate the generalized
residual by the original discrete log-durations ci = f̂(Ti|Ti−1) and pi = Φ−1(ci). And construct
ĥi(.) by sequence of {pi}. When predicting the next duration, we discretize the final adjusted CDF
F̂ ∗i (.) by P (Yi = j) = P (Ti = log(j)) = F̂ ∗i (log(j + 0.5)|T i−1

j=1)− F̂ ∗i (log(j − 0.5)|T i−1
j=1).

When we evaluate the model on the test data, the goodness-of-fit test and log- likelihood should be
adjusted accordingly.

1) By the discrete version of PITT, the adjusted generalized residual is derived by c∗i =

F̂ ∗i (T−i |T
i−1
j=1) + [F̂ ∗i (T+

i |T
i−1
j=1) − F̂ ∗i (T−i |T

i−1
j=1)]V , where V ∼ U(0, 1). And if the model per-

forms well, then c∗i
iid∼ U(0, 1). Also note that the generalized residuals can be approximated by

c∗i ≈ F̂ ∗i (T ∗i |T
i−1
j=1).

2) The likelihood on the test data is derived as:

Likelihood =
∏
i

P (Yi = yi|Fi−1) =
∏
i

P (Ti = log(y)|Fi−1)

=
∏
i

[F̂ ∗i (T+
i |T

i−1
j=1)− F̂ ∗i (T−i |T

i−1
j=1)]

=
∏
i

[F̂Y ∗
i

(log(yi + 0.5)|yi−1
j=1)− F̂Y ∗

i
(log(yi − 0.5)|yi−1

j=1)]

≈
∏
i

f̂Y ∗
i

(y∗i )

=
∏
i

f̂∗i (log(y∗i ))
1

y∗i
=
∏
i

f̂∗i (T ∗i )/eT
∗
i

where, f̂∗(.) = f̂T∗(.), F̂ ∗(.) = F̂T∗(.), and the relationship between the distributions of Y ∗ and
T ∗ is f̂Y ∗(y) = f̂∗(log(y)) 1

y and F̂Y ∗(y) = F̂ ∗(log(y))

And thus, log−likelihood ≈
∑
i log(f̂∗i (T ∗))−

∑
i T
∗
i . In principle, we estimated the distributions

of continuous sequences of variables, {T ∗i } and {Y ∗i } and discretize their distributions to get the
distributions of original sequences of discrete variables, {Ti} and {Yi}.

By simulating noises multiple times, we have proved that the construction of f̂ in step 1 and ĥ in
step 3 are stable and consistent. Also, the adjusted generalized residuals pass the goodness-of-fit
tests and the log likelihood on the test data improves the ACD model significantly and consistently.
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